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In recent years, more and more evidence has shown that microRNAs (miRNAs) play

an important role in the regulation of post-transcriptional gene expression, and are

closely related to human diseases. Many studies have also revealed that miRNAs

can be served as promising biomarkers for the potential diagnosis and treatment of

human diseases. The interactions between miRNA and human disease have rarely

been demonstrated, and the underlying mechanism of miRNA is not clear. Therefore,

computational approaches has attracted the attention of researchers, which can not

only save time and money, but also improve the efficiency and accuracy of biological

experiments. In this work, we proposed a Heterogeneous Graph Attention Networks

(GAT) based method for miRNA-disease associations prediction, named HGATMDA.

We constructed a heterogeneous graph for miRNAs and diseases, introduced weighted

DeepWalk and GAT methods to extract features of miRNAs and diseases from the

graph. Moreover, a fully-connected neural networks is used to predict correlation scores

between miRNA-disease pairs. Experimental results under five-fold cross validation

(five-fold CV) showed that HGATMDA achieved better prediction performance than

other state-of-the-art methods. In addition, we performed three case studies on breast

neoplasms, lung neoplasms and kidney neoplasms. The results showed that for the

three diseases mentioned above, 50 out of top 50 candidates were confirmed by the

validation datasets. Therefore, HGATMDA is suitable as an effective tool to identity

potential diseases-related miRNAs.

Keywords: disease, miRNA, graph attention networks, miRNA-disease association, DeepWalk

1. INTRODUCTION

MicoRNAs (miRNAs) are a class of endogenous non-coding RNAs with a length of about 21–25
nucleotides, which play an important role in the regulation of post-transcriptional gene expression
in organisms (Ambros, 2001, 2004; Bartel, 2004, 2018). Over the past decades, researchers have
identified hundreds of miRNAs in humans and shown that many of them interact withmost human
mRNAs (Friedman et al., 2009). Recent studies have discovered that miRNAs down-regulate gene
expression by degrading or silencing targeting mRNAs, thereby affecting many cellular processes,
such as growth, development, differentiation, and death (Ambros, 2003; He and Hannon, 2004;
Bartel, 2009). Furthermore, many researches have found that humanmiRNAs are involved in many
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human diseases (Croce, 2008; Li et al., 2014; Chou et al.,
2016; Huang et al., 2019b). Therefore, miRNAs are promising
biomarkers for diagnosis and treatment of human diseases.

Based on previous biological experiments, verifying the
association between miRNA and disease is time-consuming and
expensive. Computational methods can efficiently select the
promising disease-associated miRNAs for further experimental
verification. Many computational methods have been proposed
for predicting the miRNA-disease associations, which can be
roughly divided into two categories: one is based on similarity
networks, the other is based on machine learning. Jiang et al.
(2010) have firstly introduced similarity network to compute the
score between disease and miRNA. They constructed functional
miRNA network by computing the overlap of the target genes,
and applied the hypergeometric distribution to calculate the
association score between disease and miRNA. Since then,
various network based approaches have been proposed (Chen
et al., 2016, 2018c; Pan et al., 2019; Yu et al., 2019). You et al.
(2017) have constructed a heterogeneous network, then proposed
a novel path based method named PBMDA for inferring the
disease-related miRNAs. However, this method only uses sub-
graph information for prediction, which can be improved by
considering the global information in the heterogeneous graph.
Chen et al. (2012) have firstly developed random walk with
restart for predicting miRNA-disease associations (RWRMDA).
However, the requirement for at least one known related
miRNA in inference may limit the application of RWRMDA.
Subsequently, many methods based on random walk were
proposed to improve the prediction performance.

Machine learning methods have also been introduced
in this field. Matrix completion has been widely used in
recommendation systems (Koren et al., 2009). Inspired by these,
Li et al. (2017) developed a matrix completion based model
to predict the disease-related miRNAs (MCMDA). However,
it will be failed to predict new disease (or miRNA) that has
no connections with the known miRNAs (or diseases). Chen
et al. (2018b) proposed a effective method of inductive matrix
completion for predicting, which can be applied for new diseases
(or miRNAs), named IMCMDA, it achieved better prediction
performance than MCMDA. Almost at the same time, Xiao
et al. (2018) proposed a novel method called GRNMF, which
combined graph Laplacian regularization with non-negative
matrix factorization for miRNA-disease associations prediction
in the integrated heterogeneous networks. Chen et al. (2018e)
introduced low rank matrix decomposition to reduce noises in
the datasets, then inferred the associations between miRNAs and
diseases in the integrated heterogeneous graph, including disease
semantic network, miRNA functional network, the relative GIP
kernel networks, and miRNA-disease associations. Chen et al.
(2018d) used bipartite recommendation algorithm to generate
the association score between disease and miRNA. In addition,
there are many other studies based on matrix completion and
matrix factorization to predict potential connections between
miRNAs and diseases (Shen et al., 2017; Zhong et al., 2018; Yan
et al., 2019; Yu et al., 2019). Furthermore, lots of supervised
learning algorithms have been introduced in this field. Chen
et al. (2019) used decision tree to infer the miRNA-disease

associations. SVM-based methods have been used for predicting
the potential relations between miRNAs and diseases (Xu et al.,
2011; Chen et al., 2018a). Chen et al. (2015) introduced restricted
Boltzmann machine for predicting associations and different
types betweenmiRNAs and diseases. Chen et al. (2021) integrated
matrix completions with neighborhood constraint for prediction.

Recent decades, deep learning based methods have been
gradually used in this field. Fu and Peng (2017) proposed a
deep ensemble method and adopted stacked autoencoder for
obtaining high-level features from integrated similarities, then a
three layers neural networks (NN) was used for prediction. Peng
et al. (2019) developed a CNN based model named MDA-CNN
for prediction. They constructed disease-gene-miRNA networks,
and obtained features of diseases and miRNAs by measuring
Pearson correlation coefficient with genes. Then auto-encoder
was used for feature selection, followed by a convolutional neural
networks (CNN) model for further feature extraction between
miRNA-disease pairs. Finally, two fully-connected layers was
introduced for classification. Xuan et al. (2018) integrated two
CNN models to predict correlation score of the miRNA-disease
pair. In order to reduce the impact of negative sample missing on
the prediction performance, Zhang et al. (2019) constructed two
spliced matrices with the known miRNA-disease associations,
disease similarity and miRNA similarity, then used variational
autoencoder to calculate the unknown values of miRNA-disease
pairs. Ji et al. (2021) used two regression models to learn
dense vectors from integrated disease and miRNA similarities,
applied the reconstruction probability of an autoencoder model
for inferring.

Graph neural networks (GNNs) are a class of models that
can effectively extract information from its neighborhood in the
graph, it has achieved great success in social networks, knowledge
graph, biology and so on (Zhou et al., 2020). DimiG considers
the tissue-specific expressions as the features of miRNAs and
protein coding genes, and then applies graph convolutional
network (GCN) in the protein-coding genes and miRNAs
networks (Pan and Shen, 2019). Li et al. (2020a) combined
GCN and IMC algorithm to identify disease-related miRNAs.
However, the input features of diseases and miRNAs were
initialized randomly, which reduced the ability of GCN. Long
et al. (2021) developed a novel computational model to predict
microbe-disease association (GATMDA). It firstly constructed
the input features by integrating similarities of diseases and
microbes, and a bipartite network of known microbe-disease
associations. Then, it used graph attention networks (GAT)
for further learning representations of nodes from the graph.
Finally, a decoder with inductive matrix completion (IMC)
was selected for prediction. Long et al. (2020) also proposed
GNN based model to predict human microbe-drug connections.
Unlike GATMDA, they adopted RWRmethod for initial features
learning, and then used GNN with random field. Additionally,
negative samples were needed for regression training. GAEMDA
integrated similarities of diseases and miRNAs as features of
nodes, applied a GCN model for further feature extraction, and
then used a bilinear decoder for identification (Li et al., 2020b).

In this paper, we proposed a novel computational model
(HGATMDA) that combines graph embedding and graph
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attention networks to infer disease-related miRNAs. Specifically,
we first constructed a miRNA-disease heterogeneous graph.
Then, we adopted weighted DeepWalk to learn dense
representations of miRNAs and diseases from miRNA-miRNA
sub-graph and disease-disease sub-graph, respectively. In
addition, we utilized graph attention networks (GAT) to further
learn the graph structure information from the miRNA-disease
sub-graph. Furthermore, we presented a fully-connected neural
networks for inferring the potential associations between
miRNAs and diseases. Finally, we evaluated the performance of
HGATMDA under five-fold cross validation (CV). The results
showed that HGATMDA achieved the best area under ROC
curve (AUC) of 94.54± 0.34%, the area under P-R curve (AUPR)
of 94.05 ± 0.18%, Accuracy of 87.02%, Precision of 94.07%,
Recall of 90.04%, F1-score of 87.39%. We conducted case studies
on three common human diseases such as breast neoplasms,
lung neoplasms, and kidney neoplsms, to further evaluate the
performance of HGATMDA. For the three diseases, 50 out of
top 50 candidates were confirmed by the validation datasets.
Experimental results showed that HGATMDA performed better
performance than other state-of-the-art methods, and can be
used as an efficient and accurate tool to identity the underlying
associations between miRNAs and diseases.

2. MATERIALS AND METHODS

2.1. Overview
In this study, we proposed a new computational method,
HGATMDA, which combines graph embedding and graph
attention network (GAT) methods to identify miRNA-disease
associations. As shows in Figure 1, HGATMDA consists of
four parts. Firstly, HGATMDA builds a heterogeneous graph
including disease-disease sub-graph, miRNA-miRNA sub-graph
and miRNA-disease sub-graph. Secondly, HGATMDA adopts
a novel weighted DeepWalk to obtain dense representations
of diseases and miRNAs from the disease-disease and miRNA-
miRNA sub-graphs. Thirdly, it applies GAT to learn node
features from the miRNA-disease sub-graph. Lastly, HGATMDA
introduces a fully-connected (FC) neural network as an effective
classifier for inferring the potential disease-related miRNAs.

2.2. Human miRNA Disease Database
HMDD v2.0 (Wang et al., 2010) and HMDD v3.2 (Huang
et al., 2019a) databases, the experimental verified human
miRNA-disease associations, are used in this paper. We
directly downloaded data from http://www.cuilab.cn/hmdd, and
constructed a miRNA-disease graph with known associations
between miRNAs and diseases. We denote the association
matrix as ANm×Nd , and Nd is the number of diseases, Nm is
the number of miRNAs. The value of Aij ∈ {0, 1} indicates
whether there is a known connections existed between miRNA
mi and disease dj. Here, Nd = 383 and Nm = 495,
and 5,430 known interactions between miRNAs and diseases
in the HMDD v2.0. We found that the names in HMDD
v3.2, including diseases and miRNAs, did not exactly match
those in HMDD V2.0. For consistency, we mapped the

items in HMDD v3.2 to HMDD v2.0 as the previous work
(Wang et al., 2010).

2.3. Disease Semantic Similarity
The Medical Subject Headings (MeSH) dataset contains
hierarchical relationships between diseases. Tree numbers in the
Mesh headings denotes parent-child associations between nodes
in the networks. By using the disease name as nodes and tree
numbers as edges, we can build a directed acyclic graph (DAG)
with the headings for each disease (https://www.nlm.nih.gov/
mesh/meshhome.html). We define DAGd = (Td,Ed) as disease
d, and Td and Ed are the nodes and edges in the DAG. Then, we
can compute the contribution of disease di ∈ Td to disease d
as follows:

{

Dd(di) = 1 if d = di
Dd(di) = max{1Dd(d

′
i)|d

′
i ∈ children of di} if d 6= di

(1)

where 1 is a weight decay parameter and is set as 0.5 in
this paper. We define the semantic value of disease d by the
following formula:

DV(d) =
∑

d′∈Td

Dd(d
′) (2)

Based on the assumption, the more overlap between two DAGs,
the more similar the two diseases are. The similarity between
disease di and dj can be calculated as follows:

SS(di, dj) =

∑

d′∈Tdi∩Tdj
(Ddi (d

′)+ Ddj (d
′))

DV(di)+ DV(dj)
. (3)

2.4. miRNA Functional Similarity
The basic assumption is that miRNAs with similar functions
tend to be connected with similar diseases, and vice versa (Lu
et al., 2008; Wang et al., 2010). Wang et al. have proposed
miRNA MISIM functional similarity, that is, to calculate the
similarity score by the related disease DAGbetween twomiRNAs.
Thanks to this excellent work, we can directly download the data
from website (http://www.cuilab.cn/files/images/cuilab/misim.
zip). We then constructed the miRNA functional network, which
is denoted as FS with the shape of Nm × Nm, where Nm is
the number of miRNAs. The element FS(mi,mj) represents the
similarity score between miRNAmi and miRNAmj.

2.5. Gaussian Interaction Profile Kernel
Similarity for Disease and miRNA
In order to overcome the sparsity in disease semantic similarity
SS and miRNA functional similarity FS, we introduced the
Gaussian interaction profile (GIP) kernel similarity. Firstly, we
used column A·i to represent a disease di and row Aj· to represent
miRNA mj. Then, GIP similarities between two diseases or two
miRNAs are defined as follows:

KD(di, dj) = exp(−γd‖A·i − A·j‖
2) (4)

KM(mi,mj) = exp(−γm‖Ai· − Aj·‖
2) (5)
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FIGURE 1 | The workflow of HGATMDA for miRNA-disease association prediction.

here, γd and γd are parameters and can be calculated by
following forums:

γd =
γ ′
d

1
Nd

∑Nd
i=1 ‖A·i‖2

(6)

γm =
γ ′
m

1
Nm

∑Nm
i=1 ‖Ai·‖2

(7)

Based on the previous work (van Laarhoven et al., 2011), we set
the bandwidth parameters γ ′

d
and γ ′

m to 1 in this paper.

2.6. Integrated Similarities for Disease and
miRNA
We observed that there was no overlap between DAGs for
many diseases, resulting in zero for many elements in disease
semantic similarity SS and miRNA functional similarity FS.
While all entries in the GIP similarities KD and KM are non-
zero. Therefore, we integrated GIP similarities with SS and FS

as follows:

SD(di, dj) =
SS(di, dj)+ KD(di, dj)

2
(8)

SM(mi,mj) =
FS(mi,mj)+ KM(mi,mj)

2
. (9)

2.7. Weighted DeepWalk for Node
Representation
DeepWalk (Perozzi et al., 2014) is an algorithm that can learn the
representations of vertices in graphs, inspired by the well-known
unsupervised feature learning framework word2vec (Mikolov
et al., 2013). Given a graph G = (V ,E), V denotes all vertices
in the graph, and E represents the edge or transaction matrix in
the graph. In order to generate the corpus in graphs, a vertex
vi ∈ V is uniformly selected as the root, and then a random
sampling is used from the neighbors as the next hop. After
generating samples, DeepWalk applies SkipGram model to learn
the representation of each vertex vi, denotes as 8(vi) ∈ R

d.
Usually, the dimension size d is used as a hyper-parameter.
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We applied a variant DeepWalk, called weighted DeepWalk,
to learn disease and miRNA representations. The element in
SD and SM can be used as the weight of an edge between two
vertices of the disease-disease sub-graph or the miRNA-miRNA
sub-graph. Here we used the element in SD and SM to denote
the probability of the current vertex walking to other vertices
in the sub-graph. Given a vertex vi, we define a walk sequence
Wvi = {vi, · · · } to represent the vertices passed by a weighted
random walk starting at the vertex vi. We denote the transition
possibility of next hop as follows:

p(vj|vi) = pij (10)

where vi, vj ∈ V are the vertices in the sub-graph, and vj ∈ Nervi
is in the neighbors of vertex vi. pij ∈ SD or pij ∈ SM is the weight
of an edge from vi to vj.

After this processing, we obtained two samples
{Wd1 ,Wd2 , · · · } and {Wm1 ,Wm2 , · · · } as the corpus, Each
sample is a sentence, and each vertex is a word. For learning
the representations of diseases and miRNAs, we used
DeepWalk to construct two SkipGram models for learning
node representations. There are hundreds of diseases and
miRNAs in the respective corpus. Therefore, hierarchical
softmax wass used for accelerating the training process. We
set the dimension size as F in both disease and miRNA
representations, and the learned representations of diseases and
miRNAs can be denoted as Xd = {d1, d2, . . . , dNd

}, di ∈ R
F ,

Xm = {m1,m2, . . . ,mNm},mi ∈ R
F . F is the dimension size.

2.8. Graph Attention Networks for Node
Feature Aggregation
In this section, we further constructed a GAT model in the
miRNA-disease sub-graph with node features learned from
the previous section, to refine dense vectors of miRNAs
and diseases. In consequence, these node features contain
global heterogeneous graph structure information. We denote
the miRNA-disease sub-graph as Gm−d = (V ,E), and
the number of nodes is Nd + Nm, node vi ∈ V =

{v1, . . . , vNd
, vNd+1, . . . , vNd+Nm}, edges (vi, vj) ∈ E = {Aij =

1 ∈ A}. The initial node features in the miRNA-disease sub-
graph are defined as X = [Xd,Xm], and xi ∈ R

F is the feature
of the i-th node in the graph. GAT uses multi-head attention
mechanism to compute the contributions of neighbors of vertex
vi to itself. We denote the input of l-layer of our GAT model as

H(l) = {h
(l)
1 , h

(l)
2 , . . . , h

(l)
N }, h

(l)
i ∈ R

F(l) , where N = Nd + Nm

is the number of nodes, and F(l) denotes the input dimension
size of each node. Here, H(0) = X is the input features of
the GAT model. We define the output of l-layer as H(l+1) =

{h
(l+1)
1 , h

(l+1)
2 , . . . , h

(l+1)
N }, h

(l+1)
i ∈ R

F(l+1)
. For each node, we first

compute the important score from the neighbor node j to node i

e
(l)
ij = a(W(l)

h
(l)
i ,W(l)

h
(l)
j ) (11)

where W(l) is a parameter matrix W(l) ∈ R
F(l+1) × F(l), and a is

a one layer feed-forward neural network. Then, we normalize the

neighborhood important scores of node i by the softmax function
as follows:

α
(l)
ij = softmax

(l)
j (e

(l)
ij ) =

exp(e
(l)
i,j )

∑

k∈Ni exp(e
(l)
ik
)

(12)

whereNi is the neighborhood node set of node i, including node i
itself. Finally, we can use these scores to calculate the new features
of node i by aggregating information from its neighbors:

h
(l+1)
i = σ





∑

j∈Ni

α
(l)
ij W

(l)
h
(l)
j



 (13)

where σ denotes a non-linear activation function, such as
LeakyReLU. The power of GAT is benefit from the multi-head
attentionmechanism, we applyK independent attention of node i
on its neighborhood, and the output of node features is as follows:

h
(l+1)
i = σ





K
3
k=1

∑

j∈Ni

α
(l,k)
ij W(l,k)

h
(l)
j



 (14)

where 3 denotes concatenation or averaging. In our paper,
all GAT layers are used concatenation, except averaging for
last layer. A GAT carries out the first-order neighborhood
information aggregation, and the graph convolution on multi-
layers realizes multi-order neighborhood aggregation. As the
number of training iterations increases, the node representations
can obtain the structure information of the miRNA-disease sub-
graph. Together with the node features obtained from miRNA-
miRNA and disease-disease sub-graphs, the final node features
of mi ∈ R

F and dj ∈ R
F contain rich structure information of

the global heterogeneous graph.

2.9. Potential miRNA-Disease Associations
Prediction
At last, we designed a scoring function that can calculate the
correlation score between a pair of miRNA and disease. We
first integrated node features with raw features in SD and SM.
In order to transform the raw features in SD and SM to the
same dimensions as the node features, we introduced projection
parametersWd ∈ R

Nd×F andWm ∈ R
Nm×F . Then, we can define

the correlation score as follows:

f (di,mj) = FC([g(di, (SD×Wd)i·), g(mj, (SM ×Wm)j·)]) (15)

where FC is a fully-connected neural networks, and the
details will be discussed in the section 3.3. g(·) represents an
accumulation function, such as concat(·), i.e., a concatenation of
node features and raw features, or sum(·), i.e., summation of node
features and raw features. Ourmodel is trained byminimizing the
cross-entropy loss and L2 regularization.

L(X,Y ,2) = −
∑

(di ,mj)∈{G+∪G−}

y log f (di,mj)

+ (1− y) log(1− f (di,mj))+ λ‖2‖2

(16)
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TABLE 1 | Results of five-fold CV based on HMDD v2.0.

Test fold
Metrics

Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC (%) AUPR (%)

1 87.15 94.08 89.87 87.49 94.57 94.07

2 87.57 94.08 89.41 87.79 94.50 94.07

3 86.69 93.75 86.65 86.69 94.09 93.74

4 87.29 94.21 95.30 88.24 95.15 94.20

5 86.37 94.25 88.95 86.71 94.45 94.24

Average 87.02 94.07 90.04 87.39 94.55 94.07

where 2 denotes parameters of our GAT model, G+ is the set
of known associations between miRNA and disease, and G− is
the same number set of unknown associations between miRNA
and disease from negative sampling, which we will discuss the
impact in the later section. X denotes the vector form of the
miRNA-disease pairs in G+ ∪ G− and y ∈ Y represents the
corresponding label.

3. RESULTS

3.1. Datasets and Experimental Details
We used benchmark datasets of known miRNA-disease
associations, including HMDD, dbDEMC v2.0 (Yang et al.,
2017), and miR2Disease (Jiang et al., 2008). Mesh dataset is also
used for computing disease semantic similarity. To evaluate
the prediction performance of our method, we compared
the experimental results with other stat-of-the-art methods.
Moreover, we also performed case studies on three common
human diseases such as breast neoplasms, lung neoplasms and
kidney neoplasms for further evaluation. HMDD v2.0 is used
for training, and dbDEMC v2.0, HMDD v3.2, and miR2Disease
are used for validation. We carried out experimental analysis
using five-fold cross validation. Specially, all known associations
in HMDD v2.0 are taken as positive samples. We first selected
equal number of negative samples from a uniform distribution of
unknown associations between miRNAs and diseases in HMDD
v2.0 dataset. Then, we randomly shuffled all the samples and
divided into five equal parts, four of which are in turn used
for training and the rest for validation. In addition, we applied
several metrics for evaluation, such as Accuracy, Precision,
Recall, F1-score. Moreover, we plotted the receiver operating
characteristic curve (ROC) and precision-recall curve (PR).
Furthermore, the area under the ROC curve (AUC), and the area
under the P-R curve (AUPR) are used for analysis the prediction
performance quantitatively.

The code of our proposed method is implemented based on
the machine learning library PyTorch v1.6.0 (Paszke et al., 2019).
We trained the weighted DeepWalkmodels using GenSim library
(Rehurek and Sojka, 2010). For GAT, we used PyTorchGeometric
deep learning library (Fey and Lenssen, 2019). Our experiments
are run on the Ubuntu 16.04 operating system, with two Intel
Xeon CPUs (2.30 GHz, 16 cores), and two Tesla V100 GPUs. The

Adam optimizer is used for training (Kingma and Ba, 2017), with
a learning rate of 0.001 and the weight decay is 0.00005.

3.2. Predictive Performance Analysis
In our experiments, we performed ablation study to analyze the
effect of architectures and hyper-parameters, then selected the
appropriate parameters. Details of the choices will be discussed
in the section 3.3. We chose the model with window size of 5,
walk length of 20 in weighted Deepwalk, 2 layers in GAT, and
3-layer FC as predictor. The results of our best model under five-
fold CV based on HMDD v2.0 dataset are shown in Table 1 and
Figure 2. HGATMDA achieves the average prediction Accuracy
of 87.02%, Precision of 94.07%, Recall of 90.04%, and F1-score
of 87.39%. The threshold used in theses metrics is 0.5. The mean
values of AUC and AUPR are 94.54 ± 0.34 and 94.05 ± 0.18%,
respectively. In summary, the results showed that HGATMDA
can significantly promote the performance of predicting miRNA-
disease associations.

3.3. Ablation Experiments
In order to further demonstrate the prediction performance of
our model, we carried out extensive experiments under different
architectures and hyper-parameters, analyzed how the design of
sub-model and the choice of hyper-parameters have different
effect on the final performance of the proposed model. Five-
fold CV on HMDD v2.0 dataset was used to evaluate the
model sensitivity of architectures and hyper-parameters in the
experiments. The following discussion followed the structure in
Table 2 and Figures 3, 4. Dot product Predictor denotes the
vector dot product of miRNA mi and disease dj as the predictor.
FC Predictor represents a fully-connected neural networks, as
shown in the Equation (15). GAT (untrained) uses randomly
weights of neighbors without training, and Raw features denotes
integrated similarities of miRNA and disease.

3.3.1. Feature Embedding
Recall that our model adopted weighted DeepWalk to learn
representations of miRNAs and diseases from miRNA-miRNA
sub-graph and disease-disease sub-graph. We experimented
with different feature size of {32,64,128,256} and window size
{3,5,7,9} for comparison. Large training windows tend to learn
more information from more nodes in the walk, while small
training windows do the opposite. HGATMDA obtains the best
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FIGURE 2 | (A) ROC curves and (B) P-R curves of HGATMDA under five-fold CV based on HMDD v2.0.

TABLE 2 | Ablation experiments of different architectures.

Test model AUC (%) AUPR (%)

Weighted DeepWalk + Dot product Predictor 73.48 77.97

Weighted DeepWalk + GAT (untrained) + Dot

product Predictor

89.78 88.59

Weighted DeepWalk + GAT + Dot product Predictor 92.17 91.52

Raw features + GAT + Dot product Predictor 72.68 69.27

Weight DeepWalk + Raw features + GAT + Dot

product Predictor

93.52 93.09

Weight DeepWalk + Raw features + GAT + FC

Predictor

94.03 93.51

The variants of the model are listed in the first column. We test each model variant for

10 times under five-fold CV on HMDD v2.0 dataset and report averages. Bold values

indicates highlight our results.

performance at window size of 5, and the performance slightly
decreases with the increase or decrease of the window size
(Figure 3A).

Feature size not only affects the representations of miRNAs
and diseases in the SkipGram model, but also affects the final
prediction performance together with other parameters. We
evaluated the effect of feature size using five-fold CV, and mainly
focused on values of AUC and AUPR. As shown in Figure 3B,
HGATMDA performs best performance when feature size is set
to 64 dimensions.

3.3.2. Graph Attention Networks
Representations of miRNAs and diseases are further extract by
GAT from miRNA-disease heterogeneous sub-graph. The power
of GAT is a multi-head mechanism, we conducted experiments

with different number of attention heads. We chose a 2-layer
of GAT model, and each layer used same number of heads for
comparison. The results are shown in Figure 3C. We found that
more heads slightly increased the AUC and AUPR values.

The number of layer is another factor that affects the
performance of HGATMDA. We investigated the depth of GAT
model used in HGATMDA. Similar to the phenomenon observed
in the classification experiments (Kipf and Welling, 2017), we
found that the performance of HGATMDA decreased when the
number of layer was set to greater than 2. Therefore, we chose
2-layer of GAT with 16 heads as our default.

In the Figure 3D, we can see that using only an untrained
GAT architecture greatly improves the prediction performance,
achieves 89.78% of AUC and 88.59% of AUPR, more than 10%
higher than without GAT.

3.3.3. FC Layers
The predictor used in HGATMDA is a fully-connected neural
networks. Given a pair miRNA and disease, the concatenation
of representations of the miRNA and disease is fed into the
FC layers, to calculate the correlation score between them. We
investigated the influence of number of layers in the predictor.
The results are shown in Figure 4A, we can see that HGATMDA
achieves the better performance when the number of layers is
greater than two. Too deep neural network can not improve
the predictive performance of HGATMDA. Considering the
computation cost, we chose a three-layer neural networks as the
predictor in HGATMDA.

3.3.4. Negative Samples
There is lack of prior experimental evidence of non-associations
between miRNAs and diseases in the HMDD dataset, we
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FIGURE 3 | Parameters analysis of DeepWalk and GAT on HMDD v2.0 dataset. (A) Window size Weight DeepWalk. (B) Feature size Weight DeepWalk. (C) # heads

of GAT. (D) # layers of GAT.

FIGURE 4 | Parameters analysis of FC layers, negative samples and regularization on HMDD v2.0 dataset. (A) # FC layers. (B) Negative sampling ratio. (C) Penalty

factor λ.

implemented a sampling strategy to randomly generate negative
samples from unknown associations in the dataset of HMDD
v2.0. As sampling analysis used in the previous study (Long
et al., 2020), we experimentally used different sampling ratios
to evaluate the effect. Recall that the number of known
associations is 5,430, then the number of negative samples is

{1.0,2.0,3.0,4.0,5.0,6.0} times the number of positive samples.
As shown in Figure 4B, AUC value could not be improved
by sampling more negative samples, and the AUPR value
is decreased rapidly. More negative samples may result in
an imbalance between positive and negative samples, and
P-R curve is more sensitive to the difference of category
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TABLE 3 | The AUCs comparison with other state-of-the-art methods under

five-fold CV based on HMDD v2.0.

Models AUC (%)

PBMDA (You et al., 2017) 91.72

GRNMF (Xiao et al., 2018) 86.90

MDHGI (Chen et al., 2018e) 87.94

BNPMDA (Chen et al., 2018d) 89.80

MCLPMDA (Yu et al., 2019) 93.25

NIMCGCN (Li et al., 2020a) 92.91

GAEMDA (Li et al., 2020b) 93.56

Our-best 94.52

Our-average 93.88

Bold values indicates highlight our results.

distribution. Therefore, we set the sampling ratio to 1.0
in HGATMDA.

3.3.5. Regularization
Recall that in Equation (16), we introduced the L2 regularization
with a penalty factor λ to improve the generalization ability
of the model. We conducted experiments with different values
of λ to test the effect on prediction performance of the model
under five-fold CV. The area under ROC curve and the area
under P-R curve are selected as metrics for evaluation. The
values we used in this experiment are {0.5, 0.05, 0.005, 0.0005,
0.00005, 0.000005, 0.0000005}. As shown in Figure 4C, We can
see that λ is set greater then 0.005, the AUC value declines
significantly. Especially, AUC value and AUPR value are both
drop below 90% if λ is set as 0.5. When λ is set to 0.0005
or 0.00005, our model achieves better performance. Our model
obtains best AUPR at 0.0005, so we finally choose it as our
default value.

3.4. Comparison With Other Methods
In this section, we compared the prediction performance of our
model with other state-of-the-art methods, including PBMDA
(You et al., 2017), GRNMF (Xiao et al., 2018), MDHGI (Chen
et al., 2018e), BNPMDA (Chen et al., 2018d), MCLPMDA (Yu
et al., 2019), NIMCGCN (Li et al., 2020a), and GAEMDA (Li
et al., 2020b). We noted that different evaluation metrics and
datasets are used in these methods. For fair comparison, AUC
values under five-fold CV are selected based on HMDD v2.0 in
all these studies for comparison. It is worth noticing that the
AUCs reported in these papers are the best values. Therefore, we
ran the five-fold CV for 100 times and picked up the best and
average AUCs for comparison. The results are shown in Table 3.
We can see that our model achieves the best AUC performance
among these methods, with the best AUC and average AUC of
94.52 and 93.88%, respectively. In particular, NIMCGCN and
GAEMDA are GCN-basedmethods, and AUCs of our best model
are 0.96 and 1.61% higher than these two methods, respectively.
This further shows that HGATMDA obtains better performance
than other methods.

TABLE 4 | Top 50 predicted miRNAs related to Breast Neoplasms based on

HMDD v2.0.

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-17 I; II; III 26 hsa-let-7c I; II

2 hsa-mir-92a I; II 27 hsa-mir-125b I; II; III

3 hsa-mir-1 I; II 28 hsa-mir-30a I; II; III

4 hsa-mir-34a I; II 29 hsa-mir-143 I; II; III

5 hsa-mir-29a I; II 30 hsa-mir-122 I; II

6 hsa-mir-29c I; II; III 31 hsa-mir-181a I; II; III

7 hsa-mir-15a I; II 32 hsa-mir-196a I; II; III

8 hsa-mir-18a I; II; III 33 hsa-mir-214 I; II

9 hsa-mir-19b I; II 34 hsa-mir-7 I; II; III

10 hsa-mir-155 I; II; III 35 hsa-mir-29b I; II; III

11 hsa-mir-145 I; II; III 36 hsa-mir-222 I; II; III

12 hsa-mir-16 I; II 37 hsa-mir-200c I; II; III

13 hsa-let-7a I; II; III 38 hsa-mir-9 I; II

14 hsa-mir-133b I; II 39 hsa-mir-100 I; II

15 hsa-mir-20a I; II; III 40 hsa-mir-210 I; II; III

16 hsa-mir-133a I; II 41 hsa-mir-200b I; II; III

17 hsa-mir-221 I; II; III 42 hsa-mir-223 I; II

18 hsa-mir-146a I; II; III 43 hsa-mir-195 I; II; III

19 hsa-mir-126 I; II; III 44 hsa-let-7b I; II

20 hsa-mir-142 I; II 45 hsa-mir-34c I; II

21 hsa-mir-21 I; II; III 46 hsa-let-7f I; II; III

22 hsa-mir-19a I; II 47 hsa-mir-200a I; II; III

23 hsa-mir-146b I; II; III 48 hsa-let-7e I; II

24 hsa-mir-199a I; II 49 hsa-let-7d I; II; III

25 hsa-mir-150 I; II 50 hsa-mir-34b I; II

I, II, II denote HMDD v3.2, dbDEMC v2.0, and miR2Disease.

3.5. Case Study
We performed case studies on three common human neoplasms,
including Breast Neoplasms, Lung Neoplasms, Kidney Neoplasms,
to further evaluate the prediction performance. In these
experiments, HMDD v2.0 dataset is used to train our model,
and the validation datasets are HMDD v3.2 (Huang et al.,
2019a), dbDEMC v2.0 (Yang et al., 2017), andmiR2Disease (Jiang
et al., 2008), which are used to verify the candidates. For each
specific disease, all known associations in HMDD v2.0 are taken
as positive samples, while negative samples are chosen from
all unknown miRNA-disease associations except the particular
disease related. In the prediction phase, all candidate miRNAs
are finally ranked by their correlation scores, which are the last
layer of our model with sigmoid activation function, to present
how much a miRNA associated with the specific disease. In
addition, Top 50 candidates are listed and checked whether they
are verified in the validation datasets.

We conducted the first case study for Breast Neoplasms. It is
reported that Breast cancer is the leading cancer among women
worldwide, and can arise for a wide number of reasons. It usually
happens when cells in breast tissue grow and divide out of
control. As shown in Table 4, 50 out of the top 50 candidates
are confirmed in HMDD v3.2, dbDEMC v2.0, or miR2Disease.
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TABLE 5 | Top 50 predicted miRNAs related to Lung Neoplasms based on HMDD

v2.0.

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-20a I; II; III 26 hsa-mir-9 I; II

2 hsa-mir-125b I; II; III 27 hsa-mir-203 I; II; III

3 hsa-mir-146b I; II; III 28 hsa-mir-29c I; II; III

4 hsa-mir-17 I; II; III 29 hsa-mir-155 I; II; III

5 hsa-mir-181a I; II; III 30 hsa-mir-34c I; II; III

6 hsa-mir-145 I; II 31 hsa-mir-142 I; II; III

7 hsa-mir-34a I; II; III 32 hsa-mir-143 I; II

8 hsa-mir-29b I; II; III 33 hsa-mir-30a I; II; III

9 hsa-mir-146a I; II; III 34 hsa-mir-221 I; II; III

10 hsa-mir-126 I; II; III 35 hsa-mir-133b I; II; III

11 hsa-let-7a I; II; III 36 hsa-mir-31 I; II

12 hsa-let-7d I; II; III 37 hsa-mir-182 I; II; III

13 hsa-mir-92a I; II; III 38 hsa-mir-34b I; II; III

14 hsa-let-7i I; II; III 39 hsa-let-7c I; II; III

15 hsa-mir-19a I; II; III 40 hsa-mir-122 I; II; III

16 hsa-mir-19b I; II 41 hsa-mir-222 I; II; III

17 hsa-let-7b I; II 42 hsa-mir-200b I; II; III

18 hsa-let-7g I; II 43 hsa-mir-18a I; II

19 hsa-mir-200c I; II; III 44 hsa-mir-199a I; II; III

20 hsa-mir-21 I; II 45 hsa-mir-214 I; II

21 hsa-mir-210 I; II 46 hsa-mir-106b II

22 hsa-let-7f I; II; III 47 hsa-mir-100 I; II; III

23 hsa-mir-200a I; II 48 hsa-mir-148a I; II; III

24 hsa-let-7e I; II; III 49 hsa-mir-195 I; II; III

25 hsa-mir-16 I; II 50 hsa-mir-101 I; II; III

I, II, II denote HMDD v3.2, dbDEMC v2.0, and miR2Disease.

The second case study was implemented for Lung Neoplasms.
This is a leading cause of cancer deaths among men and women
both in United States and the world (Siegel et al., 2020). We
applied our model to predict the most relevant miRNAs with
Lung Neoplasms. The results are shown in the Table 5, 50 of
top 50 selected miRNAs have been verified in the validation
datasets. The last case study we selected was Kidney Neoplasms.
It is another common disease, and the incidence still continues
to increase in the United States (Siegel et al., 2020). We note
that there are only 7 known associations related with Kidney
Neoplasms in HMDD v2.0 dataset. We listed top 50 related
miRNAs in Table 6, and we can see that 50 out of top 50
candidates are confirmed either in HMDD v3.2, dbDEMC v2.0
or miR2Disease. In particular, 6 of top 10 related miRNAs are
verified in at least two datasets. Therefore, our model can serve
as a powerful and effective tool to infer the potential related
miRNAs for specific diseases.

4. DISCUSSION

Studies have shown that the occurrence and development of
many human diseases are related to the abnormal expression of
miRNAs. Traditional biological verification of the interactions

TABLE 6 | Top 50 predicted miRNAs related to Kidney Neoplasms based on

HMDD v2.0.

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-21 I; II; III 26 hsa-mir-31 II

2 hsa-mir-146a II 27 hsa-mir-150 II

3 hsa-mir-155 I; II 28 hsa-let-7a II; III

4 hsa-mir-34a I; II 29 hsa-mir-143 II

5 hsa-mir-125b II 30 hsa-mir-142 II

6 hsa-mir-221 II 31 hsa-mir-200b II

7 hsa-mir-29a II; III 32 hsa-mir-181a II; III

8 hsa-mir-20a II; III 33 hsa-mir-23a II

9 hsa-mir-15a I; II; III 34 hsa-mir-15b II

10 hsa-mir-16 II 35 hsa-mir-106b II

11 hsa-mir-17 I; II; III 36 hsa-mir-196a II; III

12 hsa-mir-29b II; III 37 hsa-mir-133b II

13 hsa-mir-92a II 38 hsa-mir-210 I; II

14 hsa-mir-29c II; III 39 hsa-mir-181b II; III

15 hsa-mir-145 II 40 hsa-mir-146b II

16 hsa-mir-18a II 41 hsa-mir-30a II

17 hsa-mir-223 II 42 hsa-mir-24 II

18 hsa-mir-122 II; III 43 hsa-mir-200c I; II

19 hsa-mir-19b II; III 44 hsa-mir-9 II; III

20 hsa-mir-126 I; II; III 45 hsa-mir-200a I; II

21 hsa-mir-199a I; II; III 46 hsa-mir-182 II

22 hsa-mir-1 II 47 hsa-mir-214 I; II; III

23 hsa-mir-133a II 48 hsa-mir-148a II; III

24 hsa-mir-19a II 49 hsa-mir-195 II

25 hsa-mir-222 II 50 hsa-mir-7 II

I, II, II denote HMDD v3.2, dbDEMC v2.0, and miR2Disease.

between miRNAs and diseases are time consuming and
expensive. Therefore, computational methods of predicting
the disease-related miRNAs can accelerate the identification
process, and help us understand the potential mechanism of the
interactions between miRNAs and diseases.

In this paper, we presented a computational method for
miRNA-disease association prediction based on Heterogeneous
Graph Attention Networks, which is superior to other state-of-
the-art methods. Specially, we first constructed a heterogeneous
graph containing miRNAs and diseases using disease semantic
similarity, miRNA functional similarity, the GIP kernel
similarities, and known associations between miRNAs and
diseases. Then, we proposed a novel method based on weighted
DeepWalk that can learn dense feature representation ofmiRNAs
and diseases from the miRNA-miRNA and disease-disease sub-
graphs. Furthermore, a GAT based model was implemented for
further feature exaction from the miRNA-disease heterogeneous
sub-graph, followed by a 3-layer fully-connected neural networks
as the predictor. We conducted experiments on five-fold CV,
case studies and ablation study. The results demonstrated that
our proposed method HGATMDA can serve as an efficient and
reliable tool for predicting potential relations between miRNAs
and diseases, as well as therapeutics and clinical research.
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Our model has achieved high predictive performance
mainly for the following reasons. First, GAT was applied to
extract node features in the heterogeneous miRNA-disease
graph, which is very effective and expressive by leveraging
multi-head attention mechanism. Second, initial node features
extraction were obtained by weighted DeepWalk, combined
with similarity integration, to further improve miRNA and
disease characterization. Third, FC-based predictor is suitable
and reliable for inferring the potential disease-related miRNAs.

However, there is still room for further improvement. Our
constructed heterogeneous graph maybe inaccurate due to the
computing equations used in disease and miRNA similarities.
In the future, we can directly use the Mesh headings and
relationships (https://www.nlm.nih.gov/mesh/meshhome.html)
to build disease-disease sub-graph, and extract node features
such as Guo et al. (2021). Furthermore, as our future work,
we can introduce more biological information, such as miRNA
sequence, miRNA-target, protein-protein, and protein-target
interactions, to enrich nodes representations, and construct
complex heterogeneous graph (Schlichtkrull et al., 2018) with
multiple node and edge types, to enhance the prediction
performance of our model.
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