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Nile tilapia is a key aquaculture species with one of the highest production volumes
globally. Genetic improvement of feed efficiency via selective breeding is an important goal,
and genomic selection may expedite this process. The aims of this study were to 1) dissect
the genetic architecture of feed-efficiency traits in a Nile tilapia breeding population, 2) map
the genomic regions associated with these traits and identify candidate genes, 3) evaluate
the accuracy of breeding value prediction using genomic data, and 4) assess the impact of
the genetic marker density on genomic prediction accuracies. Using an experimental video
recording trial, feed conversion ratio (FCR), body weight gain (BWG), residual feed intake
(RFI) and feed intake (FI) traits were recorded in 40 full-sibling families from the GIFT
(Genetically Improved Farmed Tilapia) Nile tilapia breeding population. Fish were
genotyped with a ThermoFisher Axiom 65 K Nile tilapia SNP array. Significant
heritabilities, ranging from 0.12 to 0.22, were estimated for all the assessed traits using
the genomic relationship matrix. A negative but favourable genetic correlation was found
between BWG and the feed-efficiency related traits; −0.60 and −0.63 for FCR and RFI,
respectively. While the genome-wide association analyses suggested a polygenic genetic
architecture for all the measured traits, there were significant QTL identified for BWG and FI
on chromosomes seven and five respectively. Candidate genes previously found to be
associated with feed-efficiency traits were located in these QTL regions, including ntrk3a,
ghrh and eif4e3. The accuracy of breeding value prediction using the genomic data was up
to 34% higher than using pedigree records. A SNP density of approximately 5,000 SNPs
was sufficient to achieve similar prediction accuracy as the full genotype data set. Our
results highlight the potential of genomic selection to improve feed efficiency traits in Nile
tilapia breeding programmes.
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INTRODUCTION

One of the key features of aquaculture species compared with
terrestrial farmed species is their greater feed efficiency (FE)
(Brown, 2006). For example, fish need around six times less
feed than cattle to produce the same amount of body mass (de
Verdal et al., 2018a). However, feed still remains the primary cost
for farmed fish production, and relatively little direct selection for
improved feed efficiency has yet been performed for most
aquaculture species. Therefore, genetic improvement of FE
would enhance the economic sustainability of aquaculture and
reduce environmental impacts, including greenhouse gas
emissions (Aubin et al., 2009; MacLeod et al., 2020). Since
domestication of aquaculture species is relatively young
(Houston et al., 2020), selective breeding offers a great
potential to improve commercially important traits (FAO,
2019). The benefits of genetic improvement have been
illustrated in some key aquaculture species in relation to
growth rate and disease resistance, particularly when
augmented by genomic tools (see detailed reviews by Gjedrem
and Rye, 2018; Fraslin et al., 2020; Houston et al., 2020). However,
comparative little direct focus has been placed on feed efficiency
in most aquaculture species, most likely due to the challenges of
measuring feed intake efficiently and accurately at individual level
(de Verdal et al., 2018a).

Nile tilapia (Oreochromis niloticus) is the third most produced
farmed species globally (FAO, 2020). Farmed across a wide range
of production systems, this species is considered a critical protein
source for human consumption in undeveloped and developing
countries (Miao and Wang, 2020). Recently, a wide variety of
genomic tools have been developed for Nile tilapia (reviewed in
Yáñez et al., 2020). These genomic tools have facilitated studies to
unravel the relationships among improved strains (Hamilton
et al., 2020), to detect regions associated with important traits
(Cáceres et al., 2019; Yoshida et al., 2019; Taslima et al., 2020;
Barria et al., 2021), and to assess the accuracy of prediction of
breeding values using genomic selection (GS) models, compared
with pedigree-based models (Yoshida et al., 2019; Joshi et al.,
2020). However, there is a lack of studies targeting identification
of genomic regions associated with FE traits (i.e. those which
involve recording of feed intake), or assessing the potential
impact of using genomic approaches to improve these traits in
a Nile tilapia breeding populations. Previous work has aimed to
assess body weight related traits (e.g. harvest weight, head weight,
body length, fillet yield), as has been reviewed in Yáñez et al.
(2020). Therefore, the aims of this study were to 1) dissect the
genetic architecture of feed-efficiency traits in a Nile tilapia
breeding population, 2) map the genomic regions associated
with these traits and identify candidate genes, 3) evaluate the
accuracy of prediction of breeding values using genomic data, and
4) assess the impact of the SNP density on the genomic prediction
accuracies. To the best of our knowledge, this is the first study to
assess genomic prediction for feed-efficiency traits in Nile tilapia.
Our results highlight the feasibility of including feed-efficiency
traits into Nile tilapia breeding programs. Furthermore, they
show the potential improvement in breeding value prediction
using low density SNP panels compared to using pedigree

methods, which can enhance genetic gain and improve
production efficiency.

MATERIALS AND METHODS

Nile Tilapia Breeding Population
This study used tissue samples archived by de Verdal et al.
(2018b) from their study of genetic parameters of FE related
traits in GIFT tilapia. In brief, the fish used in this study were
from the Genetically Improved Farmed Tilapia (GIFT) breeding
program based in Jitra, Malaysia, and managed by WorldFish
(Ponzoni et al., 2011) These fish had been selected for increased
growth rate for 15 generations in Malaysia at the time the
experiment was performed. A total of 40 full-sibling families
produced by natural spawning between December 2014 and
December 2015 were used for the experimental challenge. All
fish were fin clipped (the clip was stored individually in analytical
grade ethanol) to provide tissue for DNA analysis at the
beginning of the feed intake measurement stage (see next
section).

Feed Conversion Experimental Challenge
Full details of the experimental challenge are given in previous
studies, which reported methodology development and
quantitative genetic analysis of feed efficiency traits (de Verdal
et al., 2017; 2018b). In summary, a total of 1,200 fish (30 fish/
family) were used for the feed efficiency experiment. There were
four batches assessed during a period lasting from June 2015 to
April 2016. For each batch, each full-sibling family was randomly
split and transferred into two 200 L aquaria, such that each
aquarium had a total of 15 fish. These fish were kept in the
aquarium throughout the experimental challenge. To measure
the amount of feed consumed daily by each fish, all fish were
tagged with a unique two colored T-bar tag (Avery Dennison tags,
25 mm) combination at the dorsal muscle. The experimental
challenge consisted of four different stages; 1) adaptation, 2)
fasting, 3) feeding and 4) feed intake (FI), lasting 15, 10, 17 and
7 days, respectively. The number of days selected for each stage is
described as follows: 1) Generally 1 week is sufficient for an
adaptation period. However, this was increased to 2 weeks as a
precaution because some fish could adapt faster than others. The
10 days of fasting 2) represents the longest period permitted while
maintaining acceptable fish welfare, while fewer days would
probably have a low impact in terms of weight loss. The
longest period was ascribed to the feeding stage 3), which
allows the fish to recover from the fasting period but also
enables successful measurement of compensatory growth,
ensuring that this does not impact on the measurements of
the feeding and growth during the last stage. Previous results
by de Verdal et al. (2017), showed that the repeatability of FI was
over 95%, when at least 11 meals were measured. Based on this,
we selected 13 meals (7 days) for the current FI period 4).

Body weight was measured at the beginning and end of each
stage. Due to aggression between fish, only 1,029 fish were
available at the beginning of the FI stage where fish were fed
twice a day (07:00 and 13:00), pellet by pellet, and videos of each
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meal were recorded. Fish received a total of 13 meals during this
stage (on the first day fish were weighed in the morning and only
received one meal). Uneaten pellets were removed at the end of
each meal. The number of pellets consumed by each fish was
counted through video analysis. Throughout the experiment,
water temperature was fixed at 28°C ± 1°C, while the
photoperiod was 12L:12D cycle. The phenotypic sex of each
fish was registered by visual observation of the gonads at the
end of the FI recording period. The fish were sufficiently
developed to show sexual differentiation, but were not yet
exhibiting any reproductive behaviour. Mortality was recorded
daily throughout the challenge. Thirty two fish died during the FI
stage and were not included in the analyses.

Trait Definitions
As a practical calculation of pellet weight, a total of 500 pellets
(16.4 ± 1.76 mg) were weighed, and as the variation in weight
per pellet was considered low enough, the average weight of
each pellet was used. Thus, the FI in grams for each fish could
then be calculated as the sum of pellets consumed during the
13 meals. Body weight gain (BWG) was calculated during the
FI stage as the difference between the body weight at the end
and at the beginning of this stage. The quotient between these
two traits (FI/BWG) was used to estimate the feed conversion
ratio (FCR). Finally, residual feed intake (RFI) was estimated
as the difference between the amount of feed intake by each
fish and the amount predicted (Koch et al., 1963).

Outliers were highlighted using the boxplot. stats function of
the R package “stats” (R Development Core Team, 2018) and
were not included in the analyses.

SNP Array Genotyping
Total DNA was extracted from fin clips and genotyped by Identigen
(Dublin, Ireland) by using a 65 KAxiom® SNP array (Peñaloza et al.,
2020). The raw genotype data were filtered using the Axiom analysis
Suite v4.0.3.3. Samples with a dish quality control <0.82 and/or
genotype calling rate <0.93 were excluded from further analyses,
leaving 801 samples. A total of 53 K SNPs were categorized as
PolyHighResolution, and therefore were retained for subsequent
analyses. Further quality control using Plink software v1.09 (Purcell
et al., 2007) was performed. Specifically, SNPs were excluded for the
genomic analyses due to either; 1) call rate <0.95, 2) minor allele
frequency (MAF) < 0.05 or 3) deviation from Hardy-Weinberg
Equilibrium (p < 1 × 10−6). Simultaneously, animals with a call rate
<0.95 were also excluded. Finally, to excluded potentially duplicated
samples, both of each pair of fish with a proportion of IBD higher
than 0.7were removed from further analyses. Thus, a total of 755fish
and 48,431 SNPs remained after these filters, representing the final
data for the SNP array (Table 1.).

To assess the genetic structure within the Nile tilapia
population, a principal component analysis (PCA) was
performed through PLINK v1.09. The two main components
were plotted along the two axes in R.

Prediction of Breeding Values
Only fish with phenotype and genotype data were used for the
pedigree-based BLUP (PBLUP) model, to enable a fair

comparison between pedigree and genomic prediction
performance. To predict the Estimated Breeding Values
(EBVs) and estimate the variance components, the following
univariate linear model was used:

y � μ + Xβ + Za +Wc + e (1)

Where y is the vector of phenotypes, μ is the overall average of
phenotypic records, β is the vector of fixed effects accounting for
sex and batch, a is the vector of random additive genetic effects, c
is the vector of random effect associated with the common
environmental effects (aquarium effect), e is the vector of
random residuals errors, whereas X, Z and W are the
incidences matrices for the fixed, genetic and environmental
effects, respectively. A normal distribution was assumed for
the random genetic, common, and residuals effects, with a
mean of zero and the following variance:

var ⎡⎢⎢⎢⎢⎢⎣ ac
e

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣Aσ
2
a 0 0

0 Iσ2
c 0

0 0 Iσ2e

⎤⎥⎥⎥⎥⎥⎦
Where σ2a, σ2cand σ2e are the additive genetic, common
environmental, and residual variance, respectively, whereas A
and I are the numerator relationship and identity matrix,
respectively. For all the traits, heritability was estimated as
follows:

h2 � σ2a
σ2
a + σ2c + σ2

e

As described by VanRaden (2008), for the genomic BLUP
(GBLUP), the numerator A relationship matrix was replaced by
the genomic (G) relationship matrix. In this case, the vector of
random additive genetic polygenic effects g has a distribution ∼N
(0, σ2g).

The single-step GBLUP (ssGBLUP) model was the same as for
PBLUP and GBLUP. However, a combined kinship matrix H
(Aguilar et al., 2010) which included information from the A and
G matrix (Wang et al., 2012), was used. Thus, using data from
pedigree and genotype data, the inverse of this H matrix is:

H−1 � A−1 + [ 0 0
0 G−1 − A−1

22
]

Where A−1 and G−1 are the inverse of the numerator and
genomic relationship matrix, respectively, and A−1

22 is the

TABLE 1 | Summary statistics for all the phenotyped fish for each feed-efficiency
related trait.

Traitsa FCR BWG RFI FI

N 726 755 727 735
Min 0.48 0.76 −4.41 1.91
Mean 0.94 9.18 −0.40 8.30
Std Dev 0.20 2.98 1.49 2.28
Median 0.91 8.94 −0.40 8.16
Max 1.55 18.24 4.40 15.22

aFCR: Feed Conversion ratio, BWG: body weight gain (in g); FI: feed intake (in g); RFI:
residual feed intake (in g).
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inverse of the A matrix, but only for the genotyped fish. The
estimation of the genetic parameters and models were fitted using
the BLUPF90 family program (Misztal et al., 2015).

Predictive Ability and Cross Validation
The ability to predict the breeding values for the traits using
pedigree and genomic approaches was assessed using a fivefold
cross-validation approach. To assess the predictive ability among
the different models, a total of 100 replicates were used. For each
replicate, 80% of fish were used as a training dataset and, for the
remaining 20%, the phenotypes were masked and used as the
validation dataset. For each model, two cross-validation
approaches were applied:

1)Random animal: for each replicate, 80% of all the fish were
randomly drawn independently of their family, and used as a
training dataset. The remaining 20% of the samples were used
as a validation dataset.
2)Random families: for each replicate, 80% of the families were
randomly drawn and used as a training set. For the remaining
20% of the families, the phenotype was masked and used as a
validation dataset. Thus, breeding value predictions were made in
the validation set using phenotypic data from different families.

For each approach, prediction accuracy was calculated as
follows:

Accuracy � r(y1, y2)
h

Where y1 and y2 represents the predicted EBV and the
phenotype, respectively, r is the correlation between these both
values, and h is the square root of the estimated heritability.

Significant differences in predicted accuracies among models
were assessed for each trait using both approaches. A Shapiro-
Wilk test was done to evaluate the normality of the distribution of
the predicted accuracies. The “rstatix” R package (Kassambara,
2021), was used for a pairwise comparison of the marginal means
amongmodels. Finally, the obtained p values were adjusted by the
number of independent tests.

SNP Densities
Since the relatively high cost of high density SNP array
genotyping may present a barrier to routine genotyping of
large number of animals within a population, the efficacy of
reduced density SNP panels for predicting breeding values was
assessed. A total of 23 subsets of random SNPs were selected from
the high density SNP array. These densities included 0.1, 0.3, 0.5,
0.7, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80 and 90%
of the entire SNP dataset. For each SNP density, 100 replicates of
a random animal five-fold cross validation were generated. The
GBLUPmodel fitted for each density is the same as that described
for the full genotype data set, and the accuracy was predicted as
detailed previously.

Genome-wide Association Analyses
To identify genomic regions associated with the FE traits, a similar
model to that proposed for genomic predictions was applied.

However, since random common environmental effect was found
to be non-significant, it was not included in the models. The GWAS
was performed using the leaving-one-chromosome-out (LOCO)
approach from the GCTA software v.1.92.2 (Yang et al., 2011).
Briefly, a suggestive and genome-wide (α � 1 and 0.05, respectively)
Bonferroni significance threshold was used to assess the significance
of individual SNPs associated with the assessed traits. The former
was first proposed by Lander and Kruglyak (1995), suggesting that at
least one false positive marker is expected under the null hypothesis.
Thus, a SNP was considered significant at a suggestive or genome-
wide level if surpassed the corresponding Bonferroni significance
threshold. The SNPs which were not mapped to a specific
chromosome of the Nile tilapia reference genome (Conte et al.,
2019; Genbank accession numberGCA_001858045.3) were assigned
to an artificial chromosome “Oni24”.

For the significant QTLs associated with the traits, candidate
genes were identified within a 500 Kb window size flanking the
associatedmarkers (250 Kb upstream and downstream, respectively)
and used as the basis for a literature search for relevant functions
connected to feed intake and efficiency. This size was selected based
on Cádiz et al., 2020, which used a similar window size for look
candidate genes in three commercial Nile tilapia populations.

RESULTS

FCR Challenge
Summary statistics for the feed efficiency and growth traits
calculated after the trial are shown in Table 1. In brief, the
BW of some fish increased by as little as 0.76 g, while others
gained up to 18.24 g. In case of the FCR, the mean value was
0.94 ± 0.20, ranging from 0.48 to 1.55. The average RFI and FI
were −0.40 ± 1.49 g and 8.30 ± 2.28 g, respectively, ranging from
−4.41 to 4.40 g and from 1.91 to 15.22 g, respectively.

Genetic Parameters
The additive genetic variance estimated through PBLUP models
was higher compared with GBLUP and ssGBLUP. The PBLUP
model also had the lowest estimates for the environmental and
residual variance (Table 2).

Heritability estimates using PBLUP, GBLUP and ssGBLUP
were significant, and low to moderate in magnitude (Table 2). In
all cases, the estimates were higher when a PBLUP model was
fitted (ranging from 0.21 to 0.52), while both genomic models had
similar estimates for a given trait (ranging from 0.12 to 0.22). No
significant differences were found for c2 among models.

A high genetic correlation of 0.98 ± 0.03 between FCR and RFI
was found, suggesting that both measurements are essentially
representations of the same trait (Table 3). Negative but
favourable genetic correlations were found between BW, and
both FCR (−0.60 ± 0.16) and RFI (−0.63 ± 0.17). However, when
pedigree-based data was used, these correlations were not
significantly different from zero (Supplementary Table S1).

Genome-wide Association
Principal components analyses indicated that the main two
components accounted together for 15.6% of the total genetic
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variation (Figure 1S), with no a clear structure evident within
the population. There was a suggestive QTL onOni5 associated
with both FCR and RFI (Figures 1A, C). The same SNPs were
associated with both traits, consistent with the high positive
genetic correlation between them. A genome-wide significant
QTL for BWG (Figure 1B) was identified in the same region of
chromosome Oni5, supported by a total of 10 SNPs. These ten
SNPs were located within a 2.1 Mb window (Table 4). Lastly,
there was a single SNP significantly associated with FI on
chromosome Oni7 (Figure 1D). The summary statistics for all
the significant SNPs found for BWG and FI together with their
detailed locations and allelic information are shown in Table 4.

The genes within a 500 Kb window surrounding the most
significant SNPs associated with these traits are summarized in
Table 5. The Eukaryotic translation initiation factor 4E
(eif4e3) and growth hormone-releasing hormone (ghrh) were
found within the QTL for BWG, eif4e3 being situated
approximately 89 Kbp upstream from the most significant
SNP (AX-317169164), whereas ghrh is ∼2 Kb upstream of the
SNP AX-317150877. In the case of FI, the neurotrophic
tyrosine kinase receptor type 3 (ntrk3), hyaluronidase 4
(hyal4) and Sus scrofa sperm adhesion molecule 1 (spam1),
genes were found within the QTL region.

Accuracy of Breeding Value Predictions
Two different cross-validation approaches were tested to estimate
prediction accuracies; a random individual and a random family

approach. For the former, higher accuracies were achieved for
BWG and FI when genomic data were used, with an increase of
34% compared with PBLUP (Figure 2A). However, in case of
BWG this increase is only observed when the A and G matrix
were combined (ssGBLUP).

As expected, all the models resulted in lower prediction
accuracies when a random family approach was used,
compared with the random animal approach. Furthermore,
two main trends were observed. Firstly, for FCR and BWG,
there were no significant differences in prediction accuracies
using any of the models incorporating genomic data
(Figure 2B). Secondly, the highest accuracies were achieved
using GBLUP, representing an increase in 33 and 26% for RFI
and FI respectively over PBLUP, while ssGBLUP gave
intermediate prediction accuracies for FI.

Impact of SNP Density on Predicted
Accuracies
A decrease in the estimated heritabilities were observed with the
low density panels (data not shown). Therefore, for the
calculation of prediction accuracy at all SNP densities, a single
heritability estimated with all the available markers was used, as is
considered the most accurate estimate (Kriaridou et al., 2020).
Only a slight decrease in the prediction accuracies was observed
across all traits when up to 10% of the SNP density was used (5 K
SNPs). When SNP density fell below 5K SNPs, the breeding value
prediction accuracy was lower for all the traits (Figure 3).

DISCUSSION

The current study generated genome-wide SNP genotype data
from tissue samples collected from a previous study in which
genetic parameters for FE traits were estimated in a Nile tilapia
breeding population (de Verdal et al., 2018b). Through
quantitative genetic analyses and using pedigree data with
information from up to 15 generations, significant genetic

TABLE 2 | Estimated additive genetic (σ2a ), common (σ2c ), and residual (σ2
e) variance parameters, common environmental effects (c2) and heritabilities (h2) for feed conversion

ratio (FCR), body weight gain (BWG), residual feed intake (RFI) and feed intake (FI). Standard error is shown inside brackets.

Trait Modela σ2a σ2c σ2e c2 h2

FCR PBLUP 7.7E-03 1.7E-03 2.8E-02 0.05 (0.03) 0.21 (0.09)
GBLUP 4.4E-03 2.4E-03 2.9E-02 0.07 (0.04) 0.12 (0.06)
ssGBLUP 4.5E-03 2.3E-03 2.9E-02 0.06 (0.04) 0.12 (0.06)

BWG PBLUP 1.82 0.18 4.60 0.03 (0.03) 0.28 (0.10)
GBLUP 1.41 0.32 4.78 0.05 (0.03) 0.22 (0.07)
ssGBLUP 1.46 0.31 4.81 0.05 (0.03) 0.22 (0.07)

RFI PBLUP 0.96 3.7E-02 1.16 0.02 (0.02) 0.45 (0.12)
GBLUP 0.37 0.14 1.49 0.07 (0.04) 0.19 (0.07)
ssGBLUP 0.39 0.13 1.50 0.06 (0.04) 0.19 (0.07)

FI PBLUP 2.19 2.5E-02 2.02 6.0E-03 (0.02) 0.52 (0.14)
GBLUP 0.61 0.26 2.91 0.07 (0.04) 0.16 (0.06)
ssGBLUP 0.64 0.24 2.91 0.06 (0.04) 0.17 (0.07)

aPBLUP: pedigree-based BLUP models; GBLUP: genomic-based BLUP models; ssGBLUP: single-step genomic-based BLUP models.

TABLE 3 | Estimated genetic correlation with standard error in brackets estimated
using GBLUP models among feed conversion ratio (FCR), body weight gain
(BWG), residual feed intake (RFI) and feed intake (FI).

FCR BWG RFI FI

FCR – – – –

BWG -0.60 (0.16) – – –

RFI 0.98 (0.03) −0.63 (0.17) – –

FI 0.24 (0.25) 0.61 (0.16) 0.21 (0.23) –
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variation was detected for all the assessed traits, FCR, BWG, RFI
and FI. The current study integrated the phenotypic dataset with
genome-wide SNP information from recently developed SNP
array for Nile Tilapia (Peñaloza et al., 2020), to estimate genetic
correlations and genomic heritabilities using almost 50 K SNP
markers segregating throughout the Nile tilapia genome. The
same data were used to dissect the genetic architecture of feed-
efficiency traits using a GWAS. Finally, the dataset was used to
assess and compare genomic prediction accuracies using different
statistical models, and assess the optimal SNP marker density for
achieving maximal prediction accuracy.

Heritability and Genetic Correlations
Genetic parameters estimates for FE traits are relatively rare in
aquaculture species, but have been extensively assessed in
livestock species with significant heritabilites detected, ranging
from 0.13 up to 0.84 (de Verdal et al., 2011; Case et al., 2012;
Freetly et al., 2020; Tortereau et al., 2020; Marchesi et al., 2021).
The studies on aquaculture species have also detected moderate to

FIGURE 1 | Genome-wide association analysis for feed conversion rate related traits in a Nile tilapia (Oreochromis niloticus) breeding population. Genome-wide
association analyses for feed conversion ratio (A), body weight gain (B), residual feed intake (C) and feed intake (D). Red and blue dashed line represents the genome-
wide and suggestive Bonferroni significant threshold, respectively.

TABLE 4 | Information on the genomic location, allelic variants and summary
statistics for the genome-wide significant markers associated with feed-
efficiency related traits in a Nile tilapia breeding population.

Body weight gain (BWG)

Onia SNP BPb Minor allele Major allele Pval

5 AX-317149233 31.78 A C 8.7E-07
5 AX-317149515 32.14 G A 7.8E-07
5 AX-317169164 32.44 C T 1.2E-07
5 AX-317169167 32.47 G A 1.6E-07
5 AX-317149783 32.53 C T 4.1E-07
5 AX-317169548 32.99 T C 1.8E-07
5 AX-317150097 32.99 A G 1.7E-07
5 AX-317150157 33.02 G A 1.7E-07
5 AX-317150877 33.69 A G 8.5E-07

Feed intake (FI)

7 AX-317210965 40.23 C T 9.9E-07

aNumber of chromosome on the Oreochromis niloticus reference genome.
bPosition of the SNP in the chromosome, in million base pairs.
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TABLE 5 | Genes flanking the significant SNPs associated with feed-efficiency related traits in a Nile tilapia breeding population. Bold genes represent genes with potential
impact on feed-efficiency related traits.

SNP QTL regionb Gene names

Left position Right position

Body weight gain (BWG)

AX-317149064 31.31 31.81 gnl3l, comt, traip, mon1a, trnar-acg, bhlhe40, mst1r, camkv, naaa, sema3f
AX-317149233 31.53 32.03 trnar-acg, bhlhe40, trnt1, camkv, naaa, sema3f
AX-317149515 31.89 32.39 trnt1, ddx4, gpr27, mdfic2, eif4e3, foxp1
AX-317169164 32.19 32.69 gpr27, ppp4r2, eif4e3, rybp, gxylt2, foxp1, pdzrn3, shq1
AX-317169167 32.22 32.72 gpr27, ppp4r2, eif4e3, rybp, gxylt2, foxp1, pdzrn3, shq1
AX-317149783 32.28 32.78 gpr27, ppp4r2, eif4e3, rybp, gxylt2, foxp1, pdzrn3, shq1
AX-317169548 32.74 33.24 chl1
AX-317150097 32.74 33.24 chl1
AX-317150157 32.77 33.27 chl1
AX-317150877 33.44 33.94 cdk5rap1, ghrh, ift52, srsf6, rpn2, mybl2, acot8

Feed Intake (FI)

AX-317210965 39.98 40.48 akap13, ska1, agbl1, ntrk3a, pard6a, wasla, hyal6, hyal4, spam1, gpr37a, pot1, grm8b, acot4

FIGURE 2 | Predicted accuracies comparison for the feed-efficiency related traits in a Nile tilapia (Oreochromis niloticus) breeding population. Accuracies predicted
through pedigree-based BLUP (PBLUP), genomic BLUP (GBLUP) and single-step GBLUP (ssGBLUP) for feed conversion ratio (FCR), body weight gain (BWG), residual
feed intake (RFI) and feed intake (FI) using a random animal (A) and random family (B) cross-validation approach. The standard error for each trait and method is
represented by the black bars. * � p < 0.05; ** � p < 1 × 10−3; *** � p < 1 × 10−5.
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high heritabilities (0.57–0.71) for average daily gain (ADG), daily
feed intake (DFI), feed efficiency ratio (FER) and RFI in a
breeding Pacific white shrimp (Litopenaeus vannamei)
population (Dai et al., 2017). Furthermore, Kause et al. (2006)
found significant heritabilities for growth in rainbow trout
(Oncorhynchus mykiss), but not for FI, whereas Dvergedal
et al. (2019) found significant heritabilities ranging from 0.18
to 0.45 for several feed efficiency traits in Atlantic salmon, such as
weight gain, residual weight gain, and stable isotope profile in
food. Furthermore, de Verdal et al. (2018b) estimated significant
heritability (0.32–0.65) for FE traits in the current Nile tilapia
population. Slightly lower heritabilities for the same traits were
found in the current study, which could be explained by the ∼25%
fewer fish being included in the analyses.

A moderate genetic correlation was found between BWG and
both FCR and RFI, when the genomic relationship matrix was
used. This favourable and significant correlation suggests that
selection for BWG (a simple trait to measure) would result in
favourable correlated responses for feed efficiency traits within
the current population. Although these results are in agreement
with previous studies in sea bass (Dicentrarchus labrax) and
rainbow trout (Kause et al., 2006, 2016; Silverstein, 2006;
Besson et al., 2019), they contrast with those estimated by de
Verdal et al. (2018b) who found no significant correlations. This
cannot be attributed to differences in sample size, since
correlations estimated using only pedigree data in the present
study (Supplementary Table S1) were in accordance with de
Verdal et al. (2018b). It is challenging to explain this discrepancy
between the pedigree and the genomic data. It can be
hypothesized that using genomic data, the true relationship
between fish within each family were estimated in the genomic
relationship matrix, exploiting two different levels of genetic

variation: at inter and intra-family level. The latter is not
included in the pedigree-based analyses. Therefore, using
PBLUP, part of the additive effect went to the common
environmental effect since families were not mixed in each
aquarium, and so it was only possible to assess the differences
between the families. In case of the genomic analyses, the genetic
relationships between fish are more accurately estimated by
estimating the random recombination during meiosis.

Genome-wide Association and Candidate
Genes
With few exceptions (Houston et al., 2008; Moen et al., 2009;
Boison et al., 2019; Sinclair-Waters et al., 2020; Barria et al., 2021),
commercially important traits in aquaculture are underpinned by
a polygenic genetic architecture (Tsai et al., 2015; Barría et al.,
2018; Gutierrez et al., 2018; Palaiokostas et al., 2018; Mohamed
et al., 2019; Aslam et al., 2020; Lu et al., 2020). This genetic
architecture is also typical of FE traits in several breeding
populations of livestock (Yuan et al., 2015; Higgins et al.,
2018; Fu et al., 2020; Marchesi et al., 2021). Gutierrez et al.
(2015) and Dvergedal et al. (2020) also found a polygenic
architecture for these traits in Atlantic salmon. Whereas in the
Crucian carp (Carassius auratus), several QTLs were detected for
ADG, feed conversion efficiency and feed intake (Pang et al.,
2017). Yoshida and Yáñez (2021) observed a polygenic
architecture for ADG using a multi-trait GWAS approach in a
Nile tilapia breeding population. Our results are in agreement
with these previous studies, suggesting a polygenic architecture
for feed efficiency traits in this current GIFT Nile tilapia breeding
population. No major QTL were detected in the current study,
but several QTLs were detected which explained a minor

FIGURE 3 | Genomic prediction accuracies using different SNP densities for feed-efficiency related traits in a Nile tilapia (Oreochromis niloticus) breeding
population. Predicted accuracies achieved using different SNP low density panels for feed conversion ratio (FCR), body weight gain (BWG), residual feed intake (RFI) and
feed intake (FI) using a genomic BLUP (GBLUP) method.
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proportion of genetic variation for the traits. Also, the possibility
that some regions impacting the traits have not been covered by
our genetic markers cannot be discarded.

The understanding of the interrelationship process among FE
traits at the molecular level could provide new insights into the
biological pathways involved and their genetic regulation. To
date, a wide range of pathways have been associated with these
traits, including forebrain development and neuron
differentiation, hormone and growth factors, gluconeogenesis,
lipogenesis, epithelial cell differentiation and hematopoietic cell
lineage (McKenna et al., 2018; Li et al., 2019; Fu et al., 2020;
Lindholm-Perry et al., 2020; Marchesi et al., 2021).

Among the genes flanking the significant markers located on
Oni5 and associated with BWG, ghrh was highlighted as one of
the most important candidate genes given its strong association
with growth rate through stimulation of growth hormone (GH).
Fish and higher vertebrates growth is partly controlled by the
GH/insulin-like growth factor-I (IGF-I) axis, which is also
involved in the regulation of several physiological process in
fish such as lipid and protein metabolism, immune function and
feeding behaviour (Albalat et al., 2005; Kawauchi and Sower,
2006). For example, the modulation of genes related with the GH/
IGF-I axis helps the fish to cope with fasting periods, by diverting
the energy otherwise used for growth to other essential
physiological processes (Wood et al., 2005; Gabillard et al.,
2006). Although the relationship between growth and IGF-I is
affected by several endogenous and exogenous factors, varying
across seasons and productive cycles (Beckman, 2011), reliable
associations have been shown in Mediterranean fishes as sea bass
and gilthead sea bream (Company et al., 2001). In the case of
tilapia, this association has also been found (Vera Cruz et al.,
2006), where a GH-overexpressed transgenic line of Nile tilapia
showed significantly higher weight and length than the wildtype
(Eppler et al., 2007). Furthermore, in O. mossambicus, a recovery
in plasma IGF-I levels during feeding stage after fasting, was
associated with an increase in weight gain (Fox et al., 2009), and
an administration of IGF-I and IGF-II has been shown to
stimulate the growth rate (Chen et al., 2000).

Another interesting candidate gene, eif4e3,was located close to
the most significant SNP for BWG. This gene belongs to the EIF4E
family of proteins, which is associated with cell growth through
protein synthesis and immune response (Piron et al., 2010).
Previous work by Sun et al. (2016) showed significant differential
expression of this gene, inHulong groupe (Epinephelus fuscogutatus
x Epinephelus anceolatus), a hybrid fish with an increased growth
rate compared with their parental species.

It’s well known the role of the brain-gut axis on the food intake
regulation and nutrient metabolism (Reyer et al., 2015). For
example, in zebrafish, modulation of brain activity through
feeding and food availability has been reported, as well as an
increase in feed intake after injection of a neurotrophic factor
(Blanco et al., 2020). The gene Neurotrophic Tyrosine Kinase
Receptor Type 3, ntrk3, the ligand of neurotrophin 3 (ntf3) may act
as a modulator of feeding and satiety in mice and is associated
with eating disorders in humans (Mercader et al., 2008). In the
current study, this gene is located ∼200 Kb from the significant

SNPs for FI in Oni07, potentially playing a role on the amount of
feed intake within the Nile tilapia population. In agreement with a
study in another farmed species, spam1 and hyal4, both genes
found within the significant QTL for FI, have been previously
reported as associated with FI in Landrace pigs. The authors
suggest a role of these genes in fat synthesis and in lipid associated
pathways, such as transport andmetabolism (Fu et al., 2020). This
could be explained by the fact that the amount of lipids plays a key
role in the control of feed intake, as has been reported in livestock
species (Harvatine and Allen, 2006; Kuhla et al., 2016), mainly by
acting on the hypothalamic signals regulating feed consumption
and energy expenditure (Allen et al., 2005; Relling et al., 2010).

Genomic Prediction and Impact of SNP
Density
Since several factors such as heritability, linkage
disequilibrium, population size and genetic architecture
underlying traits can impact the accuracy of the genomic
predictions (Morgante et al., 2018), it is necessary to
compare the performance of different models when a trait
is analyzed for the first time within a specific population. To
our knowledge this is the first study to assess genomic
predictions for feed-efficiency traits in Nile tilapia. Based on
the GWAS results, the models used to predict the EBV
accuracies were assumed to have a genetic variance
controlled by thousands of markers with small effect
(infinitesimal model).

The fact that there was no significant differences between the
results for the GBLUP and ssGBLUP models for any of the traits
and cross-validation approaches is likely due to the fact that only
genotyped fish were included into the models. Therefore, the
increase in the estimated relationship among fish due to theA and
A22 matrices (and hence difference in the predicted accuracy of
the EBV) is minimal, and most of the relationship is captured by
the G matrix.

The observed differences in the EBV accuracies between the
two cross-validation approaches (random versus family
approaches) are likely to be explained by the genetic distance
between fish from the training and validation groups. It has been
shown that predicting EBV using data from fish from different
full-sib families (i.e. random-family approach) affects mainly the
pedigree-based model and traits that are not possible to measure
on the candidate themselves (Tsai et al., 2016; Palaiokostas et al.,
2019; Joshi et al., 2020). However, by including genomic data it is
possible to exploit both inter- and intra-family genetic variation,
achieving more accurate relationship assessments between
individuals and therefore higher EBV accuracies (Garcia et al.,
2018; Palaiokostas et al., 2018; Vallejo et al., 2019; Yoshida et al.,
2019). Therefore, within a breeding programme, it would be
preferable to ensure that measurements of FE traits were taken on
training populations including close relatives, including full
siblings, or the selection candidates. It should also be noted
that FE measurements could potentially be taken on
candidates themselves, but may be challenging for reasons of
practicality and cost.
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The impact of SNP density on predicted accuracies has been
studied thoroughly for a wide variety of traits and species in
aquaculture (Yoshida et al., 2019; Kriaridou et al., 2020; Tsairidou
et al., 2020; Al-Tobasei et al., 2021; Vu et al., 2021). The results
of these studies highlight the potential to significantly
reduce SNP density without affecting the accuracy of
prediction. Interestingly, Kriaridou et al. (2020) found an
optimal SNP density of approximately 2 K SNPs for
genomic prediction accuracy in different traits and species,
suggesting a low impact of the genome size, genetic
architecture, and family structure. The current study
highlights that on average approximately 5 K is the minimal
SNP density required to achieve similar accuracies to
that of the 50 K SNP array for the tilapia population
investigated. Thus, breeding programs could potentially use
low density SNP markers (typically cheaper than high
density panels) to achieve higher accuracies than using
pedigree-based models, potentially increasing genetic gain
in a cost-efficient manner.

CONCLUSION

Significant heritabilities were confirmed for feed-efficiency
traits in a Nile tilapia breeding population, highlighting that
genetic improvement is feasible. A negative, but favourable,
genetic correlation was detected between BWG and FCR using
the genomic data, suggesting selection for BWGmay indirectly
improve FCR. The traits were polygenic, suggesting the
genomic selection may be the most effective route to
incorporating genotype data into selection decisions.
Genomic prediction markedly outperformed pedigree-based
prediction, and this was the case even for relatively low density
SNP markers. This study therefore highlights the potential for
genomic selection to improve feed efficiency traits in Nile
tilapia breeding programmes.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found here: doi:10.
6084/m9.figshare.16573118.

ETHICS STATEMENT

Data collection and sampling was performed as part of a non-
profit selective breeding program run by WorldFish. The animals
from this breeding population are managed in accordance with
the Guiding Principles of the Animal Care, Welfare and Ethics
Policy of WorldFish Center including the “3-Rs” rule.

AUTHOR CONTRIBUTIONS

HdV designed and performed the animal experiment; HdV and
AB performed the analyses with the advice of RH, JB, and DD; AB
wrote the manuscript. All the co-authors revised and approved
the final version of the manuscript.

FUNDING

This work was undertaken as part of, and funded by, the CGIAR
Research Program on Fish Agri-Food Systems (FISH) led by
WorldFish. The program is supported by contributors to the
CGIAR Trust Fund. Support was also provided by the
International Fund for Agricultural Development (IFAD) and
the European Commission-IFAD Grant Number 2000001539.
The authors gratefully acknowledge funding from Institute
Strategic Programme funding from the United Kingdom
Biotechnology and Biological Sciences Research Council to
The Roslin Institute (BB/P013759/1 and BB/P013740/1).

ACKNOWLEDGMENTS

We thank Hooi Ling Khaw, Hoong Yip Yee and Khairul Rizal Abu
Bakar for the supply of fish and maintenance of the water system.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.737906/
full#supplementary-material

REFERENCES

Aguilar, I., Misztal, I., Johnson, D. L., Legarra, A., Tsuruta, S., and Lawlor, T. J.
(2010). Hot Topic: A Unified Approach to Utilize Phenotypic, Full Pedigree,
and Genomic Information for Genetic Evaluation of Holstein Final Score.
J. Dairy Sci. 93, 743–752. doi:10.3168/jds.2009-2730

Al-Tobasei, R., Ali, A., Garcia, A. L. S., Lourenco, D., Leeds, T., and Salem, M. (2021).
Genomic Predictions for Fillet Yield and Firmness in Rainbow troutUsing Reduced-
Density SNP Panels. BMC Genomics 22, 1–11. doi:10.1186/s12864-021-07404-9

Albalat, A., Gómez-Requeni, P., Rojas, P., Médale, F., Kaushik, S., Vianen, G. J.,
et al. (2005). Nutritional and Hormonal Control of Lipolysis in Isolated
Gilthead Seabream (Sparus aurata) Adipocytes. Am. J. Physiology-Regulatory,
Integr. Comp. Physiol. 289, R259–R265. doi:10.1152/ajpregu.00574.2004

Allen, M. S., Bradford, B. J., and Harvatine, K. J. (2005). The Cow as a Model to
Study Food Intake Regulation. Annu. Rev. Nutr. 25, 523–547. doi:10.1146/
annurev.nutr.25.050304.092704

Aslam, M. L., Boison, S. A., Lillehammer, M., Norris, A., and Gjerde, B. (2020).
Genome-wide Association Mapping and Accuracy of Predictions for Amoebic
Gill Disease in Atlantic salmon (Salmo salar). Sci. Rep. 10, 6435–6439.
doi:10.1038/s41598-020-63423-8

Aubin, J., Papatryphon, E., van der Werf, H. M. G., and Chatzifotis, S. (2009).
Assessment of the Environmental Impact of Carnivorous Finfish Production
Systems Using Life Cycle Assessment. J. Clean. Prod. 17, 354–361. doi:10.1016/
j.jclepro.2008.08.008

Barría, A., Christensen, K. A., Yoshida, G. M., Correa, K., Jedlicki, A., Lhorente,
J. P., et al. (2018). Genomic Predictions and Genome-wide Association Study of
Resistance against Piscirickettsia Salmonis in Coho Salmon (Oncorhynchus

Frontiers in Genetics | www.frontiersin.org September 2021 | Volume 12 | Article 73790610

Barría et al. Feed Efficiency Genomics in Tilapia

http://doi:10.6084/m9.figshare.16573118
http://doi:10.6084/m9.figshare.16573118
https://www.frontiersin.org/articles/10.3389/fgene.2021.737906/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.737906/full#supplementary-material
https://doi.org/10.3168/jds.2009-2730
https://doi.org/10.1186/s12864-021-07404-9
https://doi.org/10.1152/ajpregu.00574.2004
https://doi.org/10.1146/annurev.nutr.25.050304.092704
https://doi.org/10.1146/annurev.nutr.25.050304.092704
https://doi.org/10.1038/s41598-020-63423-8
https://doi.org/10.1016/j.jclepro.2008.08.008
https://doi.org/10.1016/j.jclepro.2008.08.008
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


kisutch) Using ddRAD Sequencing. G3 (Bethesda) 8, 1183–1194. 200053.2018.
doi:10.1534/g3.118.200053

Barría, A., Tri
_
nh, T. Q., Mahmuddin, M., Peñaloza, C., Papadopoulou, A., Gervais,

O., et al. (2021). A Major Quantitative Trait Locus Affecting Resistance to
Tilapia Lake Virus in Farmed Nile tilapia (Oreochromis niloticus).Heredity 127,
334–343. doi:10.1038/s41437-021-00447-4

Beckman, B. R. (2011). Perspectives on Concordant and Discordant Relations
between Insulin-like Growth Factor 1 (IGF1) and Growth in Fishes.Gen. Comp.
Endocrinol. 170, 233–252. doi:10.1016/j.ygcen.2010.08.009

Besson, M., Allal, F., Chatain, B., Vergnet, A., Clota, F., and Vandeputte, M. (2019).
Combining Individual Phenotypes of Feed Intake with Genomic Data to
Improve Feed Efficiency in Sea Bass. Front. Genet. 10, 1–14. doi:10.3389/
fgene.2019.00219

Blanco, A.M., Bertucci, J. I., Hatef, A., and Unniappan, S. (2020). Feeding and Food
Availability Modulate Brain-Derived Neurotrophic Factor, an Orexigen with
Metabolic Roles in Zebrafish. Sci. Rep. 10, 10727. doi:10.1038/s41598-020-
67535-z

Boison, S., Ding, J., Leder, E., Gjerde, B., Bergtun, P. H., Norris, A., et al. (2019).
QTLs Associated with Resistance to Cardiomyopathy Syndrome in Atlantic
Salmon. J. Hered. 110, 727–737. doi:10.1093/jhered/esz042

Brown, L. R. (2006). Plan B 2.0: Rescuing a Planet under Stress and a Civilization in
Trouble.

Cáceres, G., López, M. E., Cádiz, M. I., Yoshida, G. M., Jedlicki, A., Palma-Véjares,
R., et al. (2019). Fine Mapping Using Whole-Genome Sequencing Confirms
Anti-müllerian Hormone as a Major Gene for Sex Determination in Farmed
Nile Tilapia (Oreochromis niloticus L.). G3 (Bethesda, Md. 9, 3213–3223.
doi:10.1534/g3.119.400297

Cádiz, M. I., López, M. E., Díaz-Domínguez, D., Cáceres, G., Yoshida, G. M.,
Gomez-Uchida, D., et al. (2020). Whole Genome Re-sequencing Reveals Recent
Signatures of Selection in Three Strains of Farmed Nile tilapia (Oreochromis
niloticus). Sci. Rep. 10, 11514. doi:10.1038/s41598-020-68064-5

Case, L. A., Wood, B. J., and Miller, S. P. (2012). The Genetic Parameters of Feed
Efficiency and its Component Traits in the turkey (Meleagris gallopavo). Genet.
Sel Evol. 44, 2. doi:10.1186/1297-9686-44-2

Chen, J.-Y., Chen, J.-C., Chang, C.-Y., Shen, S.-C., Chen, M.-S., and Wu, J.-L.
(2000). Expression of Recombinant tilapia Insulin-like Growth Factor-I and
Stimulation of Juvenile tilapia Growth by Injection of Recombinant IGFs
Polypeptides. Aquaculture 181, 347–360. doi:10.1016/S0044-8486(99)00239-2

Company, R., Astola, A., Pendón, C., Valdivia, M. M., and Pérez-Sánchez, J. (2001).
Somatotropic Regulation of Fish Growth and Adiposity: Growth Hormone
(GH) and Somatolactin (SL) Relationship. Comp. Biochem. Physiol. C: Toxicol.
Pharmacol. 130, 435–445. doi:10.1016/S1532-0456(01)00269-1

Conte, M. A., Joshi, R., Moore, E. C., Nandamuri, S. P., Gammerdinger, W. J.,
Roberts, R. B., et al. (2019). Chromosome-scale Assemblies Reveal the
Structural Evolution of African Cichlid Genomes. GigaScience 8, 1–20.
doi:10.1093/gigascience/giz030

Dai, P., Luan, S., Lu, X., Luo, K., Meng, X., Cao, B., et al. (2017). Genetic Assessment
of Residual Feed Intake as a Feed Efficiency Trait in the Pacific white Shrimp
Litopenaeus Vannamei. Genet. Sel Evol. 49, 61. doi:10.1186/s12711-017-0334-1

de Verdal, H., Mekkawy, W., Lind, C. E., Vandeputte, M., Chatain, B., and Benzie,
J. A. H. (2017). Measuring Individual Feed Efficiency and its Correlations with
Performance Traits in Nile tilapia, Oreochromis niloticus. Aquaculture 468,
489–495. doi:10.1016/j.aquaculture.2016.11.015

de Verdal, H., Narcy, A., Bastianelli, D., Chapuis, H., Même, N., Urvoix, S., et al.
(2011). Improving the Efficiency of Feed Utilization in Poultry by Selection. 1.
Genetic Parameters of Anatomy of the Gastro-Intestinal Tract and Digestive
Efficiency. BMC Genet. 12, 59. doi:10.1186/1471-2156-12-59

de Verdal, H., Vandeputte, M., Mekkawy, W., Chatain, B., and Benzie, J. A. H.
(2018b). Quantifying the Genetic Parameters of Feed Efficiency in Juvenile Nile
tilapia Oreochromis niloticus. BMC Genet. 19, 1–10. doi:10.1186/s12863-018-
0691-y

Dvergedal, H., Harvey, T. N., Jin, Y., Ødegård, J., Grønvold, L., Sandve, S. R., et al.
(2020). Genomic Regions and Signaling Pathways Associated with Indicator
Traits for Feed Efficiency in Juvenile Atlantic salmon (Salmo salar). Genet. Sel
Evol. 52, 66. doi:10.1186/s12711-020-00587-x

Dvergedal, H., Ødegård, J., Øverland, M., Mydland, L. T., and Klemetsdal, G.
(2019). Selection for Feed Efficiency in Atlantic salmon Using Individual

Indicator Traits Based on Stable Isotope Profiling. Genet. Sel Evol. 51, 13.
doi:10.1186/s12711-019-0455-9

Eppler, E., Caelers, A., Shved, N., Hwang, G., Rahman, A. M., Maclean, N., et al.
(2007). Insulin-like Growth Factor I (IGF-I) in a Growth-Enhanced Transgenic
(GH-Overexpressing) Bony Fish, the tilapia (Oreochromis niloticus): Indication
for a Higher Impact of Autocrine/paracrine Than of Endocrine IGF-I.
Transgenic Res. 16, 479–489. doi:10.1007/s11248-007-9093-z

FAO (2019). “The State of the World’s Aquatic Genetic Resources for Food and
Agriculture,” in Commission on Genetic Resources for Food and
AgricultureCommission on Genetic Resources for Food and Agriculture.

FAO (2020). The State of World Fisheries and Aquaculture 2020: Sustainability in
Action. Rome, Italy: FAO. doi:10.4060/ca9229en

Fox, B. K., Breves, J. P., Hirano, T., and Grau, E. G. (2009). Effects of Short- and
Long-Term Fasting on Plasma and Stomach Ghrelin, and the Growth
Hormone/insulin-like Growth Factor I axis in the tilapia, Oreochromis
mossambicus. Domest. Anim. Endocrinol. 37, 1–11. doi:10.1016/
j.domaniend.2009.01.001

Fraslin, C., Quillet, E., Rochat, T., Dechamp, N., Bernardet, J.-F., Collet, B., et al.
(2020). Combining Multiple Approaches and Models to Dissect the Genetic
Architecture of Resistance to Infections in Fish. Front. Genet. 11, 677.
doi:10.3389/fgene.2020.00677

Freetly, H. C., Kuehn, L. A., Thallman, R. M., and Snelling, W. M. (2020).
Heritability and Genetic Correlations of Feed Intake, Body Weight Gain,
Residual Gain, and Residual Feed Intake of Beef Cattle as Heifers and
Cows. J. Anim. Sci. 98, skz394. doi:10.1093/jas/skz394

Fu, L., Jiang, Y., Wang, C., Mei, M., Zhou, Z., Jiang, Y., et al. (2020). A Genome-
wide Association Study on Feed Efficiency Related Traits in Landrace Pigs.
Front. Genet. 11, 692. doi:10.3389/fgene.2020.00692

Gabillard, J.-C., Kamangar, B. B., and Montserrat, N. (2006). Coordinated
Regulation of the GH/IGF System Genes during Refeeding in Rainbow trout
(Oncorhynchus mykiss). J. Endocrinol. 191, 15–24. doi:10.1677/joe.1.06869

Garcia, A. L. S., Bosworth, B., Waldbieser, G., Misztal, I., Tsuruta, S., and Lourenco,
D. A. L. (2018). Development of Genomic Predictions for Harvest and Carcass
Weight in Channel Catfish. Genet. Sel Evol. 50, 1–12. doi:10.1186/s12711-018-
0435-5

Gjedrem, T., and Rye, M. (2018). Selection Response in Fish and Shellfish: a
Review. Rev. Aquacult 10, 168–179. doi:10.1111/raq.12154

Gutierrez, A. P., Bean, T. P., Hooper, C., Stenton, C. A., Sanders, M. B., Paley, R. K.,
et al. (2018). A Genome-wide Association Study for Host Resistance to Ostreid
Herpesvirus in Pacific Oysters (Crassostrea gigas). G3: Genes, Genomes, Genet.
8, 1273–1280. doi:10.1534/g3.118.200113

Gutierrez, A. P., Yáñez, J. M., Fukui, S., Swift, B., and Davidson, W. S. (2015).
Genome-wide Association Study (GWAS) for Growth Rate and Age at Sexual
Maturation in Atlantic salmon (Salmo salar). PLoS One 10, e0119730.
doi:10.1371/journal.pone.0119730

Hamilton, M. G., Lind, C. E., Barman, B. K., Velasco, R. R., Danting, M. J. C., and
Benzie, J. A. H. (2020). Distinguishing between Nile Tilapia Strains Using a
Low-Density Single-Nucleotide Polymorphism Panel. Front. Genet. 11, 594722.
doi:10.3389/fgene.2020.594722

Harvatine, K. J., and Allen, M. S. (2006). Effects of Fatty Acid Supplements on Feed
Intake, and Feeding and Chewing Behavior of Lactating Dairy Cows. J. Dairy
Sci. 89, 1104–1112. doi:10.3168/jds.S0022-0302(06)72178-6

Higgins, M. G., Fitzsimons, C., McClure, M. C., McKenna, C., Conroy, S., Kenny,
D. A., et al. (2018). GWAS and eQTL Analysis Identifies a SNP Associated with
Both Residual Feed Intake and GFRA2 Expression in Beef Cattle. Sci. Rep. 8,
14301. doi:10.1038/s41598-018-32374-6

Houston, R. D., Bean, T. P., Macqueen, D. J., Gundappa, M. K., Jin, Y. H., Jenkins,
T. L., et al. (2020). Harnessing Genomics to Fast-Track Genetic Improvement in
Aquaculture. Nat. Rev. Genet. 21, 389–409. doi:10.1038/s41576-020-0227-y

Houston, R. D., Haley, C. S., Hamilton, A., Guy, D. R., Tinch, A. E., Taggart, J. B.,
et al. (2008). Major Quantitative Trait Loci Affect Resistance to Infectious
Pancreatic Necrosis in Atlantic salmon (Salmo salar). Genetics 178, 1109–1115.
doi:10.1534/genetics.107.082974

Joshi, R., Skaarud, A., de Vera, M., Alvarez, A. T., and Ødegård, J. (2020). Genomic
Prediction for Commercial Traits Using Univariate and Multivariate
Approaches in Nile tilapia (Oreochromis niloticus). Aquaculture 516,
734641. doi:10.1016/j.aquaculture.2019.734641

Frontiers in Genetics | www.frontiersin.org September 2021 | Volume 12 | Article 73790611

Barría et al. Feed Efficiency Genomics in Tilapia

https://doi.org/10.1534/g3.118.200053
https://doi.org/10.1038/s41437-021-00447-4
https://doi.org/10.1016/j.ygcen.2010.08.009
https://doi.org/10.3389/fgene.2019.00219
https://doi.org/10.3389/fgene.2019.00219
https://doi.org/10.1038/s41598-020-67535-z
https://doi.org/10.1038/s41598-020-67535-z
https://doi.org/10.1093/jhered/esz042
https://doi.org/10.1534/g3.119.400297
https://doi.org/10.1038/s41598-020-68064-5
https://doi.org/10.1186/1297-9686-44-2
https://doi.org/10.1016/S0044-8486(99)00239-2
https://doi.org/10.1016/S1532-0456(01)00269-1
https://doi.org/10.1093/gigascience/giz030
https://doi.org/10.1186/s12711-017-0334-1
https://doi.org/10.1016/j.aquaculture.2016.11.015
https://doi.org/10.1186/1471-2156-12-59
https://doi.org/10.1186/s12863-018-0691-y
https://doi.org/10.1186/s12863-018-0691-y
https://doi.org/10.1186/s12711-020-00587-x
https://doi.org/10.1186/s12711-019-0455-9
https://doi.org/10.1007/s11248-007-9093-z
https://doi.org/10.4060/ca9229en
https://doi.org/10.1016/j.domaniend.2009.01.001
https://doi.org/10.1016/j.domaniend.2009.01.001
https://doi.org/10.3389/fgene.2020.00677
https://doi.org/10.1093/jas/skz394
https://doi.org/10.3389/fgene.2020.00692
https://doi.org/10.1677/joe.1.06869
https://doi.org/10.1186/s12711-018-0435-5
https://doi.org/10.1186/s12711-018-0435-5
https://doi.org/10.1111/raq.12154
https://doi.org/10.1534/g3.118.200113
https://doi.org/10.1371/journal.pone.0119730
https://doi.org/10.3389/fgene.2020.594722
https://doi.org/10.3168/jds.S0022-0302(06)72178-6
https://doi.org/10.1038/s41598-018-32374-6
https://doi.org/10.1038/s41576-020-0227-y
https://doi.org/10.1534/genetics.107.082974
https://doi.org/10.1016/j.aquaculture.2019.734641
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Kassambara, A. (2021). Rstatix: Pipe-Friendly Framework for Basic Statistical
Tests. Available at: https://CRAN.R-project.org/package�rstatix [Accessed
June 17, 2021].

Kause, A., Kiessling, A., Martin, S. A. M., Houlihan, D., and Ruohonen, K. (2016).
Genetic Improvement of Feed Conversion Ratio via Indirect Selection against
Lipid Deposition in Farmed Rainbow trout (Oncorhynchus mykiss Walbaum).
Br. J. Nutr. 116, 1656–1665. doi:10.1017/S0007114516003603

Kause, A., Tobin, D., Houlihan, D. F., Martin, S. A. M., Ma€ntysaari, E. A., Ritola, O.,
et al. (2006). Feed Efficiency of Rainbow trout Can Be Improved through
Selection: Different Genetic Potential on Alternative Diets1. J. Anim. Sci. 84,
807–817. doi:10.2527/2006.844807x

Kawauchi, H., and Sower, S. A. (2006). The Dawn and Evolution of Hormones in
the Adenohypophysis. Gen. Comp. Endocrinol. 148, 3–14. doi:10.1016/
j.ygcen.2005.10.011

Koch, R. M., Swiger, L. A., Chambers, D., and Gregory, K. E. (1963). Efficiency of
Feed Use in Beef Cattle. J. Anim. Sci. 22, 486–494. doi:10.2527/jas1963.222486x

Kriaridou, C., Tsairidou, S., Houston, R. D., and Robledo, D. (2020). Genomic
Prediction Using Low Density Marker Panels in Aquaculture: Performance
across Species, Traits, and Genotyping Platforms. Front. Genet. 11, 1–8.
doi:10.3389/fgene.2020.00124

Kuhla, B., Metges, C. C., andHammon, H.M. (2016). Endogenous andDietary Lipids
Influencing Feed Intake and Energy Metabolism of Periparturient Dairy Cows.
Domest. Anim. Endocrinol. 56, S2–S10. doi:10.1016/j.domaniend.2015.12.002

Lander, E., and Kruglyak, L. (1995). Genetic Dissection of Complex Traits:
Guidelines for Interpreting and Reporting Linkage Results. Nat. Genet. 11,
241–247. doi:10.1038/ng1195-241

Li, B., Fang, L., Null, D. J., Hutchison, J. L., Connor, E. E., VanRaden, P. M., et al.
(2019). High-density Genome-wide Association Study for Residual Feed Intake
in Holstein Dairy Cattle. J. Dairy Sci. 102, 11067–11080. doi:10.3168/jds.2019-
16645

Lindholm-Perry, A. K., Freetly, H. C., Oliver, W. T., Rempel, L. A., and Keel, B. N.
(2020). Genes Associated with BodyWeight Gain and Feed Intake Identified by
Meta-Analysis of the Mesenteric Fat from Crossbred Beef Steers. PLoS One 15,
e0227154. doi:10.1371/journal.pone.0227154

Lu, S., Liu, Y., Yu, X., Li, Y., Yang, Y., Wei, M., et al. (2020). Prediction of Genomic
Breeding Values Based on Pre-selected SNPs Using ssGBLUP, WssGBLUP and
BayesB for Edwardsiellosis Resistance in Japanese Flounder. Genet. Sel Evol. 52,
1–10. doi:10.1186/s12711-020-00566-2

MacLeod, M. J., Hasan, M. R., Robb, D. H. F., and Mamun-Ur-Rashid, M. (2020).
Quantifying Greenhouse Gas Emissions from Global Aquaculture. Sci. Rep. 10,
11679. doi:10.1038/s41598-020-68231-8

Marchesi, J. A. P., Ono, R. K., Cantão, M. E., Ibelli, A. M. G., Peixoto, J. d. O.,
Moreira, G. C. M., et al. (2021). Exploring the Genetic Architecture of Feed
Efficiency Traits in Chickens. Sci. Rep. 11, 4622. doi:10.1038/s41598-021-
84125-9

McKenna, C., Porter, R. K., Keogh, K. A., Waters, S. M., McGee, M., and Kenny, D.
A. (2018). Residual Feed Intake Phenotype and Gender Affect the Expression of
Key Genes of the Lipogenesis Pathway in Subcutaneous Adipose Tissue of Beef
Cattle. J. Anim. Sci Biotechnol 9, 68. doi:10.1186/s40104-018-0282-9

Mercader, J. M., Saus, E., Agüera, Z., Bayés, M., Boni, C., Carreras, A., et al. (2008).
Association of NTRK3 and its Interaction with NGF Suggest an Altered Cross-
Regulation of the Neurotrophin Signaling Pathway in Eating Disorders. Hum.
Mol. Genet. 17, 1234–1244. doi:10.1093/hmg/ddn013

Miao, W., and Wang, W. (2020). Trends of Aquaculture Production and Trade:
Carp, tilapia, and Shrimp. Afs 33S, 1–10. doi:10.33997/j.afs.2020.33.S1.001

Misztal, I., Tsuruta, S., Lourenco, D., Aguilar, I., Legarra, A., and Vitezica, Z.
(2015). Manual for BLUPF90 Family of Programs. 125. Available at: http://nce.
ads.uga.edu/wiki/lib/exe/fetch.php?media�blupf90_all2.pdf.

Moen, T., Baranski, M., Sonesson, A. K., and Kjøglum, S. (2009). Confirmation and
fine-mapping of a Major QTL for Resistance to Infectious Pancreatic Necrosis
in Atlantic salmon (Salmo salar): Population-Level Associations between
Markers and Trait. BMC genomics 10, 368. doi:10.1186/1471-2164-10-368

Mohamed, A. R., Verbyla, K. L., Al-Mamun, H. A., McWilliam, S., Evans, B., King,
H., et al. (2019). Polygenic and Sex Specific Architecture for Two Maturation
Traits in Farmed Atlantic salmon. BMC Genomics 20, 1–13. doi:10.1186/
s12864-019-5525-4

Morgante, F., Huang, W., Maltecca, C., and Mackay, T. F. C. (2018). Effect of
Genetic Architecture on the Prediction Accuracy of Quantitative Traits in

Samples of Unrelated Individuals. Heredity 120, 500–514. doi:10.1038/s41437-
017-0043-0

Palaiokostas, C., Cariou, S., Bestin, A., Bruant, J. S., Haffray, P., Morin, T., et al.
(2018). Genome-wide Association and Genomic Prediction of Resistance to
Viral Nervous Necrosis in European Sea Bass (Dicentrarchus labrax) Using
RAD Sequencing. Genet. Sel Evol. 50, 30–11. doi:10.1186/s12711-018-0401-2

Palaiokostas, C., Vesely, T., Kocour, M., Prchal, M., Pokorova, D., Piackova, V.,
et al. (2019). Optimizing Genomic Prediction of Host Resistance to Koi
Herpesvirus Disease in Carp. Front. Genet. 10, 1–9. doi:10.3389/
fgene.2019.00543

Pang, M., Fu, B., Yu, X., Liu, H., Wang, X., Yin, Z., et al. (2017). Quantitative Trait
Loci Mapping for Feed Conversion Efficiency in Crucian Carp (Carassius
auratus). Sci. Rep. 7, 1–11. doi:10.1038/s41598-017-17269-2

Peñaloza, C., Robledo, D., Barría, A., Tri
_
nh, T. Q., Mahmuddin, M., Wiener, P.,

et al. (2020). Development and Validation of an Open Access SNP Array for
Nile tilapia (Oreochromis niloticus). G3 Genes Genomes Genet. 10, 2777–2785.
doi:10.1534/g3.120.401343

Piron, F., Nicolaï, M., Minoïa, S., Piednoir, E., Moretti, A., Salgues, A., et al. (2010).
An Induced Mutation in Tomato eiF4E Leads to Immunity to Two Potyviruses.
PLoS ONE 5, e11313. doi:10.1371/journal.pone.0011313

Ponzoni, R. W., Nguyen, N. H., Khaw, H. L., Hamzah, A., Bakar, K. R. A., and Yee,
H. Y. (2011). Genetic Improvement of Nile tilapia (Oreochromis niloticus) with
Special Reference to the Work Conducted by the WorldFish Center with the
GIFT Strain. Rev. Aquac. 3, 27–41. doi:10.1111/j.1753-5131.2010.01041.x3

Purcell, S., Neale, B., Todd-brown, K., Thomas, L., Ferreira, M. A. R., Bender, D.,
et al. (2007). PLINK: A Tool Set for Whole-Genome Association and
Population-Based Linkage Analyses. Am. J. Hum. Genet. 81, 559–575.
doi:10.1086/519795

R Development Core Team (2018). R: A Language and Environment for Statistical
Computing. Vienna, Austria : the R Foundation for Statistical Computing.
ISBN: 3-900051-07-0. Available online at http://www.R-project.org/.

Relling, A. E., Pate, J. L., Reynolds, C. K., and Loerch, S. C. (2010). Effect of Feed
Restriction and Supplemental Dietary Fat on Gut Peptide and Hypothalamic
Neuropeptide Messenger Ribonucleic Acid Concentrations in Growing
Wethers1. J. Anim. Sci. 88, 737–748. doi:10.2527/jas.2009-2316

Reyer, H., Hawken, R., Murani, E., Ponsuksili, S., and Wimmers, K. (2015). The
Genetics of Feed Conversion Efficiency Traits in a Commercial Broiler Line. Sci.
Rep. 5, 16387. doi:10.1038/srep16387

Silverstein, J. T. (2006). Relationships Among Feed Intake, Feed Efficiency, and
Growth in Juvenile Rainbow Trout. North Am. J. Aquac. 68, 168–175.
doi:10.1577/a05-010.1

Sinclair-Waters, M., Ødegård, J., Korsvoll, S. A., Moen, T., Lien, S., Primmer, C. R.,
et al. (2020). Beyond Large-Effect Loci: Large-Scale GWAS Reveals a Mixed
Large-Effect and Polygenic Architecture for Age at Maturity of Atlantic salmon.
Genet. Sel Evol. 52, 1–11. doi:10.1186/s12711-020-0529-8

Sun, Y., Guo, C.-Y., Wang, D.-D., Li, X. F., Xiao, L., Zhang, X., et al. (2016).
Transcriptome Analysis Reveals the Molecular Mechanisms Underlying
Growth Superiority in a Novel Grouper Hybrid (Epinephelus Fuscogutatus\
× E. Lanceolatus_). BMC Genet. 17, 1–10. doi:10.1186/s12863-016-0328-y

Taslima, K., Wehner, S., Taggart, J. B., De Verdal, H., Benzie, J. A. H., Bekaert, M.,
et al. (2020). Sex Determination in the GIFT Strain of tilapia Is Controlled by a
Locus in Linkage Group 23. BMC Genet. 21, 1–15. doi:10.1186/s12863-020-
00853-3

Tortereau, F., Marie-Etancelin, C., Weisbecker, J.-L., Marcon, D., Bouvier, F.,
Moreno-Romieux, C., et al. (2020). Genetic Parameters for Feed Efficiency in
Romane Rams and Responses to Single-Generation Selection. animal 14,
681–687. doi:10.1017/S1751731119002544

Tsai, H.-Y., Hamilton, A., Tinch, A. E., Guy, D. R., Gharbi, K., Stear, M. J., et al.
(2015). Genome Wide Association and Genomic Prediction for Growth Traits
in Juvenile Farmed Atlantic salmon Using a High Density SNP Array. BMC
Genomics 16, 1–9. doi:10.1186/s12864-015-2117-9

Tsai, H. Y., Hamilton, A., Tinch, A. E., Guy, D. R., Bron, J. E., Taggart, J. B., et al.
(2016). Genomic Prediction of Host Resistance to Sea Lice in Farmed Atlantic
salmon Populations. Genet. Sel Evol. 48, 47–11. doi:10.1186/s12711-016-0226-9

Tsairidou, S., Hamilton, A., Robledo, D., Bron, J. E., and Houston, R. D. (2020).
Optimizing Low-Cost Genotyping and Imputation Strategies for Genomic
Selection in atlantic salmon. G3: Genes, Genomes, Genet. 10, 581–590.
doi:10.1534/g3.119.400800

Frontiers in Genetics | www.frontiersin.org September 2021 | Volume 12 | Article 73790612

Barría et al. Feed Efficiency Genomics in Tilapia

https://CRAN.R-project.org/package=rstatix
https://CRAN.R-project.org/package=rstatix
https://doi.org/10.1017/S0007114516003603
https://doi.org/10.2527/2006.844807x
https://doi.org/10.1016/j.ygcen.2005.10.011
https://doi.org/10.1016/j.ygcen.2005.10.011
https://doi.org/10.2527/jas1963.222486x
https://doi.org/10.3389/fgene.2020.00124
https://doi.org/10.1016/j.domaniend.2015.12.002
https://doi.org/10.1038/ng1195-241
https://doi.org/10.3168/jds.2019-16645
https://doi.org/10.3168/jds.2019-16645
https://doi.org/10.1371/journal.pone.0227154
https://doi.org/10.1186/s12711-020-00566-2
https://doi.org/10.1038/s41598-020-68231-8
https://doi.org/10.1038/s41598-021-84125-9
https://doi.org/10.1038/s41598-021-84125-9
https://doi.org/10.1186/s40104-018-0282-9
https://doi.org/10.1093/hmg/ddn013
https://doi.org/10.33997/j.afs.2020.33.S1.001
http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all2.pdf
http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all2.pdf
http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all2.pdf
https://doi.org/10.1186/1471-2164-10-368
https://doi.org/10.1186/s12864-019-5525-4
https://doi.org/10.1186/s12864-019-5525-4
https://doi.org/10.1038/s41437-017-0043-0
https://doi.org/10.1038/s41437-017-0043-0
https://doi.org/10.1186/s12711-018-0401-2
https://doi.org/10.3389/fgene.2019.00543
https://doi.org/10.3389/fgene.2019.00543
https://doi.org/10.1038/s41598-017-17269-2
https://doi.org/10.1534/g3.120.401343
https://doi.org/10.1371/journal.pone.0011313
https://doi.org/10.1111/j.1753-5131.2010.01041.x
https://doi.org/10.1086/519795
http://www.R-project.org/
https://doi.org/10.2527/jas.2009-2316
https://doi.org/10.1038/srep16387
https://doi.org/10.1577/a05-010.1
https://doi.org/10.1186/s12711-020-0529-8
https://doi.org/10.1186/s12863-016-0328-y
https://doi.org/10.1186/s12863-020-00853-3
https://doi.org/10.1186/s12863-020-00853-3
https://doi.org/10.1017/S1751731119002544
https://doi.org/10.1186/s12864-015-2117-9
https://doi.org/10.1186/s12711-016-0226-9
https://doi.org/10.1534/g3.119.400800
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Vallejo, R. L., Cheng, H., Fragomeni, B. O., Shewbridge, K. L., Gao, G., Macmillan,
J. R., et al. (2019). Genome-wide Association Analysis and Accuracy of
Genome-Enabled Breeding Value Predictions for Resistance to Infectious
Hematopoietic Necrosis Virus in a Commercial Rainbow trout Breeding
Population. Genet. Sel Evol. 51, 47–14. doi:10.1186/s12711-019-0489-z

VanRaden, P. M. (2008). Efficient Methods to Compute Genomic Predictions.
J. Dairy Sci. 91, 4414–4423. doi:10.3168/jds.2007-0980

Vera Cruz, E. M., Brown, C. L., Luckenbach, J. A., Picha, M. E., Bolivar, R. B., and
Borski, R. J. (2006). Insulin-likeGrowth Factor-I cDNACloning, Gene Expression
and Potential Use as a Growth Rate Indicator in Nile tilapia, Oreochromis
niloticus. Aquaculture 251, 585–595. doi:10.1016/j.aquaculture.2005.06.039

Verdal, H., Komen, H., Quillet, E., Chatain, B., Allal, F., Benzie, J. A. H., et al.
(2018a). Improving Feed Efficiency in Fish Using Selective Breeding: A Review.
Rev. Aquacult 10, 833–851. doi:10.1111/raq.12202

Vu, S. V., Gondro, C., Nguyen, N. T. H., Gilmour, A. R., Tearle, R., Knibb, W., et al.
(2021). Prediction Accuracies of Genomic Selection for Nine Commercially
Important Traits in the Portuguese Oyster (Crassostrea Angulata) Using DArT-
Seq Technology. Genes (Basel) 12, 210. doi:10.3390/genes12020210

Wang, H., Misztal, I., Aguilar, I., Legarra, A., and Muir, W. M. (2012). Genome-
wide Association Mapping Including Phenotypes from Relatives without
Genotypes. Genet. Res. 94, 73–83. doi:10.1017/S0016672312000274

Wood, A.W., Duan, C., and Bern, H. A. (2005). Insulin-like Growth Factor Signaling in
Fish. Int. Rev. Cytol. 243, 215–285. doi:10.1016/S0074-7696(05)43004-1

Yáñez, J. M., Joshi, R., and Yoshida, G. M. (2020). Genomics to Accelerate Genetic
Improvement in tilapia. Anim. Genet. 51, 658–674. doi:10.1111/age.12989

Yang, J., Lee, S. H., Goddard, M. E., and Visscher, P. M. (2011). GCTA: A Tool for
Genome-wide Complex Trait Analysis. Am. J. Hum. Genet. 88, 76–82.
doi:10.1016/j.ajhg.2010.11.011

Yoshida, G. M., Lhorente, J. P., Correa, K., Soto, J., Salas, D., and Yáñez, J. M.
(2019). Genome-wide Association Study and Cost-Efficient Genomic

Predictions for Growth and Fillet Yield in Nile tilapia (Oreochromis
niloticus). G3: Genes, Genomes, Genet. 9, 2597–2607. doi:10.1534/
g3.119.400116

Yoshida, G. M., and Yáñez, J. M. (2021). Multi-trait GWAS Using Imputed High-
Density Genotypes from Whole-Genome Sequencing Identifies Genes
Associated with Body Traits in Nile tilapia. BMC Genomics 22, 57.
doi:10.1186/s12864-020-07341-z

Yuan, J., Wang, K., Yi, G., Ma, M., Dou, T., Sun, C., et al. (2015). Genome-wide
Association Studies for Feed Intake and Efficiency in Two Laying Periods of
Chickens. Genet. Sel Evol. 47, 82. doi:10.1186/s12711-015-0161-1

Conflict of Interest: JB was employed by the company WorldFish.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Barría, Benzie, Houston, De Koning and de Verdal. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org September 2021 | Volume 12 | Article 73790613

Barría et al. Feed Efficiency Genomics in Tilapia

https://doi.org/10.1186/s12711-019-0489-z
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.1016/j.aquaculture.2005.06.039
https://doi.org/10.1111/raq.12202
https://doi.org/10.3390/genes12020210
https://doi.org/10.1017/S0016672312000274
https://doi.org/10.1016/S0074-7696(05)43004-1
https://doi.org/10.1111/age.12989
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1534/g3.119.400116
https://doi.org/10.1534/g3.119.400116
https://doi.org/10.1186/s12864-020-07341-z
https://doi.org/10.1186/s12711-015-0161-1
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Genomic Selection and Genome-wide Association Study for Feed-Efficiency Traits in a Farmed Nile Tilapia (Oreochromis niloti ...
	Introduction
	Materials and Methods
	Nile Tilapia Breeding Population
	Feed Conversion Experimental Challenge
	Trait Definitions
	SNP Array Genotyping
	Prediction of Breeding Values
	Predictive Ability and Cross Validation
	SNP Densities
	Genome-wide Association Analyses

	Results
	FCR Challenge
	Genetic Parameters
	Genome-wide Association
	Accuracy of Breeding Value Predictions
	Impact of SNP Density on Predicted Accuracies

	Discussion
	Heritability and Genetic Correlations
	Genome-wide Association and Candidate Genes
	Genomic Prediction and Impact of SNP Density

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


