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Polygenic risk scores (PRS) aggregating results from genome-wide association studies are
the state of the art in the prediction of susceptibility to complex traits or diseases, yet their
predictive performance is limited for various reasons, not least of which is their failure to
incorporate the effects of gene-gene interactions. Novel machine learning algorithms that
use large amounts of data promise to find gene-gene interactions in order to build models
with better predictive performance than PRS. Here, we present a data preprocessing step
by using data-mining of contextual information to reduce the number of features, enabling
machine learning algorithms to identify gene-gene interactions. We applied our approach
to the Parkinson’s Progression Markers Initiative (PPMI) dataset, an observational clinical
study of 471 genotyped subjects (368 cases and 152 controls). With an AUC of 0.85 (95%
CI � [0.72; 0.96]), the interaction-based prediction model outperforms the PRS (AUC of
0.58 (95% CI � [0.42; 0.81])). Furthermore, feature importance analysis of the model
provided insights into the mechanism of Parkinson’s disease. For instance, the model
revealed an interaction of previously described drug target candidate genes TMEM175
and GAPDHP25. These results demonstrate that interaction-based machine learning
models can improve genetic prediction models and might provide an answer to the
missing heritability problem.
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INTRODUCTION

The need to understand how to predict phenotypes from genetic data is becoming ever-more
important for the prediction of disease risk for individuals and for plant and animal breeding as well
as for genome editing. Polygenic risk scores (PRS), simple additive models, are the state of the art in
the investigation of the genetic architecture of complex traits or diseases, and, more importantly, in
the prediction of disease susceptibility. (Wray et al., 2007; Evans et al., 2009; International
Schizophrenia Consortium et al., 2009). A Polygenic Risk Score is calculated for a given
individual as the weighted sum of the number of risk allele single nucleotide polymorphisms
(SNP) for which the individual was tested. The weights used in this calculation are the regression
coefficients from a prior genome-wide association study (GWAS).
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Importantly, PRS models are not optimized for predictive
performance. (Chatterjee et al., 2013; Dudbridge, 2013). There are
three reasons for this:

(1) Due to the current limited sample size of discovery GWAS
datasets (<1,000,000 individuals), biologically relevant rare
variants with small effect sizes cannot be detected.
Additionally, the limited sample sizes of discovery GWAS
can lead to biased PRS models that might not perform well in
populations with ancestry different to that of the discovery
dataset. (Reisberg et al., 2017; Duncan et al., 2019).

(2) It has been shown that statistically significant outcome-
associated SNPs are not automatically good predictors of
that outcome. (Lo et al., 2015).

(3) It has been reported that genetic effects discovered in
genome-wide association studies do not sum to the
estimate of the heritability of the trait derived from twin
studies. (Yang et al., 2010). This has been called the missing
heritability problem in GWAS. (Manolio et al., 2009). Besides
potentially missing relevant rare variants and suboptimal
SNP selection based on p-values, classical PRS models ignore
complex gene-gene interactions, also known as epistasis, of
the trait or disease due to their simple additive structure.

The concept of epistasis was first described more than
100 years ago. (Bateson, 1906). Statistical epistasis, as observed
in genome-wide association studies, is genetic variance that can
be attributed to gene interaction and is defined as a function of the
allele frequencies in a population. Detection of epistasis in
discovery GWAS and modeling its impact is challenging
because of linkage disequilibrium (LD), replication of
identified gene-gene interactions in validation datasets, model
complexity, and high dimensionality. (Wei et al., 2014).

Machine learning algorithms that improve automatically
through the use of data represent an opportunity to find gene-
gene interactions in order to build models with better predictive
performance than PRS. Nevertheless, in a recent study, a PRS
model outperformed five machine learning algorithms (Naïve
Bayes classifier, regularized regression, random forest, gradient
boosting, and support vector machine) that were used to build
predictive models for coronary artery disease status. (Gola et al.,
2020).

Here we revisit the potential of machine learning algorithms to
predict disease status compared to a PRS model. For this purpose,
we adopt the Parkinson’s Progression Markers Initiative (PPMI)
dataset (Marek et al., 2011, 2018) (https://www.ppmi-info.org) as
this dataset has been intensively analyzed and is broadly available
for replication studies. We explore two machine learning
approaches in particular, which complement those applied by
Gola et al.: deep learning and interaction-based feature selection.
The first approach, deep learning, employs artificial neural
networks to discover automatically from raw data the
representations needed for classification. Despite not being
widely used in the field of genomics, there is work on
applying deep learning to GWAS: Romero et al., 2016 predict
genetic ancestry by introducing a multi-task architecture
including a parameter prediction network, thereby

considerably reducing the feature space under consideration.
The second approach, interaction-based feature selection, also
drastically reduces the feature space–in this case, by leveraging
contextual information obtained via data mining, allowing for the
testing of a small set of complex hypotheses containing
interactions of multiple variants. Further details concerning
these approaches are described in the Methods section,
following a presentation of the results of our investigation below.

RESULTS

Data Preparation
For all 471 subjects in the PPMI database (368 cases and 152
controls) subject genotyping information was collected from two
complementary genotyping chips (NeuroX and ImmunoChip).
After careful quality control and harmonization, we merged that
information into a single dataset with 369,036 variants and 436
individuals (296 cases and 140 controls). The data was then split
into three disjoint sets: a training set (n � 367) for training
predictive models; a validation set (n � 33) for so-called
hyperparameter tuning, and a test set (n � 36) for model
evaluation. Training and validation are described in further
detail below for each approach as appropriate. In all cases,
evaluation metrics were calculated on the basis of bootstrap
resampling with 104 iterations.

Genome-Wide Association Study
A genome-wide association (GWA) analysis was performed on
the training data. The Manhattan plot of the p-values resulting
from the analysis is shown in Figure 1. Seven single nucleotide
polymorphisms (SNPs) showed p-values less than 10–4 (Table 1).

Polygenic Risk Score
To calculate the PRS, seven different p-value thresholds (0.001,
0.05, 0.1, 0.2, 0.4, and 0.5) for the subjects in the training,
validation and test set were used. The PRS of the subjects in
the training set were then used to train a separate logistic
regression classifier for each p-value threshold. Receiver
operating characteristics (ROC) curves were used to evaluate
classifier performance relative to the validation data. The classifier
with the highest mean area under the curve (AUC) was that
which had been trained on the PRS resulting from the
0.05 p-value threshold, comprising the weighted sum of 57
different SNPs. This classifier was finally evaluated relative to
the test data set, where the mean AUC was 0.58 with a 95%
confidence interval from 0.42 to 0.81 Figure 3. Table 2 presents
these results, along with the estimates of accuracy, sensitivity, and
specificity corresponding to the optimal Youden’s index of 0.21.

Deep Learning
We applied Romero et al.‘s approach to the PPMI dataset, again
using the training data set to train competing networks with
distinct hyperparameter settings and the validation data set to
select between these networks. When evaluated relative to the test
data set, the mean AUC of the final deep learning model was 0.67
(95% CI � [0.47; 0.83]) and the optimal Youden index
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corresponding to the accuracy, sensitivity, and specificity
measures reported in Table 2 was 0.29.

Feature Selection and LASSO Regression
A set of less than 100 polygenic hypotheses were generated
using the interaction-based feature selection approach
applied to the training data, as described in the Methods
section below. (See also an overview of our approach in
Figure 3.). These hypotheses were summarized in a term
that was used to build a LASSO regression model on the
basis of the validation data. (Tibshirani, 1996). The
predictive performance of this model, based on 47 SNPs in
several different interaction terms, was then evaluated

relative to the test set Figure 4. The mean area under the
curve (AUC) for the LASSO model with prior feature
selection was 0.85 [95% CI � (0.72; 0.96)] and the optimal
Youden index corresponding to the accuracy, sensitivity, and
specificity measures reported in Table 2 was 0.61. A LASSO
model without prior feature selection that was built for
comparison was evaluated in the same manner but did not
deliver outcomes that were significantly better than chance
(Table 2), in line with Gola et al. (2020) s results for
regularized regression.

Exploring the feature selection based model with its interactive
terms provides insights about the genes associated with
Parkinson’s disease. An annotation of all 47 SNPs in our

FIGURE 1 |Manhattan plot of negative decadic logarithm of p-values for SNPs as determined by SAIGE analysis. Variants identified by Lasso with feature selection
are highlighted in red and green if they increase or decrease disease risk, respectively. Variants highlighted in orange occur in both protective and risk-enhancing groups
of SNPs, depending on their genotype. Most of these biologically meaningful variants would have been missed by using a simple p-value cutoff.

TABLE 1 | PPMI GWAS results identified seven SNPs with a p-value < 10–4. Positions and rs IDs according to Human Genome Reference hg19 (GRCh37).

Chr Pos SNP Id rs Id Gene p-value

1 173,266,578 imm_1_171,533,201 rs4916319 TNFSF4 (upstream) 0.000083
2 209,087,335 exm2261159 rs4675743 0.000046
5 156,376,703 exm498917 rs6873053 TIMD4 (downstream) 0.000092
6 133,716,974 rs212805 rs212805 EYA4 0.000074
17 25,895,033 imm_17_22,919,160 rs4795747 0.000015
18 5,479,093 rs7238186 rs7238186 EPB41L3 (downstream) 0.000007
19 57,909,872 exm1513284 rs4801478 ZNF548 0.000040

TABLE 2 | Performance comparison of all models.

Method AUC [95% CI] Accuracy Sensitivity Specificity Youden’s index

PRS 0.56 [0.42; 0.81] 0.60 0.62 0.56 0.21
Deep learning 0.67 [0.47; 0.83] 0.60 0.42 0.88 0.29
LASSO w/feature selection 0.85 [0.72; 0.96] 0.81 0.81 0.80 0.61
LASSO w/o feature selection 0.51 [0.39; 0.63] 0.62 0.87 0.09 0.12
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model can be found in the Supplementary Information. An
exciting result from this analysis of the PPMI dataset is the
statistical interaction of variants rs3822019 on chromosome

four in gene TMEM175, coding for a potassium channel in late
endosomes, and rs17022,452 on chromosome 2, close to the
coding region of GAPDHP25, glyceraldehyde-3 phosphate

FIGURE 2 | Receiver operating characteristic (ROC) curves of feature selected machine learning model (A) and polygenic risk score (B). The AUC of the feature
selected model with 0.85 [95% CI � (0.72; 0.96)] is better than the AUC of the PRS with 0.56 [95% CI � (0.42; 0.81)].

FIGURE 3 | Our feature selection consists of two complementary modules that are in feedback with each other. The contextual module uses information mined
from the scientific literature, pathway libraries and protein co-expression data and an evaluation module that estimates predictive power of a feature based on that
contextual information. The selected features can be used to build prediction models with standard machine learning algorithms.
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FIGURE 4 | Coefficients determined by Lasso with feature selection for SNPs and groups of SNPs. Negative values (green) indicate protective (combinations of)
variants, positive values (red) mark risk variants. The respective genotypes of each variant are indicated by one-letter codes of the bases, where the first letter
corresponds to the reference allele, and the second corresponds to the observed, alternative allele.
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dehydrogenase pseudogene 25. rs3822019 is an intron variant
that has been linked to Parkinson’s disease. (Nalls et al., 2014).

DISCUSSION

We analyzed the PPMI dataset and built predictive models
using polygenic risk scores, a deep learning algorithm for
genomic data (Romero et al., 2016), and LASSO regression
with and without interaction-based feature selection to reduce
the hypothesis space. The PRS model comprises 57 SNPs and
showed an AUC of 0.58 whereas the deep learning model had
an AUC of 0.67. Notably, the deep learning model consists of
abstract embeddings instead of single SNPs like the PRS.
Therefore, identification of disease-associated SNPs and
further insights into the disease mechanism are not possible
here. The LASSO regression model built on interactions
containing only 47 SNPs that were discovered via the use of
contextual information outperformed the other predictive
models with an AUC of 0.85. Beyond that, the approach
was able to associate new variants with the disease that
would not have shown up under an additive approach such
as PRS.

We investigated how the combinations of the relevant
genotypes rs3822019_TT (TMEM175) and rs17022,452_GG
(GAPDHP25) split the individuals into cases and controls
(Table 3). All subjects that are homozygous for rs3822019_TT
are affected by PD. Furthermore, most individuals heterozygous
for this variant (rs3822019_TT) or homozygous for
rs17022,452_GG are cases (76.4 and 75.0%, respectively).
These results support the relevance of the association between
these variants and PD status.

The TMEM175/GAK/DGKQ locus was the third strongest risk
locus in a GWA study of Parkinson’s disease (Krohn et al., 2020)
and has been described as a potential drug target. (Diogo et al.,
2018; Jinn et al., 2019). Deficiency in the potassium channel
TMEM175 results in unstable lysosomal pH, which leads to
decreased lysosomal catalytic activity and increased
α-synuclein aggregation, among other effects. As a potassium
channel, TMEM175 has a high potential as a druggable target and
a tractable therapeutic strategy has been proposed. (Jinn et al.,
2017).

GAPDH has been targeted with the investigational drug
Omigapil for prevention of PD, ALS, congenital muscular

dystrophy and myopathy. The drug has been shown to protect
against behavioural abnormalities and neuro-degeneration in
animal models of Parkinson’s disease. However, PD
development has been terminated due to lack of benefit.
(Olanow et al., 2006).

There seem to be various causes of Parkinson’s disease, yet the
pathogenesis of this disease appears to be converging on common
themes—oxidative stress, mitochondrial dysfunction, and protein
aggregation—all of which are tightly linked to autophagy.
(Lynch-Day et al., 2012). Both TMEM175 (Jinn et al., 2019)
and GAPDH (Butera et al., 2019) regulate autophagy. Disturbed
expression of autophagy genes in blood of PD patients. (Lynch-
Day et al., 2012).

To summarize, we here present an approach to apply machine
learning algorithms to high-dimensional genomic data using a
contextual knowledge based feature selection. PRSmodels require
a large set of SNPs, which leads to overfitting and limits their use
in clinical practice. We generated more parsimonious models
overcoming these limitations–with only 47, partly interacting
SNPs, our model was able to outperform a PRSmodel based on 57
SNPs for Parkinson’s disease. Analysis of feature importance of
our model identified a gene-gene interaction of TMEM175 and
GAPDHP25. TMEM175 has been described as a potential drug
target and further information on its mechanism of action could
be invaluable. A recently discovered interaction with pseudogene
GAPDHP25 could provide helpful insights. In conclusion,
applying machine learning algorithms to feature-selected
genomic data led to an interaction-based model with better
predictive performance than PRS and has paved the way for
the generation of new insights into disease mechanisms.

METHODS

Parkinson’s Progression Marker Initiative
Dataset
The Parkinson’s Progression Marker Initiative (PPMI) dataset
(https://www.ppmi-info.org) contains 471 subjects (368 cases and
152 controls), and for each subject, genotyping information
collected from two complementary chips (NeuroX and
ImmunoChip) is available. (Marek et al., 2011). After careful
quality control and harmonization (e.g., genome build
conversion, strand alignment) as described in the literature
(Marees et al., 2018), we merged that information into a single
dataset with 380,939 variants in total.

After this initial data harmonization, an additional set of
quality control steps were performed on variants and
individuals that aimed to remove biases that could affect the
downstream analysis. First, SNPs and individuals were filtered
based on their missingness in the dataset. This ensured the
exclusion of SNPs that had a high proportion of subjects
where genotyping information was unavailable or of poor
quality. Similarly, individuals where a large proportion of
SNPs could not be measured were excluded. This step was
achieved by setting the missing call rate threshold to 0.02
(i.e., >2%); as a result, 6,084 variants and 22 people were
removed. SNP filtering was performed before individual filtering.

TABLE 3 | PD cases and controls among bearers of the respective genotype
combinations of the identified variants rs3822019 and rs17022,452.

Genotype combination Cases Controls

rs3822019_TT/rs17022,452_GG 0 0
rs3822019_TT/rs17022,452_GA 6/100% 0
rs3822019_TC/rs17022,452_GG 2/50% 2/50%
rs3822019_TT/- 7/100% 0
-/rs17022,452_GG 7/87.5% 1/12.5%
rs3822019_TC/rs17022,452_GA 27/87.1% 4/12.9%
rs3822019_TC/- 68/73.9% 24/26.1%
-/rs17022,452_GA 66/75% 22/25%
-/- 113/56.5% 87/43.5%
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With high missing call rates filtered, all variants not on
autosomal chromosomes were removed (5,731 variants). This
was followed by the identification and removal of variants
deviating from Hardy-Weinberg equilibrium, which can
indicate genotyping errors. These variants were identified in a
two-stage process whereby we first applied a threshold of 1e-6
exclusively to controls, followed by a threshold of 1e-10 applied to
all samples, leading to the removal of 0 and 202 variants,
respectively.

Next, individuals were filtered based on their heterozygosity
rates, which can indicate sample contamination. Individuals
deviating by more than 3 standard deviations from the mean
of the rate of all samples (13 individuals) were removed. To assess
the heterozygosity rate per sample, variants in linkage
disequilibrium were first extracted, scanning the genome at a
window size of 50 variants, a step size of 5, and a pairwise
correlation threshold of 0.2.

Finally, relatedness between individuals was ascertained
through the calculation and assessment of their respective
identity by descent coefficients (IBD). Only one individual in a
related pair would be kept, although in this case, no related
individuals were identified and so none were removed.

The final quality-controlled dataset contained 369,036 variants
and 436 individuals passing the various filters.

GENOME-WIDE ASSOCIATION STUDY

As a preliminary step, a genome-wide association (GWA)
analysis was performed with the R package SAIGE (Zhou
et al., 2018) to test individual variants for their association
with Parkinson’s disease.

Polygenic Risk Score
The PRS was constructed by using PLINK (Purcell et al., 2007)
following the guidelines provided by Choi et al. (Choi et al.,
2020) and the accompanying tutorial (https://choishingwan.
github.io/PRS-Tutorial/plink/). The clumping cut-off of r2 was
0.1. For all subjects in the training, validation and test sets,
seven distinct risk scores were calculated, corresponding to
seven potential p-value thresholds (0.001, 0.05, 0.1, 0.2, 0.4, 0.
5). The seven risk scores for the subjects in the training set were
then used to train seven separate logistic regression classifiers
(one for each p-value threshold) using the glm function in R
(www.R-project.org). These classifiers were evaluated relative
to the validation data set, leading to the selection of the
classifier based on the PRS calculated using the p-value
threshold of 0.05. The predictions of this final classifier
were then evaluated relative to the test set.

Deep Learning
The deep learning prediction model was built using a Diet
Network according to the procedure described by Romero
et al. (Romero et al., 2016) The model is composed of three
networks: one basic and two auxiliary networks. After a basic
discriminative network with optional reconstruction path,
follows a network that predicts the input fat layer parameters,

and finally, a network that predicts the reconstruction fat layer
parameters. The official code can be found here: https://github.
com/adri-romsor/DietNetworks.

Feature Selection
The interaction-based feature selection approach that we
adopt organizes data mined from journal articles, pathway
libraries, protein co-expression libraries, and drug candidate
libraries (e.g., dbSNP, ClinVar, OMIM, Reactome, STRING
database) into a hierarchical knowledge graph, which
generates disease-specific hypotheses based on interactions
of genetic variants (Figure 1). Each interaction’s predictive
power is determined using the training data set and the glm
function in R (www.R-project.org). If an interaction predicts
disease status well, the graph is incentivized to ‘fine-tune’ the
hypothesis by comparing a set of very similar hypotheses. If a
hypothesis has little or no predictive power, the graph is not
incentivized to explore it or similar hypotheses further and will
instead propose hypotheses containing different variants.
(Klinger et al., 2021). This learning process is driven by
gradient descent, meaning that it converges when the
average performance of the new multi-variant hypothesis
does not increase. After convergence, the selected features
are used to build prediction models with standard machine
learning algorithms, such as LASSO regression (Friedman
et al., 2010).

LASSO Regression
LASSO (least absolute shrinkage and selection operator)
regression models were computed by using the glmnet
package (https://glmnet.stanford.edu/index.html) for R (www.
R-project.org) and its function cv.glmnet with five-fold cross-
validation in order to avoid overfitting. (Friedman et al., 2010).
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