
Prioritisation of Candidate Genes
Underpinning COVID-19 Host Genetic
Traits Based on High-Resolution 3D
Chromosomal Topology
Michiel J. Thiecke1†, Emma J. Yang2,3†, Oliver S. Burren4, Helen Ray-Jones2,3*‡ and
Mikhail Spivakov2,3*‡

1Enhanc3D Genomics Ltd, Cambridge, United Kingdom, 2Functional Gene Control Group, MRC London Institute of Medical
Sciences, London, United Kingdom, 3Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London,
United Kingdom, 4Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of
Cambridge, Cambridge, United Kingdom

Genetic variants showing associations with specific biological traits and diseases detected
by genome-wide association studies (GWAS) commonly map to non-coding DNA
regulatory regions. Many of these regions are located considerable distances away
from the genes they regulate and come into their proximity through 3D chromosomal
interactions. We previously developed COGS, a statistical pipeline for linking GWAS
variants with their putative target genes based on 3D chromosomal interaction data
arising from high-resolution assays such as Promoter Capture Hi-C (PCHi-C). Here, we
applied COGS to COVID-19 Host Genetic Consortium (HGI) GWASmeta-analysis data on
COVID-19 susceptibility and severity using our previously generated PCHi-C results in 17
human primary cell types and SARS-CoV-2-infected lung carcinoma cells. We prioritise
251 genes putatively associated with these traits, including 16 out of 47 genes highlighted
by the GWAS meta-analysis authors. The prioritised genes are expressed in a broad array
of tissues, including, but not limited to, blood and brain cells, and are enriched for genes
involved in the inflammatory response to viral infection. Our prioritised genes and
pathways, in conjunction with results from other prioritisation approaches and targeted
validation experiments, will aid in the understanding of COVID-19 pathology, paving the
way for novel treatments.
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INTRODUCTION

Patients with COVID-19 disease, caused by SARS-CoV-2 infection, show a broad range of symptoms
and severity, from asymptomatic disease to fatal progressive respiratory failure (Hu et al., 2021).
Several known epidemiological factors increase the risk of COVID-19 severity and mortality: old age,
male gender and pre-existing medical conditions such as diabetes (Docherty et al., 2020; Huang et al.,
2020). These factors, however, do not fully explain the variability and clinical outcome of COVID-19.
Following the outbreak of the disease caused by a related virus, SARS, in 2002–2004, it was suggested
that host genetic factors influence the clinical course and outcome of coronavirus infections (de
Wilde et al., 2018). These findings have provided a motivation for a systematic identification of host
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genetic factors linked with COVID-19 susceptibility and severity
using genome-wide association studies (GWAS). Most recently,
the COVID-19 host genetic initiative (COVID-19 HGI) has
joined up these efforts to produce GWAS meta-analyses in
four case-control settings in ∼50 K patients and ∼2 M controls
from 47 studies in total (at Release 5), thereby increasing the
power and robustness of individual GWAS (COVID-19 Host
Genetics Initiative, 2021).

Whilst GWAS have revealed the underpinning genetic
components of many phenotypes (Buniello et al., 2019),
translating the identified genotype-disease associations into
actionable therapeutic targets has presented a major
challenge. To a large extent, this is due to the fact that the
absolute majority of GWAS variants map outside of the
protein-coding and promoter regions of the genome and
are instead enriched at distal DNA regulatory elements
such as gene enhancers (Cano-Gamez and Trynka, 2020).
Enhancers may localise long distances (hundreds of
kilobasepairs) away from their target gene promoters and
come into their physical proximity via 3D chromosomal
contacts (Schoenfelder and Fraser, 2019; Ray-Jones and
Spivakov, 2021).

Currently, 3D chromosomal contacts are typically measured
by Hi-C, a chromatin proximity ligation technique using next-
generation sequencing of the ligation junctions for detection (van
Berkum et al., 2010). Theoretically, Hi-Cmakes it possible to map
all pairwise genomic contacts in the genome at a restriction-
fragment resolution. However, the high complexity of Hi-C
sequencing libraries limits the practically achievable genomic
coverage, leading to a reduced sensitivity and resolution of this
method. This limitation can be effectively mitigated using
Capture Hi-C (PCHi-C), which enriches Hi-C libraries prior
to sequencing for fragment pairs that include, at least on one end,
regions of interest, such as annotated gene promoters
(Schoenfelder et al., 2018).

We previously developed COGS (Capture Hi-C Omnibus
Gene Score), a formal statistical framework to capitalise on
high-resolution chromosome conformation data such as
PCHi-C to link GWAS variants with their putative target
genes (Javierre et al., 2016; Burren et al., 2017). The COGS
pipeline generates a Bayesian prioritisation score for each gene
being causal for a given GWAS trait, with causal genes defined as
those containing at least one causal variant in the coding region,
promoter and/or promoter-interacting regions detected by
PCHi-C.

Here we used COGS with our previously generated PCHi-
C data in 17 primary blood cell types (Javierre et al., 2016)
and in a SARS-CoV-2-infected lung carcinoma cell line (Ho
et al., 2021) to prioritise candidate genes underpinning
COVID-19 host genetic associations from COVID-19 HGI
Host GWAS meta-analysis (COVID-19 Host Genetics
Initiative, 2021). We prioritise 251 putative genes
associated with SARS-CoV-2 infection and COVID-19
susceptibility and severity, the majority of which were not
previously implicated in these traits, and characterise their
expression patterns and functional annotations.

METHODS

The COGS Prioritisation Pipeline
The COGS pipeline (Javierre et al., 2016; Burren et al., 2017)
takes GWAS summary data as input, fine-maps it using
Wakefield synthesis (Wakefield, 2009) and aggregates the
resulting posterior probabilities of a variant being casual
across all promoter-interacting regions detected using
PCHi-C data. It then uses LD block data to compute the
probability that there is at least one causal variant in at least
one gene-associated region, including promoter-connected
fragments, promoter-proximal regions (the baited restriction
fragment and its immediate flanking fragments) and/or the
gene’s coding regions, under the assumption that there is at
most one causal variant per LD block. COGS scores
correspond to the estimated Bayesian probabilities of
having at least one causal GWAS variant associated with a
gene. Since COGS is primarily a ranking algorithm, the choice
of the score threshold for gene prioritisation remains
subjective in the absence of a gold standard. We used a
COGS score threshold of 0.3 in reporting the numbers of
prioritised genes and, where required, for downstream
analyses, with data presented in the last section of Results
confirming that our choice of threshold was appropriate for
these purposes.

We ran the COGS pipeline using each of the four COVID-19
HGI GWAS datasets (release 5 excluding 23andMe data) using
HindIII-based PCHi-C data in 17 human primary blood cell types
(Javierre et al., 2016; Burren et al., 2017) and DpnII-based PCHi-
C data (in 5 kb bins, with the baited fragments left unbinned) in
A549-ACE2 cells at 0, 8 and 24 h after SARS-CoV-2 infection (Ho
et al., 2021). The cell-type specificity of COGS scores may not be
consistent with the expression patterns of the prioritised genes,
while using COGS in a pooled setting across multiple samples
increases the sensitivity of the analysis (Javierre et al., 2016). At
the same time, the coverage and design of different PCHi-C
datasets may have systematic effects on detected interaction
signals (Freire-Pritchett et al., 2021). Therefore, COGS was
run separately for data from each GWAS meta-analysis using
a pool of promoter interactions with CHiCAGO scores (Cairns
et al., 2016) above 5 in at least one cell type in either dataset
(Javierre: 707,583 interactions involving 21,102 baited promoter
fragments; Ho: 43,265 interactions involving 9,955 baited
promoter fragments). A minority of gene promoters were not
baited in either PCHi-C capture system due to challenges in probe
design and therefore not assayed in the respective systems.
Therefore, their promoter-interacting regions could not be
included in the analysis. To facilitate the analysis of their
promoter-proximal variants, we generated “virtual baited
fragments” for all annotated gene promoters. In addition, we
included the coding variants of all annotated genes.

Data Sources
COVID-19 HGI GWAS meta-analysis release 5 data were
downloaded from https://www.covid19hg.org/results/r5/. This
release jointly analysed nearly 50,000 COVID-19 cases and
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over two million controls by combining data from 47 studies
across 19 countries. Details for each study are provided on the
HGI website and in the consortium paper (COVID-19 Host
Genetics Initiative, 2021). The CHiCAGO-processed PCHi-C
data from Javierre and Ho were downloaded from OSF
(https://osf.io/u8tzp) and GEO (accession GSE164533),
respectively. LD block data were generated with LD-detect
(Berisa and Pickrell, 2016) and downloaded from the software
author’s website (http://bitbucket.org/nygcresearch/ldetect-data).
Note that the LD block dataset did not include sex chromosomes,
which were therefore excluded from COGS analysis. However, no
strong association signals were detected on sex chromosomes in
COVID-19 HGI GWAS, and therefore this limitation is unlikely
to have missed strongly implicated genes.

The Javierre PCHi-C data are on GRCh37 assembly, and
we used the GRCh37 versions of the COVID-19 HGI GWAS
datasets, the original LD block data from Berisa and Pickrell
and gene models from Ensembl GRCh37 Release 103 (https://
grch37.ensembl.org) in the analysis. The Ho PCHi-C data are
on GRCh38 assembly, and we used the GRCh38 versions of
the COVID-19 HGI GWAS datasets, the lifted-over
(GRCh37-to-38) LD block data and gene models from
Ensembl GRCh38 Release 103. The results for each gene
were linked between these analyses using Ensembl gene
IDs as primary identifiers.

TPM-level gene expression data from GTEx and FPKM-
level gene expression data from BLUEPRINT consortia were
downloaded from GTEx portal (accession: phs000424. v8. p2)
and EBI Gene expression atlas (accession: E-MTAB-3827),
respectively. Gene sets of COVID-19 differentially expressed
genes in multiple human cell types and tissues (106
conditions) were obtained from The COVID-19 Drug and
Gene Set Library (https://maayanlab.cloud/covid19/)
(Kuleshov et al., 2020). Differentially expressed genes in
COVID-19 were obtained from Supplementary Table S2 in
(Daamen et al., 2021) and the union of genes reported for
peripheral blood mononuclear cells (PBMCs), lung tissue and
bronchoalveolar lavage was taken. Hallmark gene sets were
obtained from the Molecular Signature Database (https://
www.gsea-msigdb.org/gsea/msigdb/index.jsp) (Liberzon
et al., 2015).

Gene-Level Manhattan Plots
Gene-level Manhattan plots were generated separately for
each COGS run on a given GWAS and PCHi-C dataset using
the R package ggplot2 (Wickham, 2016). Genes with COGS
scores >0.3 were labelled in each locus. Multiple genes were
labelled when there were several top-scoring genes with a very
similar score, or lower-scoring genes with compelling
biological functions. For simplicity, we did not label non-

FIGURE 1 | The COGS prioritisation scores of genes associated with A2 COVID-19 host GWAS trait. Gene-level Manhattan plot showing COGS scores generated
based on A2 COVID-19 host GWAS data and PCHi-C data from COVID Javierrere et al. (2016). The top scoring genes (COGS scores >0.3) are labelled in each locus.
Multiple genes are labelled when there are several top-scoring genes with a very similar score, or lower-scoring genes with compelling biological functions. For simplicity,
non-coding genes are not labelled, unless there are no prioritised protein-coding genes in the same locus. See Supplementary Figures S1–S3 for the COGS
gene-level Manhattan plots produced with the other three COVID-19 host GWAS traits based on PCHi-C data from Javierre et al. and Supplementary Figures S4–S7
for the prioritisation results based on PCHi-C data from Ho et al. (2021).
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coding genes unless there were no prioritised protein-coding
genes in the same locus.

Comparison of COGS With Other
Gene-Prioritisation Approaches
In the naive GWAS prioritisation approach, variants with
nominal p-values below 10−8 were assigned to the nearest
exon. The list of HGI-prioritised genes was taken from
Figure 1 in the HGI consortium paper (COVID-19 Host
Genetics Initiative, 2021). Genes outside of the regions
highlighted in the Figure were defined as those whose TSSs
mapped more than 1 Mb away from the lead variant. The list
of TWAS- and SMR-prioritised genes was taken from Tables 2
and 3 in Baranova et al., 2021.

Gene Expression Analysis
K-means clustering was performed on the scaled expression
values of COGS-prioritised genes (score >0.3) in GTEx (TPM)
and BLUEPRINT (RPKM) datasets using R package pheatmap
with the number of clusters determined using the Silhouette and
Elbow methods. GTEx analysis included 218 genes with
detectable expression, and BLUEPRINT analysis focused on
the 55 genes in the top 25% of expression in blood cells.

The GSEAPreranked analysis (Mootha et al., 2003;
Subramanian et al., 2005) against COVID-19 differential
expression signature gene sets used all genes returned by
COGS, ranked by COGS score. Analysis was performed using
the GSEA software (downloaded from www.gsea-msigdb.org)
with default parameters and 1,000 permutations. Results were
collated into a bubble plot using the R package ggplot2
(Wickham, 2016). Precision and recall analysis of COGS-
prioritised genes versus COVID-19 differentially expressed
genes (Daamen et al., 2021) was performed in R.

Annotation of the Prioritised Genes
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis (Kanehisa and Goto, 2000) used COGS-
prioritised genes (score >0.3). The analysis was performed
using the enrichKEGG function in the ClusterProfiler
package (Yu et al., 2012) with an adjusted p value of 0.05.
Significantly enriched pathways were visualised with KEGG
mapper (Kanehisa and Sato, 2020). The GSEAPreranked
analysis on Hallmark gene sets was run as for COVID-19-
associated gene sets above.

RESULTS AND DISCUSSION

Prioritisation of COVID-19 Host GWAS
Genes Using PCHi-C Data
To prioritise candidate genes associated with COVID-19 susceptibility
and severity, we integrated the worldwidemeta-analysis data from the
COVID-19 Host Genetics Initiative (COVID-19 HGI Release 5)
(COVID-19 Host Genetics Initiative, 2021) with PCHi-C data
using the COGS pipeline (Javierre et al., 2016; Burren et al., 2017).
COVID-19 HGI divided the patients into three categories: A- very

severe cases characterised by respiratory failure, B- all hospitalised
cases, and C - all cases that tested positive for SARS-CoV-2 infection,
generating a GWAS meta-analysis for the following four traits: A2
(very severe cases vs population), B1 (hospitalised vs non-hospitalised
Covid-19 patients), B2 (hospitalised patients vs population) and C2
(confirmed Covid-19 vs population) (COVID-19 Host Genetics
Initiative, 2021).

We first used high-coverage PCHi-C data in 17 human primary
blood cell types (Javierre et al., 2016), including endothelial
progenitors, as the source of 3D chromosomal contacts for COGS.
We prioritised 234 genes with COGS scores above 0.3 across the four
GWAS, of which 37 had scores above 0.75. More than half of the
prioritised genes (122/234) were detected from A2 GWAS, consistent
with the number of significant variant-trait associations in this study.
A total of 78 genes were uniquely prioritised from A2 and not the
other three GWAS. Including B2 in the analysis contributed an
additional 71 genes, followed by B1 and C2 (26 and 15 additional
genes, respectively).

We expressed the prioritisation analysis results in the form
of gene-level Manhattan plots (Figure 1 and Supplementary
Figure S1–S3), which showed that clusters of adjacent genes
were often prioritised jointly. In some cases, this was due to
two promoters sharing the same PCHi-C baited fragment
(e.g., VRK3 and ZNF473). However, multiple genes may
genuinely share GWAS variant-containing enhancers (Ray-
Jones and Spivakov, 2021). Therefore, we have avoided
further “fine-mapping” of COGS associations to the top-
scoring gene in each peak.

We next used PCHi-C data from our recent analysis of a
SARS-CoV-2 infected lung cell line (ACE2-expressing A549 cells)
and uninfected controls (Ho et al., 2021). This experiment used a
different PCHi-C design, based on DpnII and analysed in 5 kb
bins (outside of the baited promoter regions that were left
unbinned), as opposed to HindIII in the Javierre et al. blood
cell analysis. This analysis returned 60 prioritised genes with
COGS scores above 0.3, of which 13 had scores above 0.75. The
gene-level Manhattan plots for this analysis are shown in
Supplementary Figure S4–S7. The lower number of genes
compared with the blood cell data is expected given the lower
sequencing coverage and the smaller number of cell types profiled
in this experiment. Over 70% (43/60) of the genes prioritised
using this dataset (COGS score >0.3) also had scores above 0.3 in
the blood cell-based analysis, indicating that the results of COGS
prioritisation show a significant degree of consistency across
different cell types and PCHi-C array designs.

Overall, 251 unique genes were prioritised based on four
GWAS and two PCHi-C datasets at COGS score >0.3. The full
results for all genes with their associated COGS scores are
presented in Supplementary Table S1.

Comparison of COGS With Other
Gene-Prioritisation Approaches
Comparison With Nearest-Exon Variant-To-Gene
Assignment
To compare the results of COGS prioritisation with a naive
approach, we selected GWAS variants with nominal p-values
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below 10−8 (traditionally taken as a “genome-wide
significance level” through the Bonferroni correction) and
assigned them to the nearest exon. Across the four GWAS,
this approach prioritised 45 genes, of which 11 were also
prioritised by COGS at a score threshold of 0.3
(Supplementary Table S2). The genes prioritised by both
approaches included 8/23 loci with coding variants (ABO,
DPP9, IFNAR2, KANSL1, LZTFL1, OAS1, OAS3, SLC6A20),
and 3/22 with non-coding variants mapped to their nearest
exons (AP000295.9, PDCL3P4, RP11-304F15.3). Genes
identified by the nearest-exon approach exhibited a wide
range of COGS scores (Supplementary Figure S8A).
Unlike in the naive approach, COGS additionally
incorporates data from promoter-interacting regions and
has improved precision due to the use of statistical fine-
mapping. Therefore, a limited overlap between these two
approaches is expected.

Comparison With the COVID-19 HGI Gene
Prioritisation Approach
The COVID-19 HGI consortium paper defined 13 genomic
loci associated with infection or severe disease, and highlighted

47 putative gene targets across these loci. The genes
highlighted in the consortium paper satisfied one or more
of the following criteria: 1) being in close proximity to the lead
variant, 2) overlapping disease-associated variants, 3)
containing disease-associated coding variants (loss-of-
function, missense), 4) being associated with an eQTL in
LD with the lead variant, or 5) being prioritised by the
OpenTargets V2G (Variant-to-Gene) algorithm (COVID-19
Host Genetics Initiative, 2021). HGI-prioritised genes showed
a broad range of COGS scores (Supplementary Figure S8B),
with 16 out of 47 HGI-prioritised genes showing scores above
0.3 (Supplementary Table S3A). For example, while HGI
prioritised all three genes in the 2′-5′-Oligoadenylate
synthetase (OAS) cluster, COGS prioritised OAS3 (max
COGS � 0.81) and OAS1 (max COGS � 0.54), while OAS2
had a subthreshold score (max COGS � 0.15).

At a COGS threshold of 0.3, a further 38/251 genes were
prioritised within the 13 loci of genome-wide significance
highlighted in the paper (Supplementary Table S3A). Notably,
in the 21q22.11 locus we prioritised interferon A and B receptor
subunit 1 (IFNAR1; max COGS � 0.91) in addition to the HGI-
prioritised subunit 2 (IFNAR2; max COGS ∼1); the products of these

FIGURE 2 | Expression patterns of the prioritised genes. Heatmaps showing the results of k-means clustering of COGS-prioritised genes (scores >0.3) based on
their relative expression levels across the tissues profiled by the GTEx consortium (A) and across primary blood cell types profiled by the BLUEPRINT consortium (B).
Relative gene expression in (A) represents gene-level TPM values scaled across all GTEx genes, and in (B) gene-level RPKM values scaled across genes with the top
25% of expression in the BLUEPRINT dataset. Each cell in the heatmap represents a cluster, with the gene-to-cluster assignments listed in Supplementary Table
S5A, B, respectively. Abbreviations: FPKM, fragments per kilobase of transcript per million mapped reads, TPM, transcripts per million.
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two genes combine to form the type I interferon receptor
(Piehler et al., 2012). In the 19q13.33 locus, the five HGI-
prioritised genes had low COGS scores, whereas BCAT2
(max COGS � 0.63) and FTL (max COGS � 0.41) were
instead prioritised; of these, FTL (ferritin light chain) is
reported to be anti-inflammatory (Zarjou et al., 2019). In the
19p13.3 locus, the Dipeptidyl peptidase 9 (DPP9) gene, which
plays a key role in inflammasome regulation (Zhong et al.,
2018), was confirmed with a COGS score of 1 (as well as two
nearby non-coding genes: DPP9-AS1 and AC005783.1).
However, COGS also identified further seven distal gene
targets including UBX domain protein 6 (UBXN6), which
reportedly inhibits the degradation of COVID-19-implicated
proteins IFNAR1 and TYK2 (Ketkar et al., 2021).

The remaining 197 out of 251 genes prioritised by COGS mapped
outside of the 13 genome-wide significance loci (Supplementary
Table S3B). These included such plausible candidates as LIF
receptor (LIFR) and TNF receptor superfamily (TNFSF) members
10A/B, TNFSF8 and 15, which have roles in cytokine signalling, as well
as components of the PI3K/AKT signalling pathway (LAMB4,THBS3,
TLR4 and YWHAE), which was recently proposed as a therapeutic
target in COVID-19 (Khezri, 2021).

Comparison With a Multiomics-Based Prioritisation
A recent study (Baranova et al., 2021) tested the colocalisation of
COVID-19 HGI GWAS signals with expression and methylation
quantitative trait loci using a combination of transcriptome-wide
association study (TWAS) and Summary-based Mendelian
randomisation (SMR). This approach prioritised 14 genes, five
of which (IFNAR2, MGC57346/LINC02210, OAS1, OAS3, and
TYK2) were also prioritised by COGS (score > 0.3). The
remaining 9/14 genes had COGS scores ranging from zero to
0.249 (Supplementary Table S4).

Overall, while COGS analysis has confirmed the prioritisation
of several genes found by the nearest-exon and alternative
priorisation approaches, it also revealed large numbers of
further candidates. The summary of all four prioritisation
approaches is presented in Supplementary Figure S8C and in
Supplementary Table S4.

Expression Patterns of COGS-Prioritised
Genes
Tissue-specificity of the Prioritised Genes
To assess the gene expression patterns of the COGS-prioritised
genes, we first took advantage of GTEx data across 54 non-
diseased tissues (GTEx Consortium, 2020). In total, 218 genes
were represented in this dataset. K-means clustering of scaled
expression values segregated these genes into eight coherent
clusters (Figure 2A; Supplementary Table S5A). Two large
clusters (A6 and A8) containing 51 genes in total were
characterised by their predominant expression in whole
blood or EBV-transformed lymphocytes, respectively. This
was expected from the involvement of well-characterised
candidates such as IFNAR1/2, OAS1/3 and TYK2 in the
immune function, as well as from the fact that the Javierre
PCHi-C dataset was generated in blood cells. However, COGS

also prioritised multiple genes active in other tissues, likely
driven by promoter-proximal and coding variants, as well as
promoter contacts shared across tissues. Genes in two other
clusters (A3 and A5; 45 genes in total, including synapse-
associated genes SYN2, SYT3 and SHANK1) were
predominantly expressed in different parts of the brain,
consistent with the common neurological symptoms and
evidence of brain damage following SARS-CoV-2 infection
(Marshall, 2021). Somewhat surprisingly, cluster A1 (31
genes in total) contained genes showing high expression in
testis, including sperm-associated calcium channel subunit
CATSPERG and signal peptide peptidase SPPL2C active in
spermatids. While SARS-CoV-2 is known to infect testis (Ma
et al., 2021) and the male sex is a known risk factor for COVID-
19 severity (Docherty et al., 2020; Huang et al., 2020), the exact
role of these genes in COVID-19 pathology remains to be
elucidated. The remaining three clusters (clusters A2, A4, A7;
100 genes in total) were characterised by broader expression
patterns across multiple tissues, including the lung, gut, skin and
vasculature.

To obtain a finer-grained view of the prioritised genes
expression patterns in the blood, we studied their
expression in 27 primary blood cell types using data from
the BLUEPRINT consortium (Figure 2B; Supplementary
Table S5B) (Chen et al., 2014). We restricted this analysis
to 55 genes showing top 25% expression levels in the
BLUEPRINT dataset. K-means clustering of their scaled
expression values yielded four distinct clusters containing
between 10 and 17 genes each, characterised by
predominant expression in T lymphocytes (cluster B1),
erythroblasts (B2), macrophages (B3) and mature
eosinophils (B4), respectively. Examples of genes in these
clusters include effectors of TNF (TNFSF8, B1; TNFRSF10B,
B2), toll-like receptor (TLR4, B3) and interferon signalling
(IFNAR1 and IFNAR2, clusters B3 and B4, respectively).

Jointly, these results suggest the involvement of a broad range
of blood cells and solid tissues in COVID-19 pathology.

Comparison With Reported COVID-19-Regulated
Genes
We asked if COGS preferentially prioritised genes that are
known to change expression in response to COVID-19
infection. To address this question, we used the COGS
scores of all annotated genes in a quantitative gene set
enrichment analysis (GSEAPreranked) against 106
differential expression signature gene sets from The
COVID-19 Drug and Gene Set Library (see Methods). All
106 COVID-19 gene sets had a positive Normalised
Enrichment Score (NES), meaning that they were enriched
at the top of the COGS-ranked gene list, with a mean FDR of
0.080 ± 0.125. This enrichment was significant at an FDR of
0.25 for 97 of the gene sets (Figure 3A; top plot and
Supplementary Table S5C), indicating that the genes’
COGS scores positively associate with their differential
expression in COVID-19. The top two sets, as ranked by
the Normalised Enrichment Score (NES), were lung
organoids infected with COVID-19 in vitro (top-ranking
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genes IFNAR2, CHI3L2, OAS3) and natural killer (NK) cells
from individuals with severe disease versus healthy (top-
ranking genes DPP9, SAFB2, SAFB) (Figure 3A middle and
bottom plots, respectively). We noted that the sets achieving
the highest NES tended to contain upregulated, rather than
downregulated, genes (Figure 3B), suggesting a role of many
underpinning variants in controlling gene induction in
response to infection. Overall, these results provide
additional validation that the COGS approach prioritises
genes with relevance to COVID-19.

The Biological Function of COGS-Prioritised
Genes
To gain insight into the shared biological functions of the
prioritised genes, we first performed KEGG pathway over-
representation analysis (Figure 4A). We found that COGS-
prioritised genes (max COGS score >0.3) were significantly
enriched in pathways associated with response to influenza A
and measles infection, as well as with inflammatory processes,
including NOD-like receptor signaling (Figure 4B), necroptosis

and natural killer cell-mediated cytotoxicity. These enriched
annotations were driven by a total of 11 COGS-prioritised
genes with a high overlap between individual pathways (FTL,
IFNAR1/2, OAS1/3, PPP3C, TLR4, TNFRSF10 A/B, TYK2, and
VAV3; Supplementary Table S6A). We note that all five enriched
pathways are druggable according to the KEGG database
(Kanehisa and Goto, 2000), creating potential opportunities
for drug repurposing for COVID-19 treatment. For example,
the NOD-like receptor signaling pathway alone is currently
targeted by 14 drugs indicated for various inflammatory
diseases, with one of these drugs, a selective IRAK4 inhibitor
Zimlovisertib, undergoing a clinical trial for COVID-19-
induced pneumonia (https://clinicaltrials.gov/ct2/show/
NCT04575610).

To further increase the sensitivity of pathway enrichment
analysis, we again performed quantitative GSEA based on the
COGS scores, this time against 50 Hallmark gene sets from the
Molecular Signatures Database. Although none of the Hallmark
sets were significantly enriched at an FDR of 0.25
(Supplementary Table S6B), the top sets ranked by NES
included relevant inflammatory processes such as IL-6

FIGURE 3 | Enrichment of COGS-prioritised genes in COVID-19-response gene sets. Quantitative GSEA analysis using the COGS score for each gene against
gene sets from the COVID-19 Drug and Gene Set Library. Diagnostic plots produced by the GSEA software demonstrate the relationship between the normalised
enrichment score (NES) and measures of significance [(A), top plot] and the enrichment across COGS scores for the gene sets with the top two NES scores (A, middle
and bottom plots) (B) Bubble-plot showing results for all gene sets. The “up” and “down” suffixes indicated the direction of differential expression in COVID-19 for
the gene set in question.
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signalling by STAT3, IL-2 signalling by STAT5, TNF-α signaling
via NFκB, IFN-γ response and TGF-β signalling (Figure 4C),
highlighting the roles of individual COGS-prioritised genes in
these processes.

Jointly, these results support the notion that genetically-
determined variation in the inflammatory response to viral
infection plays a key role in COVID-19 susceptibility and
severity.

FIGURE 4 | The biological functions of the prioritised genes. (A) Bubble plot showing the KEGG pathways enriched among COGS-prioritised genes (score >0.3).
(B) Diagram of the NOD-like receptor signalling pathway, with the COGS-prioritised genes highlighted in red. (C) Bubble plot showing the results of a quantitative GSEA
analysis using the COGS score for each gene against Hallmark gene sets.
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Assessment of COGS Score Thresholds
Based on Prioritisation of
COVID-19-Differentially Expressed Genes
Since COGS-prioritised genes were enriched in gene sets
associated with COVID-19 transcriptional response, we
used this property to estimate the sensitivity and specificity
of COGS analysis at a range of score thresholds. We focused on
data from a recent COVID-19 host transcriptomics study
reporting 11,170 differentially-expressed (DE) genes across
PBMCs, lung and bronchoalveolar lavage samples (Daamen
et al., 2021), of which 10,463 had a non-zero COGS score in
our dataset. Assuming that this set of DE genes is enriched for
true causal loci, we performed a precision-recall analysis of
these genes at a range of COGS thresholds between 0 and 1
(Supplementary Figure S8D). As expected, increasing the
COGS threshold increased the enrichment for DE genes (a
proxy for specificity or “precision”) among the prioritised
candidates, but decreased their recall, as more DE genes
ended up with subthreshold scores. Our predefined
threshold of COGS score > 0.3 corresponded to a point at
which the enrichment started to rise sharply (Supplementary
Figure S8D), confirming that our choice of this threshold was
reasonable for global downstream analyses. However, for more
targeted selection of candidates (e.g., for small-scale
perturbation experiments), using a higher COGS score
threshold, which likely confers a higher specificity of the
analysis at the expense of a lower sensitivity, may be
warranted.

CONCLUSION

The COGS pipeline combining Bayesian fine-mapping of GWAS
signals with PCHi-C-based prioritisation has provided 251
putative genes associated with COVID-19 severity, most of
which were not prioritised using the naive nearest-exon
approach and the strategies used in the original COVID-19
HGI GWAS publication. Most of these genes have no known
biological function in COVID-19 to date, but are enriched in
pathways associated with inflammatory response to viral
infection. In conjunction with complementary prioritisation
approaches and targeted validation experiments (Cano-Gamez
and Trynka, 2020), these data will help to understand and tackle
COVID-19 pathology.
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