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Bayesian networks (BNs) provide a probabilistic, graphical framework for modeling high-
dimensional joint distributions with complex correlation structures. BNs have wide
applications in many disciplines, including biology, social science, finance and
biomedical science. Despite extensive studies in the past, network structure learning
from data is still a challenging open question in BN research. In this study, we present a
sequential Monte Carlo (SMC)-based three-stage approach, GRowth-based Approach
with Staged Pruning (GRASP). A double filtering strategy was first used for discovering the
overall skeleton of the target BN. To search for the optimal network structures we designed
an adaptive SMC (adSMC) algorithm to increase the quality and diversity of sampled
networks which were further improved by a third stage to reclaim edges missed in the
skeleton discovery step. GRASP gave very satisfactory results when tested on benchmark
networks. Finally, BN structure learning using multiple types of genomics data illustrates
GRASP’s potential in discovering novel biological relationships in integrative genomic
studies.

Keywords: Bayesian network, Bayesian network structure learning, sequential Monte Carlo, adaptive sequential
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INTRODUCTION

A Bayesian network (BN) is a graphical representation of the joint probability distribution of a set of
variables (called nodes in the graph). BNs have been widely used in various fields, such as
computational biology (Friedman, Linial, Nachman and Pe’er 2000; Raval, Ghahramani and
Wild 2002; Vignes, et al., 2011), document classification (Denoyer and Gallinari 2004), and
decision support system (Kristensen and Rasmussen 2002). A BN encodes conditional
dependencies and independencies (CDIs) among variables into a directed acyclic graph (DAG).
And this DAG is called the structure of a BN. When the structure of a BN is given, the parameters
that quantify the CDIs can be estimated from observed data. If neither the structure nor parameters
are given, they can be inferred from observed data. In this study, we will be focusing on the structure
estimation of a BN and its application in learning biological networks using heterogeneous
genomics data.

The technical difficulties of structure learning are mainly due to the super-exponential cardinality
of the DAG spaces, which are also quite rugged for most commonly used score functions. Estimating
the structure exactly is an NP-hard problem (Cooper 1990; Koller and Friedman 2009). There have
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been many inexact and heuristic methods proposed in the past
2 decades (Zhang, Li, Zhou and Wei 2013; Adabor, Acquaah-
Mensah and Oduro 2015; Larjo and Lahdesmaki 2015;
Amirkhani, Rahmati, Lucas and Hommersom 2017; Franzin,
Sambo and Di Camillo 2017; Han, Zhang, Homayouni and
Karmaus 2017; Ferreira-Santos, Monteiro-Soares and
Rodrigues 2018; Jabbari, Visweswaran and Cooper 2018; Li
and Guo 2018; Tang, Wang, Nguyen and Altintas 2019;
Zhang, Wang, Duan and Sun 2019; Zhang, Rodrigues, Narain
and Akmaev 2020; Liu, Gao, Wang and Ru 2021). The strategy of
these methods can be classified mainly into three categories:
constraint-based, score-based, and hybrid, which combines both
constraint-based and score-based approaches.

A constraint-based method utilizes the conditional
dependency test to identify the conditional dependencies and
independencies among all the nodes (Campos 1998; de Campos
and Huete 2000; Margaritis 2003; Tsamardinos, Aliferis and
Statnikov 2003; Yaramakala and Margaritis 2005; Aliferis,
Statnikov, Tsamardinos, Mani and Koutsoukos 2010; Liu,
et al., 2021). A major disadvantage of such a method is that a
large number of tests have to be conducted; therefore, an
appropriate method to adjust the p-values obtained from all
the tests have to be applied. The fact that not all the tests are
mutually independent further complicates the p-value
adjustment. Another issue is that the goodness-of-fit of the
obtained network is usually not considered in such an
approach; therefore, the estimated BN may not fit the
observed data well.

A score-based method uses a score function to evaluate the
structures of BNs on observed data (Larrañaga, Poza,
Yurramendi, Murga and Kuijpers 1996; Friedman, Nachman
and Peér 1999; Gámez, Mateo and Puerta 2011). A searching
algorithm is employed to search the best BN (with the highest
score) with respect to certain score function. Various Bayesian
and non-Bayesian score functions have been proposed in the past.
As exact search is not feasible, over the past 2 decades, various
heuristic searching methods, such as hill climbing, tabu search,
and simulated annealing were proposed to search for the optimal
BN structures. The problem with score-based method is that the
searching space is often very large and complicated; therefore, the
searching algorithm either will take too much time to find the
optimum or be trapped in local optima. Many efforts have been
made to overcome this challenging issue, such as searching using
an ordered DAG space to reduce the searching space (Teyssier
and Koller 2012). In the ordered DAG space, the nodes are given
an order such that edges will only be searched from higher orders
to lower orders. The practical issue is that determining the orders
and finding the optimal structure is equally difficult. More
recently, various penalty-based methods were proposed to
estimate the structures for Gaussian BN (GBN) (Fu and Zhou
2013; Huang, et al., 2013; Xiang and Kim 2013). These methods
have been shown to be quite efficient for GBN structure learning
and are able to handle structure learning and parameter
estimation simultaneously; however, these methods are quite
restrictive: the joint distributions must approximately follow a
multivariate Gaussian distribution and dependencies among
nodes are assumed to be linear.

Hybrid methods which combine a constraint-based method
and a score-based method were proposed to combine the
advantages of both methods (Tsamardinos, Brown and Aliferis
2006). Such methods often contain two stages: first pruning the
searching space by a constraint-based methods, then searching
using a score function over the much smaller pruned space. In the
pruning stage, the goal is to identify the so-called skeleton of the
network, which is the undirected graph of the target DAG. Later
in the second stage, the direction of each edge will be determined
by optimizing the score function. In a hybrid method, it is
important that the first stage identifies as many true
undirected edges as possible, since only the identified
undirected edges will be considered in the second stage.

In this study, we developed a novel BN structure learning
method named GRASP (GRowth-based Approach with Staged
Pruning). It is a three-stage method: in stage one, we used a
double filtering method to discover a cover of the true skeleton.
Unlike the traditional constraint-based methods, which try to
obtain the true skeleton exactly, our method only estimates a
super set of the undirected edges and it only conditions on at most
one node other than the pair of nodes being tested, which
dramatically reduces the number of observations needed to
make the test results robust. In stage two, we designed an
adaptive sequential Monte Carlo (adSMC) (Liu and Chen
1998; Liu 2008) approach to search for a BN structure with
optimal score based on constructed skeleton. SMC has been
successfully adopted to solve optimization problems in the
past (Grassberger 1997; Liang et al., 2002; Zhang and Liu
2002; Zhang et al., 2003; Zhang et al., 2004; Zhang and Liu
2006; Zhang et al., 2007; Zhang et al., 2009). Compared to most
greedy searching methods, SMC is less likely to be trapped in local
optima. Another advantage of SMC is that it can be run in parallel
for each SMC sample, making it suitable for distributed or GPU-
based implementations. To further increase the efficiency of the
sampling, an adaptive SMC strategy was used to generate higher
scored networks. After these two stages, we enhanced the
traditional two-stage approach with a third stage which adds
possible missed edges back into the network using RandomOrder
Hill Climbing (ROHC).

METHODS AND DATA

GRASP: GRowth-Based Approach With
Staged Pruning
GRASP is a three-stage algorithm for learning the structure of a
BN. In the first (pruning) stage, we designed a Double Filtering
(DF)method to find the cover of the skeleton of the BN, where the
skeleton of a BN is defined as the BN structure after removing the
direction of all the edges, and the cover is defined as a superset of
undirected edges containing all the edges of the skeleton. In the
second (structure searching) stage, we developed an adaptive
sequential Monte Carlo (adSMC) method to search the BN
structure on the undirected network found in the first stage
based on Bayesian information criterion (BIC) score. To
reclaim the potentially missed edges, we designed a Random
Order Hill Climbing (ROHC) method as the third stage.
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First Stage: Double Filtering (DF) Method to
Infer the Skeleton
The first stage, namely Double Filtering (DF) method, contains
two filtering processes. The first filtering was done by
unconditioned tests, filtering out the nodes that are not
ancestors or descendants of a given node Xi. The second
filtering was built on conditioned tests, further filtering out the
nodes that are not direct neighbors (parents or children) of Xi.

Suppose we have p nodes. For a given node Xi, let nbr(Xi) be
the set of nodes that have an undirected edge with Xi. Initialize
nbr(Xi) � ∅ the empty set for all i. The procedure of the DF
method is as follows:

1. First filtering. For each pair of nodes (Xi and Xj, i≠ j), record
the p-value of their Mutual Information (MI) test as pij. If
pij < α, α being a predetermined significance level for the test,
add Xj into nbr(Xi) and Xi into nbr(Xj). The MI test is also
used by other BN structure learning methods (Campos 1998).
Let Ni be the number of elements in nbr(Xi) after first
filtering. Sort nbr(Xi) using their p-values in ascending
order and denote these nodes as X(i)

1 , X(i)
2 , . . . , X(i)

Ni
.

2. Second filtering. For every node Xi, initialize the set of its final
neighbors nbrC(Xi) � nbr(Xi). Loop over its elements in the
order of X(i)

1 , X(i)
2 , . . . , X(i)

Ni
.

(a). For every element X(i)
j , find nbr(Xi) ∩ nbr(X(i)

j ), the
intersection of the neighbors of Xi and X(i)

j .
(b). For every element X(i,j)

k in the set of intersection, perform
a conditional dependency test for Xi and X(i,j)

k , given X(i)
j . If

the p-value > α, remove X(i)
j from nbrS(Xi).

After applying the DF method on all p nodes, the collection of
nbrC(Xi), i � 1, 2, ..., p gives us the skeleton of BN.

Second Stage: Structure Searching
In the pruned space, we designed an adaptive sequential Monte
Carlo (adSMC) method to search the structure of the Bayesian
network. In a traditional sequential Monte Carlo, the random
variable of all p nodes (or features) X ∈ Rp is decomposed intoM
blocks (x1, x2, . . . , xM) each with pi features xi ∈ Rpi and∑M

i�1 pi � p, and the decomposition is predefined and fixed
throughout the whole sampling procedure. One usually
samples x1 at first, then x2, and so on. However, the sequence
each variable is sampled (namely sampling sequence in this
study) based on any prior decomposition may not be the most
efficient one. The optimal sampling sequence may need to be
decided dynamically. For example, when x1, x2, . . . , xm−1 have
been sampled for some 0<m≤M, the conditional distribution
f( xm|x1, x2, . . . , xm−1) may have a small set of candidate
decompositions (to satisfy the acyclic condition) which limits
the diversity of the SMC samples. Therefore, we designed our
sampling block xm conditioning on the current sampled structure
x1, x2, . . . , xm−1 to increase the diversity and quality of obtained
samples (see Supplementary Figure S1 in Supplementary
Materials for an example).

For each SMC sample, we start with all possible fully
connected triplets (three nodes connected by three

undirected edges) discovered in the first stage. We sample
one such triplet having the least outside connection, e.g., the
one having the least undirected edges connected to its nodes
(Figure 1A). These triplets are likely to be restricted to certain
configuration by the sampled structure; therefore, to sample
them earlier allows more variety in their configurations. When
all fully connected triplets are sampled, partially connected
triplets (two undirected edges among three nodes) are
considered (Figure 1B). Lastly, we consider pairs (the
remaining undirected edges, Figure 1C). For partially
connected triplets and pairs, the configurations with the least
outside connections are sampled first.

The probabilities of possible configurations of triplets and
pairs are proportional to their BIC (Bayesian Information
Criterion) score defined as BIC � ln(n) · k − 2 · ln(L̂), where n
represents sample size, k represents number of parameters of the
partial BN model, and L̂ � p(x|θ̂,Model) is the maximized value
of the likelihood function of the model, with estimated
parameters θ̂ from observed data x. The probability is set to
be 0 if certain configuration fails to satisfy the acyclicity
condition. In summary, for triplets (pairs), we calculate the
BIC for all possible configurations of this triplet (pair) and
sample one configuration with probability

P(configuration i)∝⎧⎪⎨⎪⎩
exp(BICi

T
), if configuration i does not result in a loop

0, if configuration i result in a loop
,

(1)

Where exp(·) is the exponential function, T is temperature
controlling how greedy we want the searching to be, and ∝
means proportional to.

The main algorithm used in the second step is as follows.

Step 1. Sample one fully connected triplet XI,XJ, XK}{ with the
least outside connection; Choose a configuration between these
three nodes with probability described in Eq. 1; Then remove the
connection between XI, XJ and XK from the skeleton.

Step 2. Repeat step 1 until all fully connected triplets are sampled.

Step 3. Sample one partially connected triplet XI,XJ, XK}{ with
the least outside connection. Choose a configuration between
these three nodes with probability described in Eq. 1. Then
remove the connection between XI, XJ and XK (if applicable)
from the skeleton.

Step 4. Repeat step 3 until all partially connected triplets are
sampled.

Step 5. Sample one pair XI,XJ}{ with the least outside
connection. Choose a configuration between them
(eitherXI →XJ orXI ←XJ) with probability described in Eq.
1. Then remove the connection between XI and XJ from the
skeleton.

Step 6. Repeat step 5 until all pairs are sampled and no more
unsampled edges in the skeleton.
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Since each SMC sample is generated independently, we can
run our algorithm in parallel on multiple CPUs/GPU cores to
speed up the sampling process.

Third Stage: Reclaiming Missed Edges
We mentioned earlier that one disadvantage of the traditional two-
stagemethodwas that the edgesmissed in the first stage will never be
recovered. Therefore, in the third stage we designed a RandomOrder
Hill Climbing (ROHC)method to identify the possible missed edges
and refine the network. The general idea is described as follows:

1. Generate a permutation of 1, 2, . . . , p for each network
sampled by adSMC in stage 2, suppose m1, . . . , mp is such
a permutation.

2. For every node Xi, iterate j from m1 through mp. If Xi ←Xj

does not create loop and result in an increasing in BIC, we add
edge Xi ←Xj.

3. Repeat (2) until there is no possible edge to add or the
searching limit is reached.

One could also view this stage as a further ascent to the local
optima to ensure we achieve the best possible BIC score.

In `general, generating more SMC samples gives a higher
chance to reach the optimum. However, more samples also
require more computation time; therefore, a balance between
running time and sample sizes must be made. In most of our
simulation study and practical problems, we found that around
20,000 samples were often good enough for finding a network
with a satisfactory BIC score.

Performance Evaluation
To measure the effectiveness of edge screening methods, we
employed the precision, recall and f-score measurements.
Precision is defined as TP/(TP + FP), recall is defined as TP/
(TP + FN), and f-score is the harmonic mean of precision and
recall, 2 (precision × ×recall)/(precision + recall), where TP
means true positive (number of true undirected edges
identified), FP false positive (number of non-edges identified
as undirected edges), and FN false negative (number of
undirected edges not identified).

In our study, recall measures the percentage of true edges
(irrespective of their directions) identified; therefore, it is the most
important measurement in edge screening stage, since as we
discussed earlier, any missed edges in stage one may never be
reclaimed in a traditional two stage approach. Besides the recall,
f-score is also important since it measures a balanced
performance in terms of both precision and recall. It is
obvious that if we propose all possible edges, we will always
identify all true edges, but that will not do any pruning to the
searching space. Thus, a high f-score is desired for a decent edge
screening strategy.

We used Bayesian Information Criterion (BIC) as the
score function in both second stage and third stage. BIC
has the score-equivalent property (Appendix definition 10),
which can reduce the searching space, since if we could find
one network in the equivalent class, we found the true
network. And the consistency property of BIC score
guarantees that the true network has the highest score
asymptotically.

FIGURE 1 | Structure discovering procedure.
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Benchmark Networks
The networks used to generate simulated data (Table 1) are from
actual decision making processes of a wide range of real
applications including risk management, tech support, and
disease diagnosis. All networks are obtained from Bayesian
Network Repository maintained by M. Scutari http://www.
bnlearn.com/bnrepository/.

We randomly generated data with 1,000, 2,000, and 5,000
observations, and we generated 10 datasets for each size of
observations. All results reported in this section are based on
averages of 10 datasets. Observation size in this article refers to
the number of data points, and shall not be confused with number
of sequential Monte Carlo samples. The datasets were generated
using R package bnlearn (Scutari 2009; Nagarajan, Scutari and
Lèbre 2013).

Real Data
Flow Cytometry Dataset
In the flow cytometry dataset (Sachs, Perez, Pe’er, Lauffenburger
and Nolan 2005), there are 11 proteins and phospholipid
components of the signaling network. The original data was
collected from 7,466 cells, containing continuous variables.
Sachs et al. suggested to get rid of the potential outliers by
removing data that are three standard deviations away from
any attribute. Thus the data we are analyzing contains 6,814
observations. We discretized each variable into three categories,
practically stands for high/medium/low, with each category
containing 33% of the data.

Genomics and Epigenomics Data From the Cancer
Genome Atlas (TCGA)
We used several different types of data obtained from TCGA:
RNA-seq, protein expression, DNA methylation, and
microRNA-seq, which have been used in our previous studies
(Stewart, Luks, Roycik, Sang and Zhang 2013; Li, et al., 2017; Shi,
et al., 2017; Li, et al., 2020). These data can be freely downloaded
from TCGA data portal (https://portal.gdc.cancer.gov/), which
has detailed description on each of the data types.

RESULTS

Edge Screening
The principal of the edge screening stage is pruning the searching
space as much as possible while the remaining edges in the
pruned space still possess as many true edges as possible. We

compare our method to five other methods including max-min
parent-child (mmpc) (Tsamardinos, et al., 2006), grow-shrink
(gs) (Margaritis 2003), incremental association (iamb)
(Tsamardinos, et al., 2003), fast iamb, and inter iamb
(Yaramakala, et al., 2005). For all methods, we fixed the
significance level (α) to 0.01.

The simulation study results (Figure 2 and Figure S2) showed
that our double filtering (DF) method was able to identify the
most edges (highest recall) for each of the observation size we
tested. In some cases we observed that with even 1,000
observations, our method achieved a higher recall than the
other methods using 5,000 observations and the f-scores are
still comparable (e.g., Alarm, Hepar2 and etc.). For some
networks (Child, Insurance), not only the recalls were higher
but also the f-scores were higher for DF. The results confirmed
that DF identifies true edges more accurately than other methods
and it often requires fewer observations. Higher recall is desired
in the first stage (the edge screening stage) since any missed edges
will not be sampled in the second stage.

Effect of Temperature
The temperature parameter in SMC has the same effect as that in
MCMC (Markov Chain Monte Carlo) simulations. A lower
temperature will cause searching to become greedier, and
higher temperatures make it less greedy. When T→ 0 the
searching procedure becomes a local greedy search. On the
other hand, whenT→∞, the configuration is sampled
uniformly. The optimal temperature is usually a value in
between. In this simulation study, we fixed SMC sample size
to 20,000, and rounds of ROHC to 5. The temperature was set to
between 10−7 and 10−1, increased by 10-time each time (Figure
S3). The performance is shown in the relative scale (BIC of true
network/BIC of the learned network), where higher ratio means
higher BIC score; thus, better network structure. Lower
temperature in most cases gave a lower score, as well as the
higher temperature, consistent with what we would expect. Most
of the optimal scores happened around T � 0.001 or 0.01. We can
also see that the optimal temperature does not depend on the
observation sizes, since the optimal temperatures are the same
across the three different observation sizes. Another observation
we had was that the optimal temperatures do not change much
when the number of variables (nodes) changes. From figure S3 we
can see that for Andes (with 223 nodes) and child (20 nodes), the
optimal temperature is both around 0.01 and 0.001.

Effect of Adaptive SMC
To show the improvement of using adaptive SMC, we compared
the BICs of 20,000 SMC samples between the adSMC and
traditional SMC (Figure S4). In the traditional SMC, we
designed the sampling block in the order of fully connected
triplets, partially connected triplets and pairs, and started from
least outside connected ones. Clearly, the adSMC generates
higher scored networks in general.

Effect of the Edge Reclaiming Step
We discussed earlier that there could be some true edges missed
in the first stage due to the test power and limited data. Here we

TABLE 1 | Bayesian networks used in the simulation study.

Name # of nodes # of edges # of parameters Max in-degree

Alarm 37 46 509 4
Andes 223 338 1,157 6
Child 20 25 230 2
Hailfinder 56 66 2,656 4
Hepar2 70 1,236 1,453 6
Insurance 27 52 984 3
Win95pts 76 112 574 7
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FIGURE 2 | Recall and f1 score of different methods with observation size 1,000. One can see that DF generally has higher recalls with higher or comparable F1-
scores for the same network.

FIGURE 3 | BIC scores of all methods on seven benchmark networks with observation size 1,000. GRASP has higher BIC scores for all the benchmark networks.
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will show that Random Order Hill Climbing (ROHC) indeed
improves the learned BN structure in stage 2. We used alarm and
win95pts networks to illustrate the improvement made by ROHC
(Figure S5). They both had significance level cut-off of 0.01,
temperature 0.001, and 20,000 SMC samples. As we can see, the
improvements were substantial, demonstrating that it is
necessary to have the third stage to further refine the learned
network. However, one should notice that the complexity level of
ROHC is approximately O(N2); therefore, in a typical network
with hundreds of nodes only 1 or 2 rounds of ROHC are
affordable.

Performance on Benchmark Networks
We evaluated the overall performance of our method and the
general two stage methods (five edge screening methods, gs,
mmpc, iamb, fast.iamb, and inter.iamb combined with two
optimization methods, Hill climbing and tabu search) on
seven benchmark networks. The results are shown in Figure 3
and Supplementary Figure S6 (Supplementary Material). For
three different observation sizes, our method outperformed all
the general two-stage methods on almost all benchmark networks
except on the hepar2 network where all methods achieved similar
scores, which are very close to the BIC of the true network.

Performance on the Flow Cytometry Data
We first compared our method to the general 2-stage methods
and the CD method (Fu, et al., 2013) on the flow cytometry data.
GRASP achieved the highest BIC score (Figure 4), which is
consistent with the simulation study.

An Integrative Genomic Study Using TCGA Data
An advantage of BN models is that they can handle
heterogeneous data well. In this section, we will test our
method using a heterogeneous genomics dataset from TCGA
through learning network structures that may shed light on real

biological problems. In a previous study of ours (Stewart, et al.,
2013), we have identified a long non-coding RNA, LOC90784,
which is strongly associated with breast cancer health disparity
between African American and Caucasian American breast
cancer patients. However, literature search resulted in no
information about it since it had not been studied by any
researchers in the past. Using several different types of
genomics data, we applied GRASP to perform an integrative
study to build a Bayesian network with different genomics
features to shed some light on the function of this transcript.
All the data were first discretized into a small number of
categories, usually 2–4. We first used RNA-seq data to identify
transcripts highly correlated with LOC90784. This gave us eight
transcripts with absolute value of correlation coefficient greater
than 0.27. We then found other genomic features, including
microRNAs, DNA methylations and protein expressions that
are highly correlated with these transcripts, which gave us 13
microRNAs, 5 DNA methylation regions (aggregated around
genes) and five proteins. Using the samples with all the above
measurements, we inferred the BN structure for these genomics
features as shown in Figure 5. As a comparison, bnlearn, a R
package for BN structure learning, gave a network without
LOC90784 (Supplementary Figure S7). Figure 5 showed
rather complex relationships among all these genomic features.
A thorough investigation of this network is beyond the scope of
this work. However, some literature search on the nodes around
LOC90784 provided interesting hypotheses, which could be
followed up with experiments. Specifically, TET3, an upstream
gene, was found to inhibit TGF-β1-induced epithelial-
mesenchymal transition in ovarian cancer cells (Ye, et al.,
2016). High frequency of PIK3R2 mutations in endometrial
cancer was found to be related to the regulation of protein
stability of PTEN (Cheung, et al., 2011), which is a well-
known cancer related gene. There are not a lot of published

FIGURE 4 | BIC scores for the flow cytometry data, comparing 12
methods, and GRASP has the highest BIC score. The y-axis value is the ratio
of the BIC score of the sampled network and the true network. It is possible
that a sampled network has even higher BIC score than the true
network, hence the value can be higher than 1.

FIGURE 5 | The BN structure learned by GRASP using multiple different
genomic features which are highly correlated with the expression of
LOC90784. Orange nodes: mRNA transcripts; Red nodes: microRNAs; Blue
nodes: protein expressions; Green nodes: DNA methylations.
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studies on IRGQ. From the Human Protein Atlas database
(https://www.proteinatlas.org/ENSG00000167378-IRGQ/
pathology) we found that this gene is a prognostic biomarker and
significant for survival for several cancer types including
pancreatic cancer, renal cancer, cervical cancer and liver
cancer. It would be interesting to see how perturbations of
TET3, PIK3R2, such as knockdown/knockout experiments,
affect LOC90784 and how perturbation of LOC90784 affects
IRGQ. These hypotheses demonstrated the potential of
GRASP for discovering new biology through integrative
genomic studies.

DISCUSSION

In this study, we developed a three-stage Bayesian network
structure learning method, GRASP. The first stage is an edge
screening method, Double Filtering, which recovers a super set
of true edges and proposes as few edges as possible. The second
stage is an adaptive SMC (adSMC) approach to optimize a score
function (BIC in this study) that measures the fitness of a BN
structure to the given data. To reclaim the possible missed edges
from the first two stages, we developed a random order hill
climbing method (ROHC) to recover the missed edges as the
last stage. The principal of double filtering is quite different from
the well-known mmpc method or other similar constraint-based
methods, where the algorithm is trying to identify the skeleton of
the BN (undirected true edges). Double filteringmethod focuses on
identifying a set of undirected edges that contains all the true edges,
at the same time tries to propose as few edges as possible. The
advantage of mmpc is that given enough observations it identifies
the true network skeleton; however, it may not be feasible when the
observations are limited since mmpc conducts conditional
dependency test conditioning on all previously identified
dependent (connected) nodes, and it requires more observations
when the number of conditioned nodes increases. On the other
hand, double filtering only conditions on one node at a time, so the
required observation size can be much smaller.

The adSMC approach in structure sampling stage can find
better BN structure than greedy searching algorithms or
traditional SMC. The algorithm takes into account the
currently sampled partial BN structures to make more
informed decisions on the sampling of new edges. In addition,
adSMC sampling is completely parallelizable, andmultiple CPUs/
GPU implementations will likely further improve the
computational efficiency substantially.

Although in this study we focused on categorical variables
(nodes) with multinomial distribution, one may extend our

approach to other types of variables including Gaussian ones,
as long as all nodes have the same distribution and the local
conditional distribution can be estimated. Imposing distributions
that are easier to be estimated on the nodes will in general make
the searching more efficient. Practically, it is not an easy task to
find appropriate distribution for all nodes. For BNs with mixed
node types, where nodes do not necessarily have the same
distribution, our method could handle them indirectly by
discretizing the observations making each node distributed as
multinomial distribution.

The application of GRASP on heterogeneous genomics data
showed its potential to infer complex biological networks, which
may shed light on the functions of unknown genes or epigenetic
features. The learned structures of BN also provide guidance on
formulating specific hypotheses that can be tested
experimentally.
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