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Genes play an important role in community ecology and evolution, but how to identify the
genes that affect community dynamics at the whole genome level is very challenging. Here,
we develop a Holling type II functional response model for mapping quantitative trait loci
(QTLs) that govern interspecific interactions. Themodel, integrated with generalized Lotka-
Volterra differential dynamic equations, shows a better capacity to reveal the dynamic
complexity of inter-species interactions than classic competition models. By applying the
new model to a published mapping data from a competition experiment of two microbial
species, we identify a set of previously uncharacterized QTLs that are specifically
responsible for microbial cooperation and competition. The model can not only
characterize how these QTLs affect microbial interactions, but also address how
change in ecological interactions activates the genetic effects of the QTLs. This model
provides a quantitative means of predicting the genetic architecture that shapes the
dynamic behavior of ecological communities.
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INTRODUCTION

Understanding the internal workings of ecological communities is of fundamental importance to
predict community dynamics and improve ecosystem services (Whitham et al., 2006; Vellend, 2020).
Mounting evidence shows that genes play a pivotal role in shaping community structure,
organization, and function (Whitham et al., 2006; Bailey et al., 2009; Hersch-Green et al., 2011;
Miner et al., 2012; Crutsinger, 2016; Salazar et al., 2019; Wimp et al., 2019). For example, in response
to predator-borne kairomones, some genes in Daphnia are activated, showing a higher-level
expression than usually (Schwarzenberger et al., 2009; Miyakawa et al., 2010). To systematically
characterize specific community genes, their number, chromosomal locations, and effect size, a
powerful mapping approach has emerged through designing a community-ecological experiment
using a mapping population (Jiang et al., 2018; Jiang et al., 2020).

Genetic mapping is a statistical approach widely used to map and identify genes, known as
quantitative trait loci (QTLs), which control complex traits (Flint et al., 2005; Atwell et al., 2010;
Consortium et al., 2015; Zeng et al., 2018). By integrating the mathematical aspect of trait formation,
functional mapping has been developed to reveal the spatiotemporal pattern of the genetic
architecture underlying phenotypic variation and evolution (Ma et al., 2002; Wu et al., 2005;
Wu and Lin, 2006; Zhao et al., 2012; Li and Sillanpaa, 2015). The interpretable advantage of
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functional mapping has been leveraged to capture the biological
rule governing how the components constituting a complex trait
are interconnected, interdepended and interacted to mediate trait
variation. A so-called system mapping approach has been
assembled to map the genetic machineries underlying such
component-component interconnections (Gai et al., 2011; Bo
et al., 2014; Sun and Wu, 2015).

More recently, Jiang et al. (2018) integrated systems mapping
and evolutionary game theory into a unified model to study the
genetic control of species-species interactions (including
cooperation and competition) in ecological communities. This
cooperation-competition mapping (CoCoM) model differs from
conventional systems mapping, in that the former needs to model
genetic effects from two or multiple interacting species, whereas
the latter only needs to consider one single genome of the species
studied. By introducing the notion of evolutionarily stable
strategy proposed by Smith and Price, CoCoM incorporates a
system of nonlinear Lotka-Volterra (nLV) predator-prey
equations (May, 1975) to partition the phenotypic value of
each species in communities into its independent and
dependent components. The independent component is one
that occurs when this species is assumed to be in isolation,
and the dependent component reflects the effect due to the
influences of other species on this species. Thus, CoCoM is
equipped with a capacity to reveal how much these two
components contribute to phenotypic variation and how their
relative contributions are controlled reciprocally by the genes of a
pair of species. However, as the first model of its kind, CoCoM
uses a simple from of nLV equations that may not adequately
capture the chaotic complexity of ecological communities (May,
1975; Cushing, 1980; Arneodo et al., 1982; Panetta, 1996;
Huisman andWeissing, 1999; D’Onofrio, 2002; Zeng et al., 2005).

The motivation of this study is to expand the utility of CoCo to
a broader context that is allowed to be periodically oscillated. To
model the perturbation of the community, we introduce a
Holling-type functional response model to characterize
impulsive perturbations of the nLV system. The Holling-type
model has been widely used to study community behavior and
dynamics at different scales (Liu and Chen, 2003; Zhang et al.,
2005; Leeuwen et al., 2007). By analyzing a published dataset from
an ecological experiment including monocultures and co-cultures
of two bacterial species, the new model identifies previously
unidentified genetic loci for microbial cooperation and
competition. Comparing the difference of genetic architecture
in socially isolated monocultures and socialized co-cultures gains
new insight into the genetic mechanisms underlying microbial
interactions. Computer simulation has been performed to
validate the statistical properties of the new model.

MATERIALS AND METHODS

Mapping Materials
We used a published experimental data (Jiang et al., 2018) to
validate the utility of our model. The experiment, conducted with
45 strains from each of two bacterial species, Escherichia coli and
Staphylococcus aureus, includes 45 strain-specific monocultures

of each species and 45 interspecific co-cultures using independent
strain pairs of two species. The abundance of each strain in
monoculture and co-culture was measured repeatedly at 16 time
points during growth process.

Holling Equations
Trait formation is a biological process that includes the
increase of trait value with time, i.e., growth. Based on the
biological rule governing growth, several growth equations,
including logistic, Richards, and Gompertz, have been
proposed to quantify the pattern of growth (Zwietering
et al., 1990; West et al., 2001; Palacios et al., 2014).
Functional mapping incorporates the growth equation to
map QTLs for trait formation and development, showing
increasing biological relevance and statistical power (Ma
et al., 2002; Wu et al., 2005; Wu and Lin, 2006; Zhao et al.,
2012; Li and Sillanpaa, 2015). However, these growth
equations describe the growth of an organism without
considering its biological surrounding where the other
organisms would exert effects on its growth. By treating
interactive organisms as a complex system, several nLV-
based ordinary differential equations (ODEs) have been
developed to model how different species interact with each
other to determine the system (Fujikawa et al., 2014). nLV
equations, widely applied to study prey-predator relationships
in ecological communities (Hernández-Bermejo and Fairén,
1997; Terborgh and Estes, 2010), have been implemented to
map cooperation and competition QTLs (Jiang et al., 2018;
Jiang et al., 2020).

Beginning in the late 1950s, Holling conducted an experiment
to investigate how a predator’s rate of prey capture is related to
prey density (Holling, 1959a; Holling, 1959b). In the resulting
series of seminal articles, Holling identified three general
categories of functional response: Types I, II, and III (Holling,
1965; Morozov, 2010). Type I is the simplest: capture rate
increases in direct proportion to prey density until it abruptly
saturates. Type II is similar in that the rate of capture increases
with increasing prey density, but in contrast to the linear increase
of Type I, Type II approaches saturation gradually. Type III is
similar to Type II except at a low prey density, where the rate of
prey capture accelerates. Many experiments have proved that
Holling-type functional response plays a key role in
understanding predator-prey relationships (Ji et al., 2009;
Tewa et al., 2013) and can fill the gap of nLV equations. Most
studies view type II functional response as the basis for choosing
an optimal foraging model because it is more likely to occur in
communities where population dynamics is driven by predation
(Ji et al., 2009).

Here, we integrate Holling type II functional response and
nLV-based ODEs (HollinLV) to model the interaction and
coordination mechanisms of two populations in communities.
Assume that A and B are two species used to conduct an
ecological experiment in which each species is grown in
socially isolated monocultures and, also, both are grown in a
socialized co-culture. Let E and S be the abundance of species A
and species B, respectively, in a community. The HollinLV model
is expressed as follows:
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where re and rs represent theMalthusian growth rates of species A
and species B, respectively; Ke and Ks are an intrinsic-carrying
capacity of two different species; αE← S, and αS←E represent the
scalar parameter values that describe how one species affects the
other through competition or cooperation in the co-culture.
According to Eq. 1, the growth trajectories of each species is
the summation of two parts:
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Following Jiang et al. (2018), we define the first part as the
independent growth of a species that occurs when this specie is
assumed to grow in isolation, which corresponds to the growth of
this species in monoculture, and the second part as the dependent
growth of a species, determined by the interaction of its co-
existing species through a certain mechanism. The degree of this
dependence is described by interaction scalar parameters
αE← S and αS←E.

According to population ecology theory, there are mainly
three types of interaction among species (Svenning et al.,
2014): 1) neutral interaction, i.e., there is no interaction
between species and they are independent of each other; 2)
positive interaction, including commensalism and mutualism.
If only one side is favorable and there is no influence on the other
side, it is called partial benefit symbiosis; if both sides are
favorable, it is called mutualism; and 3) negative interaction,
including antagonism, predation and amensalism. Antagonism is
opposite to mutualism; predator preys on other species, which is
the traditional relationship between preying and being preyed on;
amensalism means that the existence of one species has an
inhibitory effect on the other, but the second no effect on the first.

By estimating the interaction and scale parameters, we can
quantify the degree of each possible interaction. While the
interaction parameters determine whether and in which
direction the dependent growth occurs, scale parameters,
αE← S and αS←E, determine how the interaction strengthens or
weakens with growth development. A positive or negative,
αE← SorαS←E value indicates that this species is benefitted or
harmed by another species. If the value of αE← S or αS←E is zero,
this means that the interaction does not depend on another
species. If they are also zero, which means that the two species
are not affected by one another.

A Mapping Framework
In the co-culture environment, both HollinLV and CoCoM
models consider the interactions between species. Here, we
incorporate HollinLV into systems mapping, an approach of
mapping complex traits by treating complex traits as a
dynamic system (Gai et al., 2011; Bo et al., 2015; Sun and Wu,
2015). Consider two mapping populations each from a different
species, A or B. Each population has n genome-wide genotyped
members, grown individually inmonoculture and in co-culture in
interspecific pairs. Let Ei � (Ei(1),/, E(T)) and Si �
(Si(1),/, Si(T))(i � 1,/, n) denote the abundance of n pairs
from species A and B measured at time T in co-culture. Consider
a genetic locus with two genotypes A and a for species A and two
genotypes B and b for species B. Pairing species A and B generates
four interspecific genotype combinations AB, Ab, aB, and ab, with
observations denoted as nAB, nAb, naB, and nab, respectively. We
formulate the likelihood function for the abundance data of
interspecific pairs at the locus as

L � ∏nAB
i�1

fAB (Ei, Si; θAB) ×∏nAb
i�1

fAb (Ei, Si; θAb)

×∏naB
i�1

faB (Ei, Si; θaB) ×∏nab
i�1

fab (Ei, Si; θab) (3)

where θ is the HollinLV parameter (re, Ke, αE← S, rs, Ks, αS←E)
describing abundance, fj(Ei, Si; θj), j ∈ (AB,Ab, ab, aB) is a
bivariate longitudinal normal distribution specified by
genotype-specific mean vectors,

μj � (μj1; μj2) � (μj1(1),/, μj1(T); μj2(1),/, μj2(T)) (4)

and covariance matrix,

Σ � (Σ11 Σ12

Σ21 Σ22
), (5)

with variance matrices of abundance over time on the middle
diagonal and covariance matrices of abundance between two
species on the non-diagonal.

We model the vector structure of Eq. 4 by HollinLV Eq. 1 and
the structure of covariance matrix Eq. 5 by a first-order
structured antedependence [SAD(1)] statistical model
(Zimmerman and Nunez-Anton, 1997; Zhao et al., 2005a;
Zhao et al., 2005b). We implement a hybrid of the Nelder-
Mead simplex algorithm and the fourth-order Runge-Kutta
algorithm to solve the likelihood Eq. 3. The maximum
likelihood estimates (MLEs) of ODE parameters and SAD(1)
parameters can be obtained.

Hypothesis Testing
The existence of significant QTLs associated with interspecific
interactions can be tested by a log-likelihood ratio (LR) approach.
To do so, we formulate two hypotheses expressed as

H0: Θj ≡ Θ,
H1: Θj ≠Θ, (6)

for j ∈ (AB,Ab, ab, aB), under which the likelihood values L0 and
L1 are calculated, respectively. The test statistic LR is calculated as
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LR � 2(logL1 − logL0) (7)

which is compared with the critical threshold. Note that the null
hypothesis states that these ODE parameters are genotype
invariant. The rejection domain of the likelihood ratio
statistics is, W � LR ≥ c}{ , where c satisfies

Pθ(LR ≥ c)≤ α (8)

When the value of the test statistic LR is in the rejection
domain, the null hypothesis is rejected, which suggests that there
are differences in the abundance from different interspecific
combination genotypes. We can also test whether a significant
QTL affects the independent growth by formulating

H0: (rej, kej, rsj, ksj) ≡ (re, ke, rs, ks)
H1: (rej, kej, rsj, ksj)≠ (re, ke, rs, ks) (9)

or the interaction growth by formulating

H0: (rej, αE← Sj; rs, αS←Ej) ≡ (re, αE← S, rs, αS←E),
H1: (rej, αE← Sj; rs, αS←Ej)≠ (re, αE← S, rs, αS←E), (10)

The LRs for the above two pairs of hypotheses are calculated
and compared with the critical thresholds, respectively.

According to Jiang et al. (2018), we partition the overall
genotype values of significant SNP pairs into direct effects,
indirect effects, and genome-genome epistatic effects. The
direct effect describe how a QTL directly affects the
abundance dynamics of each species from its own genome.
The indirect effect describes how a QTL indirectly affects the

abundance dynamics of each species from the genome of its
interactive genome. The epistatic effect characterizes how the
interaction of alleles from different species affects the abundance
dynamics of each species. Traditional genetic mapping can only
estimate and test the indirect genetic effects, whereas our model
can estimate and test all these three effects, which thus can gain
new insight into the genetic architecture of interspecific
interactions in ecological communities.

RESULTS

Fitting Growth Curves
We used Gompertz, Logistic and Richards growth equations,
Jiang et al. (2018) CoCoM, and our HollinLV to fit the mean
growth curves of microbial abundance for 45 strains from
each species in co-culture. We compared the performance of
these models by calculating AIC (Akaike information
criterion), BIC (Schwarz criterion), and HQ (Hannan
Quinn criterion) (Table 1). As shown, CoCoM and
HollinLV perform better than three classical growth
equations, suggesting that it is crucial to consider the
impact of interactive species on the growth of a given
species in a community. Our HollinLV shows a better
performance than CoCoM. In order to show the fitting
effects specifically, the actual values and fitting curves of
45 pairs of co-culture samples are plotted, and the goodness
of fit (R2) are calculated in Supplementary Figures S1, S2,
indicating the samples achieve good fitting effects.

TABLE 1 | The estimated parameters of various growth equations, the goodness of fit R2, adjusted R2, and their evaluation information based on akaike information criterion
(AIC), bayesian information criterion (BIC), and hannan-quinn information criterion (HQIC). Gompertz, Logistic, Richards, DDHR, and CoCoMmodels were used to fit the
average abundance of E. coli and S. aureus under co-culture.

Gompertz Logistic Richards

E. coli S. aureus E. coli S. aureus E. coli S. aureus

K � 24.07 ± 2.07 K � 21.66 ± 2.05 K � 23.94 ± 1.96 K � 21.56 ± 1.95 K � 24.74 ± 4.08 K � 21.82 ± 4.05
a � −0.11 ± 0.16 a � −0.22 ± 0.17 a � 0.29 ± 0.21 a � 0.16 ± 0.26 a � 0.90 ± 7.16 a � 0.25 ± 3.73
b � 0.1 ± 0.18 b � 0.18 ± 0.20 b � 0.22 ± 0.26 b � 0.21 ± 0.25 b � 0.10 ± 0.13 b � 0.16 ± 0.09

m � −1.25 ± 2.71 m � 0.65 ± 4.81
R2 � 0.9555 R2 � 0.9560 R2 � 0.9606

adj.R2 � 0.9485 adj.R2 � 0.9490 adj.R2 � 0.9518
AIC � 12.3908 AIC � 12.3671 AIC � 12.2362
BIC � 12.6317 BIC � 12.6080 BIC � 12.5574
HQ � 12.3024 HQ � 12.2786 HQ � 12.1183

CoCoM DDHR

E. coli S. aureus E. coli S. aureus

re �0.28 ± 0.14 rs �0.25 ± 0.11 re �0.46 ± 0.19 rs �0.46 ± 0.19
Ke �83.09 ± 4.10 Ks �62.30 ± 6.59 Ke �22.67 ± 3.56 Ks �20.76 ± 3.62
αE←S �−2.78 ± 0.33 αs←E � −1.73±0.63 αE←S �−1.96 ± 0.79 αs←E � −1.96±1.84

R2 � 0.9607 R2 � 0.9633

adj.R2 � 0.9545 adj.R2 � 0.9575
AIC � 6.9525 AIC � 6.8855
BIC � 7.1934 BIC � 7.1264
HQ � 6.8641 HQ � 6.7971
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Figure 1 illustrates the abundance trajectories of the same
species in co-culture andmonoculture.We find that the growth of
two species in co-culture is affected by each other to a certain
extent. The most significant change of growth trajectories
displays in the timing of maximum relative growth rate;
microbes from both species tend to enter fast-growing stages
in co-culture than in monoculture. However, the degree to which
S. aureus growth is affected by E. coli is greater than that to which
E. coli growth is affected by S. aureus. This suggests that, as
compared to E. coli, the growth of S. aureus is more sensitive to
the biotic environment. All these biotically induced changes
imply the existence of specific genes that are activated by
species coexistence.

How QTLs Are Activated by Species
Coexistence
We apply HollinLV to map QTLs for the microbial abundance of
each species in co-culture, in a comparison with those detected in
monoculture. To map growth trajectories in co-culture, we

implement two ODEs of Eq. 1, each for a different species,
into a mapping framework, whereas the corresponding
mapping of growth in monoculture is based on the
implementation of two ODEs in Eq. 2A.

Figure 2A shows the genomic distribution of QTLs detected
for each species in different cultures. We identify more growth
QTLs for S. aureus than E. coli in both monoculture and co-
culture, but for both species, a number of new QTLs are activated
from monoculture to co-culture (Figure 2B). In monoculture,
there are a total of 81 QTLs that influence the growth trajectory of
E. coli, but this number increases to 132 in co-culture, of which 32
are the common QTLs for both types of cultures. In other words,
49 QTLs are specifically expressed in monoculture, whereas 100
only function in co-culture. In S. aureus, 123 QTLs are
monoculture-specific, 363 are co-culture-specific, and 23 are
common to both cultures.

We estimate the genetic effect curves of each QTL in
monoculture and co-culture for both species. Figure 3 depicts
how three representative common QTLs from each species
change their genetic effects during growth. Overall, the

FIGURE 1 |Growth curve of microbial abundance under monoculture and co-culture. Microbial abundance of individual strains from each species was observed in
monoculture and co-culture during the first 36 h after culture. The upper: the abundance curve of E. coli under monoculture and co-culture, respectively. The thick blue
line is the average growth curve of E. coli. The lower: the abundance curve of S. aureus under monoculture and co-culture, respectively. The thick red line is the average
growth curve of S. aureus.
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temporal effects of QTLs cyclically change with time; i.e., a QTL
increases its effect after culture and then monotonically decrease
its effect at a certain time point. For the culture-common QTLs,
the pattern of time-varying genetic effects depends on culture
type. It is interesting to note that the same QTL displays a peak of
its effect earlier in co-culture than in monoculture. For example,
QTL E4304609 reaches a maximum effect when E. coli was
cultured for 5 h in co-culture, but the timing of its maximum
effect occurs at time 10 h after culture in monoculture. For QTL
S2217304 from S. aureus, its maximum effect occurs at 3 and 8 h
in co-culture and monoculture, respectively. Furthermore, this
QTL changes the direction of its genetic effect from monoculture
to co-culture.

Mapping the Two-Dimensional Genetic
Architecture of Microbial Growth in
Co-culture
Unlike a case of monoculture in which the phenotype of a species
is only controlled by its own genes, the growth of one species may
be controlled epistatically by its own genome and the genome of
its co-existing species in co-culture. We find that in co-culture,
E. coli and S. aureus, tend to be antagonistic; i.e., one species
grows at a cost of the other species, with the strength of such

antagonism being quantified by the HollinLV model Eq. 1
(Figure 4A). Our mapping model can characterize significant
interspecifically epistatic SNP pairs that affect a species’ growth
trajectory in co-culture. By pairwise scanning loci, each from a
different species, throughout the E. coli and S. aureus genomes,
we plot a two-dimensional Manhattan plot that demonstrates
2,245 significant interspecific SNP pairs comprising of 249 SNPs
from E. coli and 182 SNPs from S. aureus (Figure 4B). We
determined the critical threshold at the significance level of 10−6

after Bonferroni correction. The functional annotation of genes
from NCBI’s database shows that almost all QTLs detected
residue within candidate genes of known biological functions.
For example, for E. coli, E19056 resides in gene nhaR activating
the distal promoter, osmCp1, of expression of osmC. It can
stimulate osmCp1 in response to an osmotic signal (Sturny
et al., 2003; Katarzyna et al., 2010). E49080 resides in gene
kefC, which is a potassium transport system regulated by
glutathione metabolites (Miller et al., 2000). E62059 is relevant
to the rapA controlling an additional mechanism, which involved
in wild-type biofilm resistance (Lynch et al., 2007). For S. aureus,
S188004 exerts pronounced genetic interactions with many SNPs
distributed over the E. coli genome, it resides in gene ggt
associating with the gammaglutamyltranspeptidase facilitating
glutathione utilization (Hussain and Roslinah, 2008).

FIGURE 2 | Identification of significant QTLs and comparative analysis for E. coli and S. aureus under different culture. (A)Manhattan plots in co-culture (the upper
part of A) and monoculture (the lower part of A) for E. coli and S. aureus, respectively. From Manhattan plots A, significant QTLs are detected through significance
tests. The horizontal lines are the genome-wide critical threshold at 0.01significance level. (B)Comparison of significant QTLs for microbial growth under different culture
conditions. The blue color represents co-culture condition and the red color represents monoculture condition.
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At each SNP pair, there are four possible genotype
combinations between two species. To show how a SNP from
different genomes interacts with each other to affect microbial
abundance, we decompose the net growth curves of each
genotype combination into independent curves and dependent
curves for each species. Figure 4C illustrates such an example
from SNPs E4320079 with two genotypes T and C residing within
the region of phnI gene and S188004 with two genotypes T and C
residing within the region of ggt gene, producing combinations
TT, TC, CT, and CC. We find that net, independent, and
dependent growth curves for each species vary among four
genotype combinations; for example, CT displays less
independent growth in E. coli than the other combinations,
whereas there is less independent growth in S. aureus for TT
than the other combinations. For all combinations, E. coli and S.
aureus are antagonistic, but with the strength of antagonism
depending on genotype combination, suggesting that SNP pair
E4320079 and S188004 plays a role in mediating the microbial
growth of two coexisting species.

We implemented Jiang et al. (2018) model to partition the
genotypic values of each significant interspecific SNP pair into
direct genetic effects, indirect genetic effects, and genome-
genome epistatic effects on the growth trajectory of each
species. Based on the estimates of these effect values, we
calculate the genetic variance curves due to each effect. It is
interesting to see that the growth of each species in co-culture is

not only affected directly by its own genes, but also, to a similar
extent, indirectly by genes from its co-existing conspecific and
epistatically by cross-genome interactions of the gene between
two species (Figure 5).

Computer Simulation
To investigate the utility and the statistical properties of
HollinLV, we performed simulation studies by mimicking the
real example as described above. The data were simulated by
assuming that two species were reared in monoculture and co-
culture. The phenotype was determined by a set of QTLs among
1,000 simulated markers, plus a residual error following a
bivariate normal distribution. We simulated n � 45, 100, and
200 interspecific pairs in co-culture under heritabilities of H2fn2
� 0, 0.05, and 0.10. The size of heritability was used to adjust the
magnitude of innovative variance.

Four genotypic curves at a joint locus of two genomes can be
reasonably well estimated even using a small sample size under a
modest heritability level (H2 � 0.05) (Supplementary Figure
S3A; Supplementary Table S1). As expected, the accuracy and
precision of curve estimation can be increased by increasing
sample size and heritability. In general, the level at which
estimation precision improves from H2 � 0.05 to 0.10 under
n � 0.45 is similar to the level of improvement from n � 45 to 100
under H2 � 0.05 (Supplementary Figure S3B; Supplementary
Table S1). Because Jang et al. (2018) experiment was well

FIGURE 3 | The genetic effect curves regulated by common QTLs which are significant under both single culture and co-culture conditions. The left: the effect
curves of E. coli of E4489505, E4304609, and E509544, respectively. The right: the effect curves of S. aureus of S2217304, S293354, and S1308, respectively. The red
lines represent the genetic effect under co-culture, and the blue lines represent the genetic effect under monoculture.
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controlled in a uniform environment, producing minimum
noises, we can expect that abundance data contains so
adequately large a heritability that small sample size n � 45
can provide reasonably precise estimation of genotypic curves by
our HollinLV model.

We performed computer studies to investigate the empirical
power of HollinLV for QTL detection under different samples

and heritabilities (Table 2). When both heritability and sample
size are small (H2 � 0.05 and n � 45), the model’s power is quite
low (0.37), but it increases dramatically when H2 increases to 0.10
(0.76) or when n increases to 100 (0.85). As discussed above, Jiang
et al. (2018) experiment might have increasing heritability
because of well-controlled environment. However, the results
from such a small sample size should be interpreted with caution.
When sample size increases to 200, the power of QTL detection
can increase to >0.96 even with a small heritability. Therefore, in
practice, a sample size of n � 200 is recommended for our
HollinLV model to detect interaction QTLs. In general, the
model has a low false positive rate, especially when sample
size is 100 or higher (Table 2).

DISCUSSION

Community genetics has emerged as a subdiscipline of genetics
that combines community ecology and ecological genetics to gain
insight into the genetic mechanisms underlying phenotypic
diversity and evolution within and between species (Whitham
et al., 2006; Hersch-Green et al., 2011). In this article, we develop
and implement a computational model to address three
fundamental questions in community genetics: 1) how a given
species genetically adapts to its coexisting conspecifics, 2) which
genetic machineries mediate a species’ phenotypes expressed in
ecological communities, and 3) what is the genetic architecture
underlying interspecific interactions. This model is the
integration of systems mapping and community ecology
through a system of HollinLV equations. Systems mapping
views and maps a complex trait as a system whose
interconnected components act together to mediate the trait,
following a similar principle of community ecology, i.e., different
species interact with each other to shape community dynamics.

There has been a rich body of literature on studying the genetic
control of the phenotypic response of an organism to abiotic
environment (Wang et al., 2013; Jiang et al., 2018; Diouf et al.,
2020), but knowledge about how genes act differently in response
to biotic environment is very limited. It is impossible to answer
this question without the integration of quantitative genetic
models and ecological data. Our HollinLV model has made
this integration possible. An ecological experiment generates
data from socially isolated environments (monoculture) and
socialized environment (co-culture). HollinLV can test the
change of genetic control in terms of the number and action
of gens involved from monoculture to co-culture, providing
insight into how a given species genetically responds to the
co-existence of other species. By analyzing a real dataset,
HollinLV identifies a set of specific QTLs that are activated by
the existence of other species. In the co-culture of two bacterial
species E. coli and S. aureus, a high percentage of QTLs are
detected to be different from those expressed in monoculture.
Such a percentage is highly species dependent; e.g., 75.76% for
E. coli and 91.30% for S. aureus. Many more new QTLs activated
for S. aureus in response to E. coli than for E. coli in response to S.
aureusmay be due to a higher degree of inhibition for S. aureus by
E. coli than for E. coli by S. aureus. These discoveries could have

FIGURE 4 | The two-dimensional genetic analysis results of interspecies
interactions between E. coli and S. aureus in community growth. (A) The
overall microbial abundance (blue line) of E. coli and S. aureus in co-culture,
and the underlying independent (red line), and interactive (green line)
growth components. (B) Two-dimensional Manhattan plots of significant QTL
pairs on two microbial genomes. The genome-wide significance threshold is
determined by 10−6 significance level after Bonferroni correction. (C)Microbial
growth curves of four genotype combinations T/T, T/C, C/T, and C/C formed
by QTL E4320079 from E. coli and S188004 from S. aureus.
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immediate implications; for example, if altering the expression of
genes of S. aureus that are related to with interactions with E. coli,
the abundance of S. aureus can be controlled. A similar genetic
manipulation can be made to control the abundance of E. coli.

Classic quantitative genetic theory suggests that the phenotype
of an organism is controlled by its genes and surrounding
environment (Lynch and Walsh, 1997). However, this theory
does not interpret how a phenotypic trait is genetically controlled
in ecological communities in which intra- and interspecific
interactions are also a driver of phenotypic variation
(Whitham et al., 2006; Bailey et al., 2009; Hersch-Green et al.,
2011; Miner et al., 2012; Crutsinger, 2016; Wimp et al., 2019). By
integrating community ecology theory, our HollinLV model
equips quantitative genetic theory with new power to more
comprehensively decipher the genetic landscape of biological
diversity and community behavior. HollinLV models the
phenotypic variation of a species through a joint genetic
action of different genomes each from a co-existing species.
This modeling framework allows us to dissect genetic control
into direct genetic effects (due to genes from a given species’ own
genome), indirect genetic effects resulting from genes from the
genomes of other species coexisting with this species, and

FIGURE 5 | The genotypic value of each genotype combination is partitioned into its direct (red), indirect (blue), and genome–genome (G–G) epistatic effects (green)
on the growth, with the time-varying genetic variance explained by each of these effects of E. coli (A) and S. aureus (B) in co-culture. The thick lines on the variance curves
represent the average variance of direct, indirect, and epistatic effects, respectively.

TABLE 2 | The positioning accuracy and false positive probability of significant
QTLs identified by DDHR. The experiments simulated the co-culturing 45 pairs
(the same as the real example), 100, pairs and 200 pairs under heritability levels of
0, 0.05 and 0.10. The positioning accuracy and false positive probability were
evaluated by computer simulation.

Heritability Size

45 100 200

FPR 0 0.11 0.07 0.08

Power 0.05 0.372 0.855 0.957
0.1 0.76 0.973 0.985
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genome-genome epistatic effects (arising from the interaction
between genes from co-existing species). Classic quantitative
genetic approaches can only estimate the direct genetic effects
of a complex trait, whereas our HollinLV model leverages these
approaches to characterize the impacts of indirect and trans-
genome interaction effects. By analyzing Jiang et al. (2018) real
data, we find that the phenotype of a bacterial species is
determined not only by its own genes, but also by the genes of
its coexisting conspecific and, remarkably, by the interaction of
genes from two species. In general, E. coli’s genes are found to
exert more impactful indirect effects on the abundance of S.
aureus than those of S. aureus’ genes on E. coli abundance
(Figure 5), showing that E. coli plays a dominant role in
shaping the coexistence of two species. Furthermore, trans-
genome interactions are an important component of the
genetic architecture underlying each species’ abundance. The
precise dissection of overall genetic control over community
phenotypes by HollinLV can greatly enhance our
understanding of community behavior, dynamics and evolution.

HollinLV divides the net (observed) phenotype of a species
into two components, the independent component arising from
this species’ intrinsic capacity and the dependent components
due to the influence of other species on it, and quantifies each of
these two components. The sign and size of the dependent
components for a pair of species characterize all possible
patterns of ecological interactions from mutualism to
commensalism to amensalism to predation to antagonism
(Diouf et al., 2020). HollinLV allows us to characterize the
genetic control mechanisms of each type of interaction and
compare how the same genes differently govern these
interactions. In Jiang et al. (2018) data, two bacterial species
were found to be antagonistic to each other, although the strength
of antagonism is larger for E. coli towards S. aureus than for S.
aureus towards E. coli. Specific QTLs from each species have been
identified to mediate their antagonism in co-culture. With these
antagonism-related QTLs and the corresponding genes,
microbial geneticists can destroy this antagonistic relationship
or change it to other types of interactions with aid of gene editing
techniques.

HollinLV is an ecology-oriented mapping model that can
potentially gain new insight into community genetics. Its
application to a microbial cultural experiment shows some
promise to better understand the genetic control of
interspecific interactions between two bacterial species.
However, results from our analysis should be interpreted with
caution because the data contains a small sample size. The future
study should increase sample size to 200 interspecific pairs by

which parameter estimation and detection power can reach a
satisfactory level. Also, the model derivation is based on a pair of
species in co-culture. This obviously is not adequate to be applied
to practical ecological communities where many species are
coexisting and interact with each other to form a complex
ecological network. Holling-typed response models only
characterize an aspect of community systems, and more
comprehensive models are required to better capture
multifaced features of communities. Regardless, our HollinLV
provides a start point for integrating quantitative genetic theory
and community ecology to disentangle the complexity of
community genetics.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: The raw sequence data were deposited in the
NCBI short reads archive under accession number SRP074089
and SRP074912.

AUTHOR CONTRIBUTIONS

X-YZ contributed to methodology and supervision, and wrote the
article, HG performed analysis and visualization, QF contributed
to analysis and project administration, XZ supported the
scientific research funding for the publication of this study, LJ
made data curation, investigation, and methodology, RW
conceived, and designed the analysis.

FUNDING

The work is supported by the Fundamental Research Funds for
the Central Universities (No. BLX201912) (XZ) and the
National Natural Science Foundation of China (Grant No.
11501032) (X-YZ). The work is partially supported by Japan
Society for the Promotion of Science (Grant No.
19K03613) (QF).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.766372/
full#supplementary-material

REFERENCES

Arneodo, A., Coullet, P., Peyraud, J., and Tresser, C. (1982). Strange Attractors in
Volterra Equations for Species in Competition. J. Math. Biol. 14 (2), 153–157.
doi:10.1007/BF01832841

Atwell, S., Huang, Y. S., Vilhjálmsson, B. J., Willems, G., Horton, M., Li, Y., et al.
(2010). Genome-wide Association Study of 107 Phenotypes in Arabidopsis
thaliana Inbred Lines. Nature 465 (7298), 627–631. doi:10.1038/nature08800

Bailey, J. K., Schweitzer, J. A., Úbeda, F., Koricheva, J., LeRoy, C. J., Madritch, M. D.,
et al. (2009). From Genes to Ecosystems: a Synthesis of the Effects of Plant
Genetic Factors across Levels of Organization. Phil. Trans. R. Soc. B 364 (1523),
1607–1616. doi:10.1098/rstb.2008.0336

Bo, W., Fu, G., Wang, Z., Xu, F., Shen, Y., Xu, J., et al. (2014). Systems Mapping:
How to Map Genes for Biomass Allocation toward an Ideotype. Brief.
Bioinform. 15 (4), 660–669. doi:10.1093/bib/bbs089

Consortium, U., Walter, K., Min, J. L. , Huang, J. , Crooks, L., Memari,
Y., et al. (2015). The UK10K Project Identifies Rare Variants in

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 76637210

Zhang et al. Holling Model for Interspecific Interactions

https://www.frontiersin.org/articles/10.3389/fgene.2021.766372/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.766372/full#supplementary-material
https://doi.org/10.1007/BF01832841
https://doi.org/10.1038/nature08800
https://doi.org/10.1098/rstb.2008.0336
https://doi.org/10.1093/bib/bbs089
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Health and Disease. Nature 526 (7571), 82–90. doi:10.1038/
nature14962

Crutsinger, G. M. (2016). A Community Genetics Perspective: Opportunities for
the Coming Decade. New Phytol. 210 (1), 65–70. doi:10.1111/nph.13537

Cushing, J. M. (1980). Two Species Competition in a Periodic Environment.
J. Math. Biol. 10 (4), 385–400. doi:10.1007/BF00276097

Diouf, I., Derivot, L., Koussevitzky, S., Carretero, Y., Bitton, F., Moreau, L., et al.
(2020). Genetic Basis of Phenotypic Plasticity and Genotype × Environment
Interactions in a Multi-Parental Tomato Population. J. Exp. Bot. 71, 5365–5376.
doi:10.1093/jxb/eraa265

D’Onofrio, A. (2002). Stability Properties of Pulse Vaccination Strategy in the SIR
Epidemic Model. Bull. Math. Biol. 60, 1–26.

Flint, J., Valdar, W., Shifman, S., and Mott, R. (2005). Strategies for Mapping and
Cloning Quantitative Trait Genes in Rodents. Nat. Rev. Genet. 6 (4), 271–286.
doi:10.1038/nrg1576

Fujikawa, H., Munakata, K., Sakha, M. Z., and Sakha, M. Z. (2014). Development of
a CompetitionModel for Microbial Growth inMixed Culture. Biocontrol Sci. 19
(2), 61–71. doi:10.4265/bio.19.61

Hernández-Bermejo, B., and Fairén, V. (1997). Lotka-Volterra Representation of
General Nonlinear Systems. Math. Biosciences 140 (1), 1–32. doi:10.1016/
S0025-5564(96)00131-9

Hersch-Green, E. I., Turley, N. E., and Johnson, M. T. J. (2011).
Community Genetics: what Have We Accomplished and where
Should We Be Going? Phil. Trans. R. Soc. B 366 (1569), 1453–1460.
doi:10.1098/rstb.2010.0331

Holling, C. S. (1959b). Some Characteristics of Simple Types of Predation and
Parasitism. Can. Entomol. 91 (7), 385–398. doi:10.4039/Ent91385-7

Holling, C. S. (1959a). The Components of Predation as Revealed by a Study of
Small-Mammal Predation of the European Pine Sawfly. Can. Entomol. 91 (5),
293–320. doi:10.4039/Ent91293-5

Holling, C. S. (1965). The Functional Response of Predators to Prey Density and its
Role in Mimicry and Population Regulation. Mem. Entomol. Soc. Can. 97 (45),
5–60. doi:10.4039/entm9745fv

Huisman, J., and Weissing, F. J. (1999). Biodiversity of Plankton by Species
Oscillations and Chaos. Nature 402 (6760), 407–410. doi:10.1038/46540

Hussain, R. M. (2008). Analysis of the Role of Glutathione and Stress Resistance in
Staphylococcus aureus. Diss. [Sheffield]: University of Sheffield.

Ji, C., Jiang, D., and Shi, N. (2009). Analysis of a Predator-Prey Model with
Modified Leslie-Gower and Holling-type II Schemes with Stochastic
Perturbation. J. Math. Anal. Appl. 359 (2), 482–498. doi:10.1016/
j.jmaa.2009.05.039

Jiang, L., He, X., Jin, Y., Ye, M., Sang, M., Chen, N., et al. (2018). A Mapping
Framework of Competition-Cooperation QTLs that Drive Community
Dynamics. Nat. Commun. 9 (1), 3010. doi:10.1038/s41467-018-05416-w

Jiang, L., Liu, X., He, X., Jin, Y., Cao, Y., Zhan, X., et al. (2020). A Behavioral Model
for Mapping the Genetic Architecture of Gut-Microbiota Networks. Gut
Microbes 13, 1–15. doi:10.1080/19490976.2020.1820847

Kennedy, M. S., and Estes, J. A. (2012). Trophic Cascades: Predators, Prey and the
Changing Dynamics of Nature. Austral Ecol. 37 (2), e9–e10. doi:10.1111/j.1442-
9993.2012.02361.x

Leeuwen, E. V., Jansen, V. A. A., and Bright, P. W. (2007). How Population
Dynamics Shape the Functional Response in a One-Predator-Two-Prey System.
Ecology 88 (6), 1571–1581. doi:10.1890/06-1335

Li, Z., and Sillanpää, M. J. (2015). Dynamic Quantitative Trait Locus Analysis of
Plant Phenomic Data. Trends Plant Sci. 20, 822–833. doi:10.1016/
j.tplants.2015.08.012

Liu, X., and Chen, L. (2003). Complex Dynamics of Holling Type II Lotka-Volterra
Predator-Prey System with Impulsive Perturbations on the Predatorq. Chaos,
Solitons & Fractals 16 (2), 311–320. doi:10.1016/S0960-0779(02)00408-3

Lynch, M., and Walsh, B. (1997). Genetics and Analysis of Quantitative Traits.
Sunderland, MA: Sinauer Associates.

Lynch, S. V., Dixon, L., Benoit, M. R., Brodie, E. L., Keyhan, M., Hu, P., et al. (2007).
Role of the Rapa Gene in Controlling Antibiotic Resistance of escherichia Coli
Biofilms. Antimicrob. Agents Chemother. 51 (10), 3650–3658. doi:10.1128/
aac.00601-07

Ma, C.-X., Casella, G., and Wu, R. (2002). Functional Mapping of Quantitative
Trait Loci Underlying the Character Process: a Theoretical Framework.
Genetics 161 (4), 1751–1762. doi:10.1093/genetics/161.4.1751

May, R. H. (1975). Stability and Complexity in Model Ecosystems. 2nd edition.
Princeton: Princeton University Press.

Miller, S., Ness, L. S., Wood, C. M., Fox, B. C., and Booth, I. R. (2000). Identification
of an Ancillary Protein, Yabf, Required for Activity of the Kefc Glutathione-
Gated Potassium Efflux System in escherichia Coli. J. Bacteriol. 182 (22),
6536–6540. doi:10.1128/JB.182.22.6536-6540.2000

Miner, B. E., De Meester, L., Pfrender, M. E., Lampert, W., and Hairston, N. G.
(2012). Linking Genes to Communities and Ecosystems: Daphnia as an
Ecogenomic Model. Proc. R. Soc. B. 279 (1735), 1873–1882. doi:10.1098/
rspb.2011.2404

Miyakawa, H., Imai, M., Sugimoto, N., Ishikawa, Y., Ishikawa, A., Ishigaki, H., et al.
(2010). Gene Up-Regulation in Response to Predator Kairomones in the Water
Flea, daphnia Pulex. BMC Dev. Biol. 10 (1), 45. doi:10.1186/1471-213X-10-45

Morozov, A. Y. (2010). Emergence of Holling Type III Zooplankton Functional
Response: Bringing Together Field Evidence and Mathematical Modelling.
J. Theor. Biol. 265 (1), 45–54. doi:10.1016/j.jtbi.2010.04.016

Palacios, A. P., Marín, J. M., Quinto, E. J., and Wiper, M. P. (2014). Bayesian
Modeling of Bacterial Growth for Multiple Populations. Ann. Appl. Stat. 8 (3),
1516–1537. doi:10.1214/14-AOAS720

Panetta, J. C. (1996). A Mathematical Model of Periodically Pulsed Chemotherapy:
Tumor Recurrence andMetastasis in a Competitive Environment. BltnMathcal
Biol. 58 (3), 425–447. doi:10.1007/BF02460591

Potrykus, K., Murphy, H., Chen, X., Epstein, J. A., and Cashel, M. (2010). Imprecise
Transcription Termination within Escherichia coli greA Leader Gives Rise to an
Array of Short Transcripts, GraL. Gral. Nucleic Acids Res. 38 (5), 1636–1651.
doi:10.1093/nar/gkp1150

Salazar, G., Paoli, L., Alberti, A., Huerta-Cepas, J., Ruscheweyh, H.-J., Cuenca, M.,
et al. (2019). Gene Expression Changes and Community Turnover
Differentially Shape the Global Ocean Metatranscriptome. Cell 179 (5),
1068–1083. doi:10.1016/j.cell.2019.10.014

Schwarzenberger, A., Courts, C., and von Elert, E. (2009). Target Gene Approaches:
Gene Expression in Daphnia magna Exposed to Predator-Borne Kairomones or
to Microcystin-Producing and Microcystin-free Microcystis Aeruginosa. BMC
Genomics 10 (1), 527. doi:10.1186/1471-2164-10-527

Sturny, R., Cam, K., Gutierrez, C., and Conter, A. (2003). NhaR and RcsB
Independently Regulate the osmCp1 Promoter of Escherichia coli at
Overlapping Regulatory Sites. J. Bacteriol. 185 (15), 4298–4304. doi:10.1128/
JB.185.15.4298-4304.2003

Sun, L., and Wu, R. (2015). Mapping Complex Traits as a Dynamic System. Phys.
Life Rev. 13, 155–185. doi:10.1016/j.plrev.2015.02.007

Svenning, J.-C., Gravel, D., Holt, R. D., Schurr, F. M., Thuiller, W., Münkemüller,
T., et al. (2014). The Influence of Interspecific Interactions on Species Range
Expansion Rates. Ecography 37 (12), 1198–1209. doi:10.1111/j.1600-
0587.2013.00574.x

Tewa, J. J., Djeumen, V. Y., and Bowong, S. (2013). Predator-Prey Model with
Holling Response Function of Type II and SIS Infectious Disease. Appl. Math.
Model. 37 (7), 4825–4841. doi:10.1016/j.apm.2012.10.003

Vellend, M. (2010). Conceptual Synthesis in Community Ecology. Q. Rev. Biol. 85
(2), 183–206. doi:10.1086/652373

Wang, Z., Pang, X., Lv, Y., Xu, F., Zhou, T., Li, X., et al. (2013). A Dynamic
Framework for Quantifying the Genetic Architecture of Phenotypic Plasticity.
Brief. Bioinform. 14 (1), 82–95. doi:10.1093/bib/bbs009

West, G. B., Brown, J. H., and Enquist, B. J. (2001). A General Model for
Ontogenetic Growth. Nature 413 (6856), 628–631. doi:10.1038/35098076

Whitham, T. G., Bailey, J. K., Schweitzer, J. A., Shuster, S. M., Bangert, R. K., Leroy,
C. J., et al. (2006). A Framework for Community and Ecosystem Genetics: from
Genes to Ecosystems. Nat. Rev. Genet. 7 (7), 510–523. doi:10.1038/nrg1877

Wimp, G. M., Tomasula, J., and Hamilton, M. B. (2019). Putting the Genes into
Community Genetics. Mol. Ecol. 28 (19), 4351–4353. doi:10.1111/mec.15209

Wu, R., Cao, J., Huang, Z., Wang, Z., Gai, J., and Vallejos, E. (2011). Systems
Mapping: How to Improve the Genetic Mapping of Complex Traits through
Design Principles of Biological Systems. BMC Syst. Biol. 5 (1), 84–11.
doi:10.1186/1752-0509-5-84

Wu, R., and Lin, M. (2006). Functional Mapping - How to Map and Study the
Genetic Architecture of Dynamic Complex Traits. Nat. Rev. Genet. 7 (3),
229–237. doi:10.1038/nrg1804

Wu, R., Ma, C.-X., Hou, W., Corva, P., and Medrano, J. F. (2005). Functional
Mapping of Quantitative Trait Loci that Interact with thehgMutation to

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 76637211

Zhang et al. Holling Model for Interspecific Interactions

https://doi.org/10.1038/nature14962
https://doi.org/10.1038/nature14962
https://doi.org/10.1111/nph.13537
https://doi.org/10.1007/BF00276097
https://doi.org/10.1093/jxb/eraa265
https://doi.org/10.1038/nrg1576
https://doi.org/10.4265/bio.19.61
https://doi.org/10.1016/S0025-5564(96)00131-9
https://doi.org/10.1016/S0025-5564(96)00131-9
https://doi.org/10.1098/rstb.2010.0331
https://doi.org/10.4039/Ent91385-7
https://doi.org/10.4039/Ent91293-5
https://doi.org/10.4039/entm9745fv
https://doi.org/10.1038/46540
https://doi.org/10.1016/j.jmaa.2009.05.039
https://doi.org/10.1016/j.jmaa.2009.05.039
https://doi.org/10.1038/s41467-018-05416-w
https://doi.org/10.1080/19490976.2020.1820847
https://doi.org/10.1111/j.1442-9993.2012.02361.x
https://doi.org/10.1111/j.1442-9993.2012.02361.x
https://doi.org/10.1890/06-1335
https://doi.org/10.1016/j.tplants.2015.08.012
https://doi.org/10.1016/j.tplants.2015.08.012
https://doi.org/10.1016/S0960-0779(02)00408-3
https://doi.org/10.1128/aac.00601-07
https://doi.org/10.1128/aac.00601-07
https://doi.org/10.1093/genetics/161.4.1751
https://doi.org/10.1128/JB.182.22.6536-6540.2000
https://doi.org/10.1098/rspb.2011.2404
https://doi.org/10.1098/rspb.2011.2404
https://doi.org/10.1186/1471-213X-10-45
https://doi.org/10.1016/j.jtbi.2010.04.016
https://doi.org/10.1214/14-AOAS720
https://doi.org/10.1007/BF02460591
https://doi.org/10.1093/nar/gkp1150
https://doi.org/10.1016/j.cell.2019.10.014
https://doi.org/10.1186/1471-2164-10-527
https://doi.org/10.1128/JB.185.15.4298-4304.2003
https://doi.org/10.1128/JB.185.15.4298-4304.2003
https://doi.org/10.1016/j.plrev.2015.02.007
https://doi.org/10.1111/j.1600-0587.2013.00574.x
https://doi.org/10.1111/j.1600-0587.2013.00574.x
https://doi.org/10.1016/j.apm.2012.10.003
https://doi.org/10.1086/652373
https://doi.org/10.1093/bib/bbs009
https://doi.org/10.1038/35098076
https://doi.org/10.1038/nrg1877
https://doi.org/10.1111/mec.15209
https://doi.org/10.1186/1752-0509-5-84
https://doi.org/10.1038/nrg1804
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Regulate Growth Trajectories in Mice. Genetics 171 (1), 239–249. doi:10.1534/
genetics.104.040162

Zeng, G. Z., Chen, L. S., and Sun, L. H. (2005). Complexity of an SIR Epidemic
Dynamics Model with Impulsive Vaccination Control. Chaos, Solitons &
Fractals 26 (2), 495–505. doi:10.1016/j.chaos.2005.01.021

Zeng, J., de Vlaming, R., Wu, Y., Robinson, M. R., Lloyd-Jones, L. R., Yengo, L.,
et al. (2018). Signatures of Negative Selection in the Genetic Architecture of
Human Complex Traits. Nat. Genet. 50, 746–753. doi:10.1038/s41588-018-
0101-4

Zhang, S., Dong, L., and Chen, L. (2005). The Study of Predator-Prey System with
Defensive Ability of Prey and Impulsive Perturbations on the Predator. Chaos,
Solitons & Fractals 23 (2), 631–643. doi:10.1016/j.chaos.2004.05.044

Zhao, W., Chen, Y. Q., Casella, G., Cheverud, J. M., and Wu, R. (2005a). A Non-
stationary Model for Functional Mapping of Complex Traits. Bioinformatics 21
(10), 2469–2477. doi:10.1093/bioinformatics/bti382

Zhao, W., Hou, W., Littell, R. C., and Wu, R. (2005b). Structured Antedependence
Models for Functional Mapping of Multiple Longitudinal Traits. Stat. Meth.
Mol. Genet. Biol. 4 (1). doi:10.2202/1544-6115.1136

Zhao, X., Tong, C., Pang, X., Wang, Z., Guo, Y., Du, F., et al. (2012). Functional
Mapping of Ontogeny in Flowering Plants. Brief. Bioinform. 13 (3), 317–328.
doi:10.1093/bib/bbr054

Zimmerman, D. L., and Núñez-Antón, V. (1997).Structured Antedependence
Models for Longitudinal Data Modelling Longitudinal and Spatially

Correlated Data. New York, NY: Springer, 63–76. doi:10.1007/978-1-4612-
0699-6_6

Zwietering, M. H., Jongenburger, I., Rombouts, F. M., and van ’t Riet, K. (1990).
Modeling of the Bacterial Growth Curve. Appl. Environ. Microbiol. 56,
1875–1881. doi:10.1128/aem.56.6.1875-1881.1990

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Zhang, Gong, Fang, Zhu, Jiang and Wu. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 76637212

Zhang et al. Holling Model for Interspecific Interactions

https://doi.org/10.1534/genetics.104.040162
https://doi.org/10.1534/genetics.104.040162
https://doi.org/10.1016/j.chaos.2005.01.021
https://doi.org/10.1038/s41588-018-0101-4
https://doi.org/10.1038/s41588-018-0101-4
https://doi.org/10.1016/j.chaos.2004.05.044
https://doi.org/10.1093/bioinformatics/bti382
https://doi.org/10.2202/1544-6115.1136
https://doi.org/10.1093/bib/bbr054
https://doi.org/10.1007/978-1-4612-0699-6_6
https://doi.org/10.1007/978-1-4612-0699-6_6
https://doi.org/10.1128/aem.56.6.1875-1881.1990
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	A Holling Functional Response Model for Mapping QTLs Governing Interspecific Interactions
	Introduction
	Materials and Methods
	Mapping Materials
	Holling Equations
	A Mapping Framework
	Hypothesis Testing

	Results
	Fitting Growth Curves
	How QTLs Are Activated by Species Coexistence
	Mapping the Two-Dimensional Genetic Architecture of Microbial Growth in Co-culture
	Computer Simulation

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


