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The current SARS-CoV-2 pandemic era launched an immediate and broad response of
the research community with studies both about the virus and host genetics. Research in
genetics investigated HLA association with COVID-19 based on in silico, population, and
individual data. However, they were conducted with variable scale and success;
convincing results were mostly obtained with broader whole-genome association
studies. Here, we propose a technical review of HLA analysis, including basic HLA
knowledge as well as available tools and advice. We notably describe recent
algorithms to infer and call HLA genotypes from GWAS SNPs and NGS data,
respectively, which opens the possibility to investigate HLA from large datasets without
a specific initial focus on this region. We thus hope this overview will empower geneticists
who were unfamiliar with HLA to run MHC-focused analyses following the footsteps of the
Covid-19|HLA & Immunogenetics Consortium.
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INTRODUCTION TO HUMAN LEUKOCYTE ANTIGENS: CREATING
IMMUNITY FROM DIVERSITY

The classical HLA proteins are expressed on the surface of human cells. Although their primary
role is to present exogenous and endogenous peptides, they were first described as “antigens” due
to their interaction with T-cells in transplant rejection (Dausset, 1958). Along with other genes in
theMHC region, the products of theHLA genes are essential in the adaptive immune response. By
presenting peptides to both CD8+ (HLA class I molecules) and CD4+ T cells (HLA class II
molecules), HLA proteins initiate an immune response against foreign (non-self) peptides which
may be defective products of translation, neo-antigens generated by mutated genes from tumor
cells, or pathogenic in origin. In addition, class I HLA proteins interact with the KIR ligands of
NK cells, including KIR and LILRB, which are important in innate immunity (Carrington et al.,
2008; Kulkarni et al., 2008; Trowsdale and Moffett, 2008). Thus, HLA molecules are key features
of both innate and adaptive immune responses. HLA genes central role in immunity against
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infectious diseases and their importance for transplantation
have made them the subject of much study.

HLA proteins are coded by multiple genes on the short arm of
chromosome 6 at the 6p21 locus; this region containing HLA
genes is referred to as the Major Histocompatibility Complex
(MHC) for its seminal role in transplantation (Dausset, 1981;
Montgomery et al., 2018). Although there is a common confusion
between the two terms HLA andMHC, HLA specifically refers to
the genes involved in antigen processing and presentation
whereas the MHC corresponds to a whole locus, with HLA
and other immune-related genes such as the complement
system. The MHC region is the most gene-dense region of the
human genome, with 1% of the human coding genes (>200)
found in 0.1% of the genome length (Shiina et al., 2009). The
MHC region is commonly defined as a 4 Mb segment on
chromosome 6 (MOG 29657002–33192499 COL11A2,
GRCh38. p13 assembly) (Beck et al., 1999). However, due to
extended patterns of linkage disequilibrium (LD), an extended
MHC (xMHC) is often referred to in immunogenomics
(25726063–33400556, GRCh38. p13 assembly) (Horton et al.,
2004). The MHC region is divided into three regions based on
gene sequence similarities and functions, class I, II, and III in
which approximately 40% of the genes are immune-related. HLA
genes are found in the class I and class II regions and are
commonly divided in two categories: classical HLA proteins
present peptides to T-cells, whereas non-classical HLA are
mostly involved either in peptide presentation with other
receptors, with immune modulation, or with various steps of
classical HLA formation and loading.

The MHC class I region contains 12 HLA pseudogenes and
6 HLA genes (HLA-A, -B, -C, -E, -F, and -G), including three
classical (HLA-A, -B, and -C) that are ubiquitously expressed as a
heterodimer with beta-2 microglobulin at the cells’ surface. Class
I HLA molecules and their bound peptides are specifically
recognized by CD8+ T cells receptors. The non-classical HLA
class I molecules (HLA-G, -E, and -F) present different expression
patterns.HLA-E andHLA-F are usually ubiquitously expressed in
low levels, and they interact with ligands in T and NK cells (such
as HLA-E with NKG2A). HLA-G is predominantly expressed at
the maternal-fetal interface and has primarily been associated
with maternal–fetal tolerance by interacting CD8 from T cells and
LILRB1, LILRB2, and KIR2DL4 from NK cells (Donadi et al.,
2011).

The Class II region comprises four non-classical genes (HLA-
DMA, -DMB, -DOA, -DOB), mostly related to peptide loading,
and 17 classical HLA genes (e.g., HLA-DRA, HLA-DRB1, HLA-
DQA1,HLA-DQB1,HLA-DPA1, and others) that are expressed in
Antigen Presenting Cells (APC) such as B cells, monocytes,
macrophages, dendritic cells as well as epithelial cells under
inflammatory signals (Rock et al., 2016). Unlike class I HLA
molecules, class II molecules are heterodimers, consisting of α
and β chains, encoded by the corresponding HLA genes (e.g.,
HLA-DPA1 and HLA-DPB1 produce the HLA-DP molecule),
which facilitates molecular diversity. The HLA-DR beta chain can
be encoded by nine different genes (DRB1-9) with complex
patterns of expression, and gene content adding additional
layers of complexity (Faner et al., 2009). Finally, the class III

region, located between the class I and II regions, is the most
gene-dense region of the MHC; this region contains genes
encoding elements of the complement system, chaperone
genes, cytokines such as TNF and LTA, but no HLA genes.

Finally, there are other important non-HLA genes in the
MHC, such as TAP1 and TAP2, both related to peptide
pumping from the cytoplasm to the endoplasmic reticulum
(Praest et al., 2018), MICA and MICB, both induced in viral
infections and tumors and activate NK-mediate killing (Ghadially
et al., 2017), the tripartite motif (TRIM) family, related to cell
cycle progression, autophagy, and viral replication restriction
(van Tol et al., 2017), PSORS1C1, conferring susceptibility to
psoriasis and systemic sclerosis (Allanore et al., 2011), and others.

In addition to their large number and potential for many
combinations, the HLA genes display unparalleled genetic
diversity, with more than 27,000 alleles and almost 17,000
unique proteins (June 03, 2021, https://www.ebi.ac.uk/ipd/
imgt/hla/stats.html) identified for the five most polymorphic
loci (HLA-A, -C, -B, -DRB and -DQB1). This diversity of HLA
molecules is concentrated in the peptide-binding groove, which
allows the presentation of peptides of various shapes and sizes,
hence conferring broad protection against pathogens at the
population level. At the same time, the polymorphic nature of
HLA is also found on non-coding parts of the genes, such as the
promoter and have an impact on expression (Kulkarni et al.,
2011; Vince et al., 2016; Lima et al., 2019). Over evolutive time,
together with founder effects, multiple pathogen-challenges have
exerted selective pressures on HLA alleles in human populations
across the globe (Meyer and Thomson, 2001; Spurgin and
Richardson, 2010), shaping allele frequency differences and
selecting very specific or even private HLA alleles in some
populations (Brandt et al., 2018; Meyer et al., 2018). The
progress of genomics, and immunogenomics over the last
decade, had deepened our understanding of HLA role in
human diseases though the use of genome-wide association
studies (GWAS) (Kennedy et al., 2017; Dendrou et al., 2018).

The COVID-19 HLA and Immunogenetics Consortium
(CHIC) has been created during the pandemic to coordinate
efforts on HLA analysis. The CHIC provided a website with
information on HLA data and current projects (The COVID-19
HLA and Immunogenetics Consortium, 2020a). It is supported
by a database (The COVID-19 HLA and Immunogenetics
Consortium, 2020b) and its role is the centralization of
relevant HLA and clinical data for COVID-19 study. It
contains HLA data of 2,892 individuals from nine projects.
These data are freely available and new data can be easily
uploaded upon account creation. In addition, the website
allows HLA allele frequencies visualization, and use of HLA
data management and analysis tools. An HLA Imputation
Portal (HIP) is set up to allow geneticists to infer individuals
HLA alleles using SNP genotyping data, relying on multi-ethnic
models from Zheng et al. (Zheng et al., 2014). This tool may help
leverage SNP data to gain power in HLA association studies. The
CHIC also produced a broad review on immunogenetic
parameters (e.g., HLA, KIR, complement, cytokines and
chemokines receptors) and their role in COVID-19 (Aguiar
et al., 2021). A more specific review of COVID-19 and HLA
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associations (Douillard et al., 2021) highlights links between the
pathology and HLA at different levels, from allele frequency
correlation to HLA associations and haplotypes. The
consortium will gradually improve its portal by providing
access to additional and more diverse imputation reference
panels, and by recruiting more individuals. Results from
GWASs showed no association between HLA SNPs and
COVID-19 infection (COVID-19 Host Genetics Initiative,
2021) but demonstrated an association with COVID-19
severity; dedicated HLA allele association studies identified
potential signals of interest (Castelli et al., 2021). The spread
of HLA tools, allowing HLA allele inference from whole-exome
or whole-genome sequencing as well as from GWAS SNP data
will significantly increase the sample size from available cohorts
to maximize the statistical discovery power of HLA-centric
studies. In this report, we pursue this effort to provide an
overview of methods for generating HLA data along with
several analytical strategies to capitalize on this genetic
information. We will also cover additional immunogenomic
parameters, as MHC-related associations still have much to
reveal (Trowsdale and Knight, 2013). We hope this work will
empower researchers to include HLA-focused investigations in
their palette and will contribute to promote efforts for in-depth
explorations of the relationship between HLA and immune-
related outcomes in this pandemic era.

GENERATING AND WORKING WITH HLA
DATA

Performing immunogenetic studies can be a challenge for those
unfamiliar with the specifics of HLA nomenclature. An individual
HLA genotype can be obtained through multiple molecular
techniques, the complexity of its nomenclature allows the
alleles in a genotype to be described in different styles, and
these data can be stored in a variety of file standards. Overall,
HLA information can take multiple forms, requiring a
comprehensive understanding of the nomenclature in order to
run proper statistical analyses and find relevant associations.

Generating HLA Data
Originally, immunologists conducted microlymphocytotoxicity
assays, testing patients T/B cells (for HLA class I) or B cells (for
HLA class II) against different anti-sera or monoclonal antibodies
in the presence of complement. Sera or antibodies recognizing the
HLA antigens on cells would activate the complement and lyse
the cell; this serology staining would reveal the patient HLA
serotype (Park and Terasaki, 2000). Serology was however limited
by the underlying complexity of HLA and it resulted in poor
performances in transplantation (Hurley, 2021). The need to
improve this performance and technique evolution, with the
advent of PCR, conducted HLA specialists to switch to
molecular typing. Molecular techniques were adopted for HLA
typing; these methods allowed systematic identification of HLA
alleles, based on sequence polymorphisms, providing a ‘higher
resolution’ result that distinguishes many more allele categories
than serological methods. This molecular typing consistently

improved in resolution throughout the years driving
nomenclature evolution along the way. Sequence-specific
(PCR-SSO) methods rely on the hybridization of hundreds of
labeled SSO probes targeting unique sequences in polymorphic
regions. Sequence-specific priming (PCR-SSP) methods directly
amplify elements of the HLA genes with PCR primers containing
sequence-specific 3′ end polymorphisms, resulting in less
ambiguity (inability to distinguish alleles with similar
nucleotide sequences), than SSO methods (Meral and Beksaç,
2007).

Sanger sequencing-based typing (PCR-SBT) methods initially
provided sequences of the exons that encoded the peptide-
binding groove, and later overlapping sets of sequences for
entire genes. PCR-SBT was the gold standard for HLA
genotyping until the development of next-generation
sequencing (NGS) methods (Meral and Beksaç, 2007; De
Santis et al., 2013). Except for the last one, PCR-SBT, previous
methodologies were not suitable to detect new variants, and their
goals were detecting known polymorphisms.

The application of NGS was explored in 2012, as part of the
16th International HLA and Immunogenetics Workshop
(IHIW), but, given issues with mapping of short reads, allelic
imbalance, phasing, and high costs, PCR-SBT remained the gold
standard. More recently, the integration of NGS technologies
with bioinformatic solutions for immunogenetics has improved
the speed and accuracy of NGS HLA genotyping with lower error
rates and fewer ambiguities than PCR-SBT (Baier et al., 2019;
Jekarl et al., 2021), and the application of NGS was the focus of the
17th IHIW in 2017 (Vayntrub et al., 2020). Moreover, NGS is
ideal to detect new HLA variants. Researchers now routinely
identify novel HLA alleles (Nilsson et al., 2018; Ralazamahaleo
et al., 2019; Loginova et al., 2020; Ananeva et al., 2021a; Ananeva
et al., 2021b; Cheranev et al., 2021; Loginova et al., 2021) using
NGS and confirm them using SBT with PCR-SBT error often
responsible for non-concordance between the two. NGS-based
sequencing of multiple exons and introns has led to increases in
the growth of the IPD-IMGT-HLA Database collection
(Robinson et al., 2015; Robinson et al., 2019). Unfortunately,
the total number of new alleles may be underestimated as it is not
uncommon for new alleles to be NGS-typed without Sanger
validation.

So-called third-generation NGS generates unambiguous,
phased HLA genotypes, using instruments like the PacBio
SMRT (Mayor et al., 2015) or Oxford Nanopore Technology
MinION (De Santis et al., 2020) to avoid multiple molecular
techniques. This approach is faster than SBT and generates
phased polymorphism with longer reads. Researchers using
Oxford Nanopore Technology systems have successfully
sequenced 11 HLA loci with low ambiguities in under 6 h
(Mosbruger et al., 2020).

HLA Nomenclature
Soon after cell-surface antigens were identified as polymorphic
between individuals, the WHO Nomenclature Committee for
Factors of the HLA System was formed to develop a specific
nomenclature for HLA genes, proteins and allelic variants
(Allen et al., 1968). The original “HL-A″ factor serologically
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typed with multiple antibodies with an individual type (e.g., HL-
A (1,2/7,8) identifying them as positive for factors 1,2,7,8, and
confirmed two distinct haplotypes from parental typing. As
dozens of HLA genes and thousands of alleles were identified,
the nomenclature was expanded to accommodate new
complexity while building on the historical serological
vocabulary. In 1987, the nomenclature was updated to
accommodate newly available protein and nucleotide
sequences (Antigens, 1987). The modern locus names were
adopted at this time, and four-digits names were assigned to
alleles, which were only defines as protein variants. In 2010, the
current field-delimited nomenclature was adopted to account
for the growing number of silent and non-coding nucleotide
variants (Marsh et al., 2010).

A modern HLA allele name consists of up to four “fields”, each
of which includes a two- or more digit number, each separated by
a colon (Figure 1).

The first and second fields represent a historical serological
group, and a unique protein sequence, respectively. All allele
names have at least two fields. Alleles sharing the 1st, and 2nd
fields with a different 3rd field encode the same protein but have
unique silent-substitution in the exonic sequence, whereas
sequence differences contained in the introns are written in
the 4th field. The four fields of an allele name can also be
suffixed with a single-letter “expression variant”, identifying

alleles that are either not expressed, expressed at a low or
questionable level, or secreted. For example, HLA-A*02:01:01
represents an exonic sequence shared by e.g., HLA-A*02:01:01:
01 andHLA-A*02:01:01:134Q. In the latter case, the expression of
HLA-A*02:01:01:134Q is Questionable, due to a potential
alternate splicing nucleotide variant in intron 2. Allele names
can be truncated to fewer fields for different applications, with
each truncation described as a level of “resolution” (e.g., HLA-
A*02 is a one-field resolution allele).

In addition to this allele nomenclature, specific groups of
alleles have been defined. P and G groups refer to multiple
alleles sharing either the same peptide or nucleotide sequence
for the peptide-binding groove, respectively. For instance,
HLA-A*02:01:01:134Q and HLA-A*02:252 both belong to
the A*02:01P P group; the two proteins are globally
different but share the same peptide-binding groove. HLA-
A*02:01:01:134Q and HLA-A*02:89:01 belong to the A*02:01:
01G G group as they share identical peptide-binding groove
encoding exon sequences.

HLA supertypes are groups of alleles sharing similar peptide-
binding repertoires. Supertypes are defined by “structural
similarities, shared peptide-binding motifs, and identification
of cross-reacting peptides” (Wang and Claesson, 2014). Using
this classification, HLA-A*02:01:01:134Q potentially belongs
with HLA-A*02:02, A*02:05, A*69:01 in the A2 supertype. (del

FIGURE 1 | History and development of HLA nomenclature as illustrated by HLA-A*02:01:01:134Q. Each level of resolution corresponds to a group of HLA alleles
fitting the description, except for the full DNA sequence, a unique HLA allele. Colored pins represent non-synonymous polymorphism (pink) and synonymous or intronic
polymorphisms (purple); the displayed polymorphism is only indicative and does not reflectHLA-A*02:01:01:134Q sequence. P andG groups are namedwith the lowest
numbered two-field (HLA-A*02:01) and three-field (HLA-A*02:01:01) HLA allele name, respectively. Class II P and G groups are based on exon 2 only, while class I
P and G groups are based on exons 2 and 3. Supertypes are not defined as part of the official nomenclature (Wang and Claesson, 2014; del Guercio et al., 1995; Sidney
et al., 1995). Created with biorender.com.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7749164

Douillard et al. Approaching Genetics Through the MHC

http://biorender.com
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Guercio et al., 1995). Some studies of the HLA molecules’
evolution have interpreted HLA diversity differently. Kaufman
et al. (Kaufman, 2018; Di et al., 2021) have proposed promiscuous
and generalist HLA categories when Di et al. have challenged the
concepts of supertypes and function peptide-binding groove
groups.

HLA Data Formats
The modern and legacy nomenclature systems are still in use,
which often makes data comparison and meta-analysis difficult.
In addition, HLA alleles are stored in multiple formats which
impact their use with bioinformatic tools. TSV or CSVs have
been used to store HLA genotypes, usually organizing
individuals in rows and HLA genes in columns (with two
columns for each gene). Such files are often generated
manually, but are used by multiple population genetic and
disease-association applications (Lancaster et al., 2007;
Excoffier and Lischer, 2010; Pappas et al., 2016). More
strictly-defined bioinformatic-oriented formats include HLA
PED (or HPED) (Choi et al., 2021), an HLA-focused
extension of the PED format (Purcell et al., 2007); Variant
Call Format (VCF), as used by BEAGLE (Browning et al., 2018),
in which HLA allele names are recoded as multiple binary
identifiers, and Histoimmunogenetic Markup Language
(HML), an XML format developed specifically for exchanging
HLA and Killer-cell Immunoglobulin-like Receptor (KIR)
genotype data (Milius et al., 2015).

The IPD-IMGT/HLA Database releases new and updated
reference sequences and allele names every 3 months.
Individuals datasets may have been generated under any
release version, which is why tools like the Allele Name
Translation Tool (ANTT) have been developed to standardize

datasets to a common release version. (Mack and Hollenbach,
2010). Development of a standardized means of storing and
sharing data is still underway. In 2015, the MIRING reporting
guideline (Mack et al., 2015) introduced standardized data
elements and a controlled vocabulary for HLA genotype data
and meta-data, which were implemented in HML (Milius et al.,
2015). An HML message includes information on the IPD-
IMGT/HLA Database version, the entity and how they
generated the data, as well as references to external sources
(e.g., reference sequences and aligned read). HML is used to
transmit HLA genotyping data to the National Marrow Donor
Program (and other similar registries and donor centers), but has
yet to be adopted for genetic–analysis applications. Most of the
existent HLA analysis applications require fewer data elements
than are included in an HML message.

Given the number of different applications of HLA data, new
informatics tools can influence the interpretation of this
information. Multiple ancillary tools have been developed for
HLA research. Whether they allow researchers to run rapid
association analyses, extract new information from data, or
link HLA genotypes to novel fields of translational research,
all contribute to the advances in the HLA research (Table 1).

INFERRING AND IMPUTING HLA ALLELES:
FROM COMPLEX READ-MAPPING TO THE
STUDY OF LINKAGE DISEQUILIBRIUM
HLA inference is an umbrella term comprising multiple
bioinformatic tools and statistical methods to obtain
individuals’ HLA genotypes. Inference implies using missing
information to obtain HLA genotypes, this can generally refer

TABLE 1 | Tools for HLA analyses.

HLA application name Description URL

Alphlard-nt (Hayashi et al.,
2019)

Identification of somatic mutations in HLA molecules from whole-genome and
exome data using Bayesian algorithms

—

BIGDAWG (Pappas et al., 2016) Open-source R package for the case-control analysis of highly polymorphic data at
the allele, haplotype and amino-acid level

https://CRAN.R-project.org/package�BIGDAWG

Easy-HLA (Geffard et al., 2020) Website with HLA alleles haplotyping, upgrading and inference from HLA
genotypes, prediction of HLA-C expression

http://hla.univ-nantes.fr/

HATK (Choi et al., 2021) Open-source Python pipeline for HLA association studies, including tools for HLA
data formatting

https://github.com/WansonChoi/HATK

HLA-check (Jeanmougin et al.,
2017)

Perl tool evaluating the probability of accurate HLA genotype imputation by
comparing it to SNP imputation in the exonic region of HLA.

https://github.com/mclegrand/HLA-check/

HLA-EMMA (Kramer et al.,
2020)

Donor/recipient compatibility assessment based on solvent-accesible amino acids,
based on intralocus comparisons

http://www.HLA-EMMA.com

HLAfix Open-source R pipeline for HLA association studies. Performing SNP quality
control steps, stratification, HLA imputation and representation of the results

https://univ-nantes.io/Nico_V/hlafix

HLAHapV (Osoegawa et al.,
2016)

A Java-based HLA Haplotype Validator for quality assessments of HLA typing https://github.com/nmdp-bioinformatics/
ImmunogeneticDataTools

HLA-NET (Nunes et al., 2014) Set of tools to manipulate HLA data, infer haplotypes, convert files format, and
information about typing

https://hla-net.eu/

HLApers (Aguiar et al., 2020) Genotyping and quantification of HLA expression from RNA-seq data https://github.com/genevol-usp/HLApers
HLA-TAPAS (Luo et al., 2020) Open-source Python pipeline for creation of reference panels and HLA association

studies
https://github.com/immunogenomics/HLA-TAPAS

MergeReference (Cook and
Han, 2017)

SNP2HLA compatible tool to concatenate multiple reference panels in order to gain
accuracy during HLA imputation

http://software.buhmhan.com/MergeReference

pyHLA (Fan and Song, 2017) Association analysis for HLA alleles in Python language https://github.com/felixfan/PyHLA
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to using untargeted sequencing data, which have insufficient
sequence read depth, to thoroughly recover the HLA alleles
polymorphisms (Klasberg et al., 2019).

Inference From Whole-Genome
Sequencing and Whole-Exome Sequencing
Unlike NGS typing techniques which targetsHLA genes (as many
commercial kits apply), untargeted sequencing does not focus on
HLA. Whole-genome sequencing (WGS) methods aim to identify
all genetic variations of an individual genome, while whole-
exome sequencing (WES) is designed to target all exons.
Initially, these methods did not support the calling of HLA
alleles; low coverage and short read-lengths led to poor HLA
typing accuracy (Bauer et al., 2016). Low coverage does allow
identification of HLA alleles, due to their high levels of
polymorphism and extensive conserved sequences among
genes, and improvements were needed (Hosomichi et al.,
2015). Moreover, general pipelines for analyzing NGS data
from WGS do not work for HLA genes; because they present
high sequence similarity, it is very common that a short read (a
sequence generated in NGS procedures) from one gene aligns to
another gene (cross-mapping), leading to genotyping errors (e.g.,
HLA-A andHLA-H, orHLA-C andHLA-B) (Castelli et al., 2018).
The intense polymorphism observed in HLA genes may bias read
alignment when using a single genome reference, especially when
one individual presents too many modifications compared to the
reference genome. This issue overestimates reference allele
frequencies and causes genotyping errors (Brandt et al., 2015).
Therefore, it is mandatory to use methods tailored forHLA genes
to get reliable genotypes and haplotypes at the SNP level from
NGS data.

Multiple algorithms have been developed and refined
(Klasberg et al., 2019). These include: 1) classic read-mapping
with HLA-specific quality control steps or different scores, hla-
mapper (http://www.castelli-lab.net/apps/hla-mapper) (Castelli
et al., 2018) which also works on KIR genes and provide
genotyping and haplotyping at the SNP level, seq2HLA
(Boegel et al., 2012) and HLAforest (Kim and Pourmand,
2013), among other tools; 2) population graph reference
methods (e.g., HLA*PRG:LA), which identify probability edges
between polymorphisms nodes and project read data onto these
to evaluate the most likely alleles.

Recent reviews and tool comparisons on the optimal methods
for non-HLA targeted sequencing data are already available (see
(Klasberg et al., 2019; Chen et al., 2021)). In 2020, Chen et al.
found that HLA-HD was the most accurate tool for producing
HLA genotypes fromWGS andWES. However, the study focused
on the performance of five tools only. Notably, most of the tools
they studied achieved much higher accuracies than previously
reported by Bauer et al., 2016, which emphasizes a drastic
improvement in read coverage and processing in the MHC
region (Bauer et al., 2016). Finally, researchers successfully
implemented these tools in association studies, promoting
their importance for HLA-centric epidemiological studies
(Juhos et al., 2015; Xie et al., 2017; Mimori et al., 2019; Vince
et al., 2020a).

HLA Allele Imputation
HLA genotyping data can also be generated using HLA
imputation tools, which generate genotypes for individuals on
the basis of LD between GWAS-derived SNP data for the MHC
region and specificHLA alleles. These methods ultimately rely on
reference datasets of HLA and SNP genotypes for the same
individuals, and have become increasingly accurate in their
predictions as new algorithms are developed.

Following the opportunity brought by SNP to SNP
imputation, SNP to HLA imputation algorithms offered a
quick and easy way to obtain HLA genotypes from widely
available GWAS SNP genotyping data (McCarthy et al., 2016).
SNP to HLA imputation relies on reference panels of individuals
with known SNPs and HLA genotypes, to generate links between
SNPs, haplotypes, and HLA alleles using machine learning
algorithms (Figure 2).

The first published algorithms, SNP2HLA (Jia et al., 2013) and
HLA*IMP (Dilthey et al., 2011), were based on different
implementations of hidden Markov models; SNP2HLA used
BEAGLE (Browning and Browning, 2009), a haplotyping and
SNP genotype imputation tool. In 2014, Zheng et al. proposed
HIBAG, an attribute bagging method tailored for HLA data
(Zheng et al., 2014), which showed better performance than
pre-existing tools, and at the time was the only method to
provide population-specific reference panels for hundreds of
individuals while enabling construction of personalized
reference panels building. Initial independent reviews
suggested that SNP2HLA performed better on 3,265 samples
from BioVU, a de-identified electronic health record database
coupled to a DNA biorepository (Karnes et al., 2017). However,
later reviews (Kuniholm et al., 2016; Pappas et al., 2018) and
studies (Ritari et al., 2020) have favored HIBAG for HLA
imputation, notably on more complex HLA data.

In practice, both SNP2HLA and HIBAG are commonly used
to conduct HLA imputation or creation of new reference panels.
Overall accuracy differences are low for European panels that had
been extensively assessed. An important point still under
investigation is the impact of population diversity in reference
panels. While some researchers advocate for the creation of
exhaustive multi-ethnic reference panels (Degenhardt et al.,
2019), others have shown that specific populations (e.g.,
insular or admixed require more restrained reference panels
(Khor et al., 2015; Ritari et al., 2020).

The difficulty in determining if a reference panel is suitable
for HLA imputation is related to how well it matches to target
data, on the frequency of common alleles and the presence of
rare HLA alleles, specific to some population (especially in
underrepresented populations). This has led to the creation of
reference panels with limited HLA diversity. While accuracy
values are often reported as the ultimate answer to a model
viability, these values can be misleading. For a rare HLA allele
in a validation dataset, a 90% accuracy value can be achieved if
that allele should be imputed 20 times out of 2,000 alleles
(i.e., 1,000 individuals) but is never predicted. Therefore, other
metrics (e.g., sensitivity, specificity, or F1 score (Cook et al.,
2021)), must not be overlooked. Admixed populations are
formed by individuals from different genetic backgrounds in
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variable proportions, and HLA imputation can be sub-optimal
if the reference panel is only drawn from one of the ancestral
populations. Conversely, a reference panel from an admixed
population with a different overall genome proportion from
the individuals being imputed may also provide inaccurate
results.

To effect worldwide improvement in HLA imputation efforts,
we led the creation of an international consortium, the SNP-HLA
Reference Consortium (SHLARC), whose aim is to gather data to
represent the extreme diversity of HLA alleles, fostering accurate
imputation (Vince et al., 2020b). We further advocate for
improvements to current HLA imputation tools and for the
development of a platform promoting easy access to HLA
imputation for immunogeneticists. Though HLA imputation is
not yet suited for clinical settings, generalization of HLA
association studies offers a new way to investigate immune
pathologies (Meyer and Nunes, 2017).

New versions HLA*IMP (Motyer et al., 2016) and SNP2HLA
have been released (e.g., MHC*IMP (Squire et al., 2020),
CookHLA (Cook et al., 2021), and Deep-HLA (Naito et al.,
2021)) that apply new algorithms. These highlight the
community intense interest in HLA imputation. CookHLA is
an updated version of SNP2HLA (based on the BEAGLE
algorithm) that better accounts for LD in the HLA region and
makes use of the genetic map option to better impute individuals
who are not well represented in the reference panels. For its part,
Deep-HLA seems especially promising as deep learning may lead
to better imputation of rare alleles.

BIOINFORMATIC ANALYSES OF HLA
INFORMATION

The pressing challenge of understanding the COVID-19
pandemic, given previous associations with infectious diseases,
has led researchers to scrutinize HLA using any available
resource. In addition to issues of nomenclature and on-going
technological evolution of typing methods, the complexity of
HLA analyses is also derived from the multiple forms these
analyses can take. On the one hand, HLA allele frequencies
and predicted binding affinity of pathogen peptides to HLA
alleles allow for a first step in the HLA world, as they are
easily available, but are limited to investigate its actual role.
On the other hand, the in-depth implication of HLA is
revealed when looking at SNP association in the MHC region,
and specifically when looking at allele associations, but their
realization is hindered by high costs and technical difficulties. The
study of HLA is multi-layered, with a continuum of methods
peaking with analysis of individual data and multi-locus
haplotypes, all of which contributing to a comprehensive
understanding of the role of HLA in a given analysis.

HLA Allele Frequencies
The diversity of HLA alleles across geographically separated
populations is thought to be the result of balancing selection
due to local pathogens (Meyer and Thomson, 2001). The
allelefrequencies.net database has the most extensive collection
ofHLA allele frequencies in diverse populations (Middleton et al.,

FIGURE 2 | HLA imputation from GWAS data. Reference panels are created from individuals with known SNP and HLA data. Depending on the method, an
algorithm will deduce the probability of a specific HLA allele in the population given a SNP haplotype. These new found links are stored for that reference panel and
applied to new SNP data to infer HLA genotypes. HLA-A is given as an example with a truncated list of alleles; other MHC genes are imputed using the same method.
Different populations are represented in different circles and imply different allele frequencies. Pinpoints represent SNPs and are only indicative. HLA imputation
results are highly dependent on the population chosen for the reference panel. Created with biorender.com.
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2003). In addition, HLA typing conducted by bone marrow
registries may constitute a local estimation of HLA allele
distribution in a population (Sacchi et al., 2019; Schmidt et al.,
2020). It is possible to statistically analyze the correlation (e.g., via
linear regression or Pearson coefficient) between a quantitative
value, such as the number of COVID-19 cases, and theHLA allele
frequencies obtained from a different sample in every studied
population (e.g., in a database or registry).

However, while these correlations are faster and easier to
obtain than new HLA genotypes, they may result in spurious
correlations because: 1) most of the HLA alleles (and observed
haplotypes) have a low frequency. For example, according to
allelefrequencies.net, in the 416,581 individuals from the African-
American NMDP population in the United States, two-thirds of
the 321 HLA-B alleles at two-field resolution have frequencies
below 0.003% (24 or less occurrences). Assuming that reference
population samples are representative is not always accurate. A
possible solution is to focus on commonHLA alleles; 2) statistical
tests are often applied without multiple-testing correction,
regardless of the number of tests; 3) the confounding
variables, both genetic (e.g., ancestry) and environmental (e.g.,
comorbidities), are often overlooked.

In any case, correlation is not causation. Therefore, the high
number ofHLA alleles and biased frequencies are bound to create
spurious links between their presence and any phenotype.
Therefore, to thoroughly investigate the relationship between
HLA and phenotype, it is of the utmost importance to
conduct studies and control for other genetic factors such as
population stratification, linkage disequilibrium, or comorbidities
(some linked to HLA polymorphism itself such as diabetes).
Statistical bias could also be reduced by working on a higher
number of samples and correcting for multiple testing. It is also
worth considering different resolution levels of information, from
in silico studies to full haplotype information.

In silico Peptide Binding
HLA molecules present endogenous and exogenous peptides,
however, affinities for these peptides vary greatly depending
on the peptide conformation and the peptide cleft topology
and chemistry. Whether an HLA allele presents several or few
peptides derived from one specific pathogen is one mechanism
potentially explaining the strong immune response or tolerance
towards it. Researchers can use prediction tools, such as
NetMHCpan (Nielsen and Andreatta, 2016; Jurtz et al., 2017),
trained on binding affinity and elution assays, to evaluate the
number of potentially bound peptides for any HLA class I allele.
The “pan”methods, contrary to the “allele-specific”methods, use
similarities in sequence data to predict the peptide binding
capacity of HLA alleles for which no information is available.
Other tools exist and have been reviewed by Mei et al., in 2020
(Mei et al., 2019). Such predictions, coupled with HLA genotype
data of individuals, give a theoretical insight into the possible
adaptive immune response of a person. In these tools, the
peptidome of the studied pathogen is informatically divided
into peptide sequences of limited size (8–12 residues to
account for the size of peptides presented by class I
molecules), and the number of alleles predicted to bind a large

number of peptides is inferred to represent better presentation to
T cells, and a protective role against the pathogen. However, the
only way to definitely determine peptide binding affinity is
through laboratory experiments.

Genome-wide Association Studies
Genotyping data obtained with SNP arrays has proven to be fast
and inexpensive for investigating the genetic component of
complex traits and diseases (Claussnitzer et al., 2020),
compared to more thorough and exhaustive sequencing
technologies. Without assumptions regarding the region
potentially involved in the studied trait, GWAS helped
discover protective and risk alleles, particularly in the HLA
region (Kennedy et al., 2017). Contrary to the use of
independent HLA allele frequencies for studying a pathology,
association studies assess the difference between affected
individuals and unaffected individuals or the distribution of a
particular quantitative trait. Both genetic and phenotypic data are
individual and not population-based, reducing biases. The
statistically significant SNP (aka, top hits) are linked to genes
by proximity, and investigation by pathway analysis can reveal
additional biological information on their effect. More recently,
transcriptome-wide association studies have allowed more
accurate investigation of the impact of a SNP on the
expression of genes (Wainberg et al., 2019). In addition, some
SNPs can be highly correlated to an HLA allele (e.g., rs2395029
and HLA-B*57:01 have been described multiple times as in
complete linkage disequilibrium (de Bakker et al., 2006)), and
therefore provide additional functional information for biological
interpretation. Finally, statistical regression models can take into
account potential confounding factors (e.g., genetic ancestry and
population stratification, sex, age, comorbidities) to control for
limiting biases.

Given the complex LD patterns across the MHC region, SNP
association analyses are not usually precise enough to identify
specific disease-associated HLA alleles. LD patterns may differ
between populations. For example, the rs2395029 tagsHLA-B*57:
01 in Europeans but displays reduced LD in African-Americans
(Colombo et al., 2008). The complex LD patterns and the high
number of genes in theMHC region, make it difficult to pinpoint
an SNP to a specific HLA allele in most cases.

HLA Allele Association Studies
Association studies of HLA alleles offer a more relevant
biological explanation, based on peptide presentation. HLA
allele data can come from different sources, including various
epochs of HLA typing and HLA imputation from SNPs (see
above). These data can be analyzed as is, or low resolution HLA
data can be “upgraded” using the HLA-Upgrade tool from the
Easy-HLA website, which statistically impute the most probable
two-field genotype based on a haplotype database (Geffard et al.,
2020). Once HLA data from multiple sources have been
standardized for allele content and resolution, a frequency
cut-off value is usually applied to test only those alleles with
sufficient occurrences in the dataset to guarantee statistical
power in the analysis. HLA alleles being highly polymorphic,
they often display lower frequencies, and a larger sample size is
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usually required to obtain significant results compared to SNP
analyses.

Regression models, which are commonly used for SNP
association, are the most versatile and common statistical
models implemented to test associations between individual
HLA alleles and phenotypes of interest (linear models for
continuous and logistic for discrete phenotypes, respectively).
Regression models can work with multiple covariables, allowing
the disentanglement of the HLA effect and confounding factors
such as population stratification, sex, gender, and others. Similar to
GWAS SNP analyses,HLA alleles are tested individually as biallelic
markers for eachHLA gene, as each individual can exhibit 0, 1, or 2
occurrences of a given allele. As HLA molecules are expressed co-
dominantly (Hughes and Nei, 1988), the dominant genetic model
is commonly preferred to allelic or recessive models to assess HLA
allele associations. However, it should be mentioned that different
alleles might present different expression levels due to promoter
and 3′UTR variations and final protein stability. Indeed, this is
another HLA world: the effect of variants in the expression levels,
which sometimes are directly linked with disease susceptibility
(Kulkarni et al., 2011).

As in GWAS analysis, the overall performance of a statistical
model can be evaluated with a Quantile-Quantile (QQ) plot,
representing the observed p-value distribution for eachHLA allele
compared to the expected distribution under the null hypothesis.
Any deviation from this distribution is highlighted by a deviation
from a straight line. (Murdoch et al., 2008). Different scenarios
can be described: 1) observed p-values mostly follow the null
hypothesis, indicating that the statistical model accurately fits the
data; 2) observed p-values deviate below the null hypothesis line,
indicating that the statistical model is probably underpowered; 3)
observed p-values deviate above the null hypothesis line,
indicating that the statistical model may not be well
parameterized and some confounding factors are not enough
considered. Once the robustness of the analysis is confirmed, it is
important to obtain a comprehensive visualization of the results

with Manhattan plots, for instance, displaying–log10 (p-value)
along with the list of testHLA alleles ordered numerically (as seen
in Vince et al. (Vince et al., 2020a)). Volcano plots can also
display the significativity of alleles along with their effect size,
allowing a global view of their impact. Finally, the significance
threshold accounting for multiple testing can be determined with
the Bonferroni correction (5% α threshold divided by the number
of tests) or other corrections such as the FDR, or permutations.

Easy-HLA: Going Beyond HLA Alleles to
HLA Genes Haplotypes, HLA Expression
Levels, Specific HLA Amino Acids, KIR
Ligand Groups
New tools have been developed to facilitate the analysis of
additional immunogenetic parameters (e.g. KIR ligands, see
Figure 3).

HLA genotypes can be used to infer additional immunogenetic
parameters that can further be analyzed (see Figure 3.) to get a
clearer understanding of the relationship between immunity and
pathologies. While one HLA allele already represents a haplotype
of SNPs within a gene, as it is a collection of polymorphisms in the
gene of interest, researchers have demonstrated the importance of
looking at multiple HLA alleles on the same chromosome, which
is referred to as an HLA haplotype. Association studies can be
done on haplotypes, but many haplotype frequencies can be even
lower than constituent allele frequencies. In a clinical setting, the
collection of haplotype information is also useful, notably in
HSCT transplants, for identifying haploidentical individuals.
These haplotypes can be inferred using the HLA-2-Haplo tool
from Easy-HLA website (Geffard et al., 2020), for instance. A
straightforward, reliable, but expansive strategy to get HLA gene
haplotypes is the analysis of trios (mother, father, and offspring)
or third-generation long-read sequencing such as PacBio SMRT.

Easy-HLA also infers HLA-C expression levels, HLA alleles
amino acids, and KIR ligand groups. Recently, high HLA-C

FIGURE 3 | Association study pipeline for HLA data and surrounding immunogenetic factors. Created with biorender.com.
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expression levels were associated with better control of HIV
(Apps et al., 2013; Vince et al., 2016). Class I HLA alleles
have also been grouped according to their dependence on
tapasin, a major actor in peptide loading, which proved to be
an interesting subdivision for studying HIV-1 control (Bashirova
et al., 2020). Moreover, testing HLA allele amino acids may
indicate a specific function of a given residue across several
alleles, as with this study by McLaren et al., again in HIV
control (McLaren et al., 2012). Finally, studying KIR ligand
groups along with KIR typing as previously described (Martin
and Carrington, 2013; Vince et al., 2014) can reveal the binding
patterns of specific HLA alleles. For example, HLA-A and HLA-B
molecules bearing the Bw4+ motif bind specifically to KIR3DL1.
Similarly, HLA-C group 1 (C1) allele-encoded molecules carry
an asparagine at position 80 and specifically bind KIR2DL2/3,
as opposed to group 2 (C2) allele-encoded molecules, which
carry a lysine and specifically bind KIR2DL1 (Parham et al.,
2012). Grouping HLA alleles according to different functional
parameters can increase the power of detecting a true
positive signal and represent an opportunity to come closer
to the biological cause behind HLA genetic association with
diseases.

CONCLUSION

However intricate it may be, the MHC region, and HLA in
particular, is the perfect candidate to investigate infectious or
auto-immune diseases, as its primary biological role is to
present antigen to the immune system. HLA research was able
to grow in different directions from in silico studies on
peptide binding to association studies of HLA alleles,

giving leads on HLA involvement in pathologies. That said,
HLA-focused analysis requires special care because its
immense diversity and low-frequency distribution may
potentially result in spurious associations when tested
incorrectly or in a small cohort. Fortunately, many tools
have been and are still developed to obtain high-quality
HLA information for a low cost with statistical inference,
through HLA inference from NGS data or HLA imputation
from SNP GWAS data or HLA resolution upgrading from
HLA genotypes. Researchers considering to explore HLA
should take advantage of existing resources and mobilize
them when taking on new challenges, such as with the
SARS-CoV-2 research.
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