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Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease,
characterized by a great variety of both clinical presentations and genetic causes. Previous
studies had identified two different missense mutations in SOD1 (p.R116C and p.R116G)
causing familial ALS. In this study, we report a novel heterozygous missense mutation in
the SOD1 gene (p.R116S) in a family with inherited ALS manifested as fast-deteriorating
pure lower motor neuron symptoms. The patient displayed similar clinical picture and
prognostic value to previous reported cases with different R116 substitution mutations.
Modeling of all R116 substitutions in the resolved SOD1 protein structure revealed a
shared mechanism with destroyed hydrogen bonds between R116 and other two
residues, which might lead to protein unfolding and oligomer formation, ultimately
conferring neurotoxicity.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a relentless neurodegenerative disorder and the most
common adult-onset motor neuron disease (MND), which causes muscle weakness and
atrophy. It is progressively fatal, and the majority of patients die within 3 years after
onset of symptom (Turner et al., 2013). It is considered highly heterogeneous in
nature, which displays a great variety of both clinical presentations and underlying
pathogenic mechanisms. About 5%–10% of ALS cases are familial (fALS). The genetic
spectrums of ALS vary among different populations. In European and American
populations, the most common mutations are C9orf72 intronic repeat expansions, whereas
in Chinese and other Asian populations, SOD1 mutations are most frequent (Zou et al., 2017;
Liu et al., 2018). So far, more than 180 distinct SOD1 mutations have been identified as genetic
causes for ALS (Mathis et al., 2019) (https://alsod.ac.uk/). Mutant SOD1 proteins cause
neurodegeneration mainly through a gain of toxicity pathway. Other possible mechanisms
also include increased protein instability, protein aggregation, and probabilities of fibrillization
(Wright et al., 2019).
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FIGURE 1 | (A) Pedigree of the family. Square � male; circle � female; diagonal black line � deceased individual; black filled symbol � clinically proven affected
individual; empty symbol � clinically healthy relative; question mark � suspected; arrow � proband. (B) DTI reconstruction of the bilateral cortical spinal tracts of the
proband. RCST, right cortical spinal tract. LCST, left cortical spinal tract. (C) Confirmation by Sanger sequencing showing point mutation (red oval). (D) Sequence
alignment analysis of SOD1 in different species. Amino acid at position 116 is highlighted in red. (E) Functional prediction of mutations at 116th amino acid in SOD1.
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The genotype–phenotype correlation has been described for a
few SOD1 mutations for disease durations but not for clinical
features. p.A5V and p.G42S (previously denoted as p.A4V and
p.G41S, respectively) SOD1 substitutions have been consistently
associated with a fast progressive phenotype, while patients with a
p.H47R (previously denoted as p.H46R) mutation showed a more
benign phenotype and a much longer life expectancy (Battistini
et al., 2010; Takazawa et al., 2010). However, these mutations are
marked by symptoms representing a varying degree of lower and/
or upper motor neuron involvement of spinal, bulbar, and
cortical regions. The genetic and phenotypic heterogeneities
have been suggested to play critical roles in determining
disease prognosis and in designing clinical trials (Manera
et al., 2019). Whether there is a correlation between mutation
status and clinical traits remains to be answered.

Here, we report a novel missense mutation in the SOD1 gene
(p.R116S), causing rapid deteriorating lower motor neuron
symptoms in a fALS. The function of the mutant protein was
explored to try to find a correlation between perturbed protein
functions and clinical severity.

METHODS

Pedigree
The proband was from a Chinese family of Han ethnicity with 28
known family members from three generations (Figure 1A).
Overall, four affected family members have been diagnosed
with MND. Two members from this family (proband and
patient II-6) were seen at the ALS/MND Clinic, Xuanwu
Hospital, Beijing, China, and further information on additional
family members (II-7, III-7) was provided by the proband
afterward. Disease onset was defined as first reported
symptoms of weakness, dysarthria, or dysphagia. Patients
underwent extensive laboratory studies to rule out other
causes of neuropathy. The study was approved by the local
medical ethical committee, with all participants providing
written informed consent.

Genetic Analysis
DNA was extracted from peripheral blood samples using a
standard phenol–chloroform method. Whole-exome
sequencing was used to detect gene mutations. DNA
libraries were prepared with KAPA Library Preparation Kit
and enriched using SeqCap hybridization probes following
the manufacturer’s instructions (Roche, Basel, Switzerland).
Captured DNA libraries were subsequently sequenced on the
Illumina NovaSeq platform. Low-quality reads and adapter
sequences were first excluded. Single-nucleotide variants
(SNVs) and insertions and deletions (INDELs) were filtered
using GATK. All called variants were annotated based on
several public databases, including the 1,000 Genomes
Project, Human Gene Mutation Database Professional,
gnomAD, and China National Gene Bank (CNGB). The
pathogenicity of the identified variants was analyzed
mainly based on criteria following the American College of
Medical Genetics and Genomics (ACMG) guidelines.

Candidate mutation detected in exome sequencing was
confirmed by Sanger sequencing.

Protein Function Analysis and Structure
Modeling
The sequence-based assessment of the potential pathogenicity of
each variant was assessed by the SIFT web server (https://sift.bii.
a-star.edu.sg), Provean Protein web server (http://provean.jcvi.
org/genome_submit_2.php, PolyPhen-2 web server (http://
genetics.bwh.harvard.edu/pph2/), CamSol web server (https://
www-cohsoftware.ch.cam.ac.uk), and PopMuSiC web server
(https://soft.dezyme.com). The protein crystal structure of the
wild-type human SOD1 was retrieved from the Protein Data
Bank repository (PDB code 2C9V), in silico mutagenesis was
performed for the three mutations discussed in this study using
Pymol (The PyMOL Molecular Graphics System, Schrödinger,
LLC, http://www.pymol.org), and the Find function was used to
identify potential hydrogen bonds.

RESULTS

Clinical Findings
The proband was a 50-year-old female presented with a 2.5-
month history of progressive muscle weakness. She first
experienced a heavy feeling in her right leg when climbing
stairs. It worsened over the next 2 weeks that she had trouble
standing up from a squatting position without support. The
weakness continued to progress and spread to her left leg in
the following 2 weeks. By then, she noticed muscle wasting in her
right thigh and experienced significant difficulty climbing stairs
as well as trouble getting up from a sitting even with support. She
soon showed problems reaching upward using her right arm.
Neurological examination revealed mild to moderate weakness of
proximal muscle groups in the lower limbs of both sides and the
right upper limb. Muscle atrophy of the right thigh was noted.
Deep tendon reflexes were decreased to normal with down-going
plantar reflex on both sides. Other pathological reflexes were not
elicited. There were no abnormal findings on sensory system
examination. There were no cognitive or mood changes.
Pulmonary function test indicated restrictive deficit.
Electromyography showed in both upper and lower limbs as
well as thoracic paraspinal muscles a neurogenic pattern. Sensory
and motor nerve conduction velocities were within normal
ranges. 18F-FDG PET did not detect any hypometabolism at
the motor and premotor cortices or frontal–temporal regions. 3
Tesla magnetic resonance imaging (MRI) of the brain and spinal
cord were unremarkable. Diffusion tensor imaging (DTI)
reconstruction of the bilateral cortical–spinal tracts (CSTs) was
performed, and no overt deficits were observed (Figure 1C).
Together, a suspected diagnosis of progressive muscular atrophy
(PMA) was made, and based on the familial history of MND, her
blood sample was also sent out for WES and genetic analysis.

The proband received standard treatment with Edaravone and
Riluzole and was evaluated every 3–6 months. Unfortunately, due
to the COVID-19 pandemic, her follow-ups were only conducted
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via Telemedicine; therefore, detailed neurological check-ups were
not possible. Her initial ALSFRS-R score was 39/48, which
declined to 22/48 at her 3-month follow-up when she
developed bulbar symptoms. Her ALSFRS-R score further
decreased to 16/48 at her 5-month follow-up. One year after
the disease onset, she was completely bedridden and required full-
time non-invasive positive pressure ventilation (NIPVV). By
then, her ALSFRS was 8/48. Six months later, she was
admitted to the hospital and intubated due to respiratory
failure and died 1 month after.

The proband’s mother (patient II-6) was diagnosed of MND at
age 67 and died 1 year later. Her symptoms started with weakness
and muscle wasting of the lower limbs. Later, she experienced
weakness in upper limbs and complained of shortness of breath.
The symptoms were more pronounced on the right side. Upon
neurological examination, substantial proximal > distal bilateral
muscle weakness of her lower limbs and mild weakness of her
right upper limb were found. Atrophies of multiple muscle
groups were also observed. Deep tendon reflexes were
diminished as well. No pathological reflexes were detected, and
both cranial nerves and sensory modalities were intact. There was
no cerebellar sign. The pulmonary function test indicated
restrictive deficit. Needle EMG showed chronic and active
denervation in bulbar and spinal regions.

Patient III-7 was diagnosed of MND at age 52 and died of
respiratory failure 1 year later. Her initial symptom included
weakness in the upper limb. Another patient (II-7) in this
family was also diagnosed of MND with lower-limb onset
when she was 62 years old and died at age 63. Both
underwent detailed laboratory studies that did not reveal any
other cause of diffuse denervation. Both the mother (II-3) and the
grandmother (I-2) of patient III-7 were suspected mutation
carriers who died of other causes over the age of 70 years.

Genetic Analysis
The DNA sample of patient III-15 was subjected to whole-exome
sequencing (WES) to get a comprehensive profile of genetic
variants. A novel heterozygous c.346C>A mutation
(NM_000454.5, p.R116S, previously denoted as p.R115S) in
the SOD1 gene, was revealed (Figure 1B). Due to the death of
all other affected members, segregation of the mutations could
not be confirmed in the family presented here. However, this
mutation was absent in the databases of healthy controls,
including Genome Aggregation Database, the Exome
Sequencing Project (ESP), and Exome Aggregation
Consortium (ExAC) databases. The mutation altered a highly
conserved residue and was predicted to be deleterious by both
SIFT and PROVEAN and ranked as Probably Damaging and
Disease Causing by PolyPhen-2 andMutation Taster, respectively
(Figure 1E).

Prediction on Mutated Protein Function
SOD1 R116S mutation-induced alterations in protein functions
were explored using a battery of algorithms. Mutation at this site
resulted in a polar to non-polar amino acid change, implying a
significant change in amino acid chemistry (Grantham score of
110) and affecting a highly conserved residue (Figures 1D,E).

The impact of R116S mutation on protein solubility was
predicted using the CamSol Intrinsic web server, which
suggested that the R116S SOD1 mutant was less soluble
compared to the wild-type protein. Additionally, free energy
change upon mutation was predicted using PopMuSiC, and an
arginine-to-serine change at codon 116 was predicted to have a
calculated ΔΔG of 1.62, suggesting a destabilizing effect.

The potential effects of the mutation on SOD1 protein
stabilization were further investigated by protein modeling.
SOD1 protein is a homodimer composed of two β-barrel
monomers with copper and zinc in the active site. Codon 116
is located at the dimer contact site, being part of the interlocking
Greek key loop connecting two four-stranded anti-parallel
β-sheets facing each other (Figure 2A) (Wright et al., 2019).
Interatomic interactions between the side chain of mutated
residue and residues in the vicinity were analyzed, and
hydrogen bonds were represented in the form of pseudo
bonds using Pymol. Arginine at position 116 was shown to
form hydrogen bonds with neighboring amino acids,
particularly glutamic acid 50 and cysteine 112. R116S was
found to disrupt hydrogen bonding with E50 and C112,
suggesting alterations in native protein conformation and
structure destabilization, thereby serving as a basis for
neurotoxicity (Figures 2B,D).

DISCUSSION

We found a Chinese fALS family carrying a novel R116S change
in SOD1. All four patients displayed an aggressive disease course
with disease duration less than 2 years from initial symptom to
death. Molecular modeling and bioinformatics analysis on
mutant SOD1 protein suggested that loss of hydrogen bonds
at the dimer interface, together with decreases in protein
solubility and stability, which might explain the aggressive
nature associated with the mutation.

The mean age at onset was 58 years in the family. The proband
and her mother were characterized by a rapid disease progression
with prominent lower motor neuron symptoms. Physical
examinations showed no evidence of upper motor neuron
signs, and there were no CSTs deficits on DTI in the proband,
suggesting a progressive spinal muscular atrophy (PMA)
phenotype of MND. It was suggested that around 10% of
MND patients clinically presented as PMA (Van den Berg-Vos
et al., 2009). Genetic causes might partially determine the motor
neuron/clinical phenotypes. Some specific SOD1 missense
mutations have been associated with a consistent clinical
presentation. Here, we summarized a group of SOD1
mutations that have been found to cause a predominant lower
motor neuron syndrome (Table 1). Most of the mutations belong
to exon 4 and are located at β-strand structures of SOD1 protein
(Figure 2A; Table 1). Regardless of the mutation status, these
patients were more likely to have a limb onset with bulbar
involvement during disease course and were also associated
with a rapid disease progression. Consistent with clinical
features, pathological findings showed severe spinal lower
motor neuronal loss with minimal involvement of upper
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motor neurons of motor cortex and cortical spinal tracts
(Table 1). Of notice, different missense mutations of the same
site at the SOD1 gene could lead to different disease phenotypes
(i.e., A5V, A5T, previously denoted as A4V, A4T) (Table 1). It is
reasonable to speculate that the relative position, property of the
side chain of the mutated residue, and nature of the adjacent
amino acid of the mutated residues were likely to affect the
stability and conformation of SOD1 protein, thus conferring
toxicity on mutant proteins.

To our knowledge, the R116S mutation has never been
reported so far (http://alsod.iop.kcl.ac.uk). However, R116G
was found to be the most common SOD1 mutation in

German fALS patients, which accounts for up to 44% of SOD1
associated ALS patients and was suggested to arise from a
common founder (Niemann et al., 2004; Rabe et al., 2010). A
different point mutation R116C was identified in one Italian
sporadic ALS patient (Tortelli et al., 2013). Consistently, these
two mutations are also associated with rapid disease progression
and predominant lower motor neuron symptoms (Table 2). R116
mutations of SOD1 in three distinct ethnic groups caused the
similar severe phenotype, indicating that R116 is critical for the
protein function. Additionally, it has been suggested that protein
aggregation is favored by mutations that bring the net charge of
the protein closer to neutrality (Lindberg et al., 2005). Thus, the

FIGURE 2 | Structural modeling of the ALS-associated SOD1 R116 mutants in the study. (A) Monomer views of the SOD1 homodimer (PDB: 2c9v). Mutations
discussed in Table 1 are highlighted and annotated. (B–E) Close lookup views of the hydrogen bonds (yellow dash line) for R116 and mutants R116S, R116G, and
R116C, respectively.
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substitution of a positively charged amino acid (arginine) with a
neutral one (glycine, cysteine, or serine) would probably promote
protein aggregation and lead to neurotoxicity.

Within the resolved protein structure of SOD1, R116 forms
hydrogen bonds with E50 and C112, respectively, both of which
were reported to play important roles in SOD1 protein stability
and function. Specifically, E50 locates in a loop structure, whose
alterations could cause β-sheet partial unfolding, rendering it
more prone to aggregation (Ding and Dokholyan, 2008). On the
other hand, C112 is a primary target for redox attacks, the
oxidation of which results in conformational changes of SOD1
protein and formation of oligomers, ultimately leading to axon
transport deficits and motor neuron death (Bosco et al., 2010;

Nagano et al., 2015). Notably, all R116 substitution mutations
reported to date, including R116S, R116C, and R116G, are
predicted to abolish the two hydrogen bonds and likely to
affect the relative positions of E50 and C112 (Figures 2C–E),
which in turn might cause β-sheet partial unfolding and might
make C112 more accessible for oxidation, leading to mutant
SOD1 misfolding and toxicity.

Taken together, we report a SOD1 mutation site causing the
most consistent phenotype: ubiquitous limb onset characterized
by prominent LMN presentation with rapid progression, adding
to the list of ALS causing mutations bearing a
genotype–phenotype correlation. Additionally, it displays a
prognostic value of SOD1 R116 missense mutation.

TABLE 1 | Clinical table of SOD1 fALS patients with predominant lower motor neuron symptoms, color-coded by symptom group. The reference protein sequence for
mutations included in the table is NP_000445.1.

Mutation Exon Structure Site of onset Bulbar
sign

UMN
sign

Weakness
pattern

Disease
course

CNS pathology Primary
references

A5V 1 β1-strand Limb Bulbar Yes Mild-
absent

Distal Bulbar Rapid (1 ±
0.5 years)

Severe loss LMNs, absent to mild
UMN abnormalities

Andersen et al. (1997);
Cudkowicz et al.
(1998)

A5T 1 β1-strand Limb Yes Mild-
absent

Proximal Rapid Severe LMN loss, mild CST
damage, no UMN loss

(Takahashi et al.,
1994; Aksoy et al.,
2003)

G11V 1 β1-strand Limb Bulbar Yes Mild-
absent

Distal Bulbar Rapid
(14.7 ± 5.3 m)

N/A Kim et al. (2007)

G13R 1 Loop I Limb Yes Absent Distal Slow N/A Penco et al. (1999)
G42Sa 2 β4-strand Limb Absent Absent N/A Rapid (<15 m) N/A Subramony et al.

(2011)
Limb Yes Mild N/A Rapid

(11.6 ± 1.7 m)
N/A Rainero et al. (1994)

H49G 2 β4-strand N/A N/A Absent N/A Rapid (8 m) N/A Enayat et al. (1995)
L68P 3 Loop IV Limb Absent Absent Distal Slow N/A del Grande et al.

(2011)
G73C 3 Loop IV Limb Yes Absent Proximal Slow (53 m) N/A Stewart et al. (2006)
L85Va 4 β5-strand Limb Yes Absent Distal Rapid

(<1.5 years)
N/A Aoki et al. (1995)

Limb Yes Mild N/A Moderate
(4.8 ±
2.7 years)

N/A Ceroni et al. (1999)

G86S 4 β5-strand Limb Absent Absent Distal Rapid
(15–18 m)

N/A Takazawa et al. (2010)

G94C 4 Loop V Limb Absent Absent Distal Slow (153.0 ±
46.1 m)

Severe LMN loss, minimal
involvement of CST

Regal et al. (2006)

E101K 4 β6-strand Limb Yes Absent N/A Slow (10-
20 years)

TDP-43 negative neuropathology Rabe et al. (2010)

D102Nb 4 β6-strand Limb Mild Absent Distal Rapid (∼28 m) Severe loss of LMNs, relatively
well preserved UMNs,
undamaged pyramidal tracts

Cervenakova et al.
(2000)

I114Tb 4 Loop VI Limb N/A Absent Distal Rapid
(∼3 years)

Severe LMN loss, well preserved
UMNs and CSTs

Rouleau et al. (1996)

R116G 4 β7-strand Limb Yes Absent Proximal Rapid (2-
3 years)

N/A Rabe et al. (2010)

R116S 4 β7-strand Limb Yes Absent Proximal Rapid
(<2 years)

N/A our study

D125G 5 Loop VII Limb Yes Absent Proximal Moderate
(2–5 years)

N/A Ricci et al. (2019)

V149I 5 β8-strand Limb Bulbar Yes Absent Distal Bulbar Rapid (1.8 ±
0.5 years)

N/A Abe et al. (1996)

aThe reported mutation has been reported to show predominant LMN symptoms but with different accompanying symptoms in separate studies.
bThe reported mutation has been reported to manifest as classical ALS phenotype in separate studies.
N/A, not available.
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TABLE 2 | Clinical features of previously reported patients carrying SOD1 mutations of R116. The reference cDNA and protein sequences for mutations included in the table are NM_000454.5 and NP_000445.1.

Family/
Individual

Family
history

Ethnicity Patient
I.D.

Mutation
cDNA

(NM_000454.5)

Amino acid
change

(NP_000445.1)

Gender Age of
onset

Age of
death

Avg. age
of onset

Site
of

onset

Bulbar
symptom

Proximal
vs. distal

Disease
duration

Affected
members

Generations
(n)

References

1 fALS German Mother c.346C>G p.R116G F 66 68 60 LL Y Proximal 2-3 y 6 3 Rabe et al.
(2010)Son M 43 45 Y Proximal

2 fALS German N/A c.346C>G p.R116G N/A 67 N/A LL Y Proximal 2 N/A Rabe et al.
(2010)

3 fALS German N/A c.346C>G p.R116G N/A 64 N/A LL Y Proximal 2 N/A Rabe et al.
(2010)

4 fALS German III-ALS3.7 c.346C>G p.R116G N/A 42 N/A LL Y Proximal 5 3 Kostrzewa
et al. (1994);
Niemann
et al. (2004);
Rabe et al.,
2010

II-2 F 66 68
II-3 F 48 51

5 fALS German ALS73.1 c.346C>G p.R116G N/A 52 N/A LL Y Proximal 2 5 Niemann
et al. (2004)

6 fALS German ALS129.1 c.346C>G p.R116G N/A 60 N/A LL Y Proximal 5 4 Niemann
et al. (2004)

7 fALS German ALS179.1 c.346C>G p.R116G N/A 74 N/A LL Y Proximal 3 3 Niemann
et al. (2004)

8 fALS German N/A c.346C>G p.R116G N/A 56 N/A LL Y Proximal 3 N/A Rabe et al.
(2010)

9 fALS German N/A c.346C>G p.R116G N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A Muller et al.
(2018)

10 fALS Chinese III-15 c.346C>A p.R116S F 50 51 51 LL Y Proximal 20 mon 4 2 our study
III-7 F 52 53 UL Y <1 y
II-6 F 67 68 65 LL Y 14 mon
II-7 F 63 64 LL Y <1 y

11 sALS Italian N/A c.346C>T p.R116C M 72 N/A N/A UL Y N/A >2 y N/A N/A Tortelli et al.
(2013)

12 N/A Japanese patient 21 c.346C>G p.R116G M 66 N/A N/A LL N/A N/A >22 months N/A N/A Sato et al.
(2005)

13 N/A American N/A N/A p.R116G N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A Andersen
et al. (2003)

LL, lower limb; UL, upper limb; N/A, not available; Y, yes.
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