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Accurately estimating the genetic parameters and revealing more genetic variants
underlying milk production and quality are conducive to the genetic improvement of
dairy cows. In this study, we estimate the genetic parameters of five milk-related traits of
cows—namely, milk yield (MY), milk fat percentage (MFP), milk fat yield (MFY), milk protein
percentage (MPP), and milk protein yield (MPY)—based on a random regression test-day
model. A total of 95,375 test-day records of 9,834 cows in the lower reaches of the
Yangtze River were used for the estimation. In addition, genome-wide association studies
(GWASs) for these traits were conducted, based on adjusted phenotypes. The heritability,
as well as the standard errors, of MY, MFP, MFY, MPP, and MPY during lactation ranged
from 0.22 ± 0.02 to 0.31 ± 0.04, 0.06 ± 0.02 to 0.15 ± 0.03, 0.09 ± 0.02 to 0.28 ± 0.04,
0.07 ± 0.01 to 0.16 ± 0.03, and 0.14 ± 0.02 to 0.27 ± 0.03, respectively, and the genetic
correlations between different days in milk (DIM) within lactations decreased as the time
interval increased. Two, six, four, six, and three single nucleotide polymorphisms (SNPs)
were detected, which explained 5.44, 12.39, 8.89, 10.65, and 7.09% of the phenotypic
variation in MY, MFP, MFY, MPP, and MPY, respectively. Ten Kyoto Encyclopedia of
Genes and Genomes pathways and 25 Gene Ontology terms were enriched by analyzing
the nearest genes and genes within 200 kb of the detected SNPs. Moreover, 17 genes in
the enrichment results that may play roles in milk production and quality were selected as
candidates, including CAMK2G, WNT3A, WNT9A, PLCB4, SMAD9, PLA2G4A, ARF1,
OPLAH, MGST1, CLIP1, DGAT1, PRMT6, VPS28, HSF1, MAF1, TMEM98, and F7. We
hope that this study will provide useful information for in-depth understanding of the
genetic architecture of milk production and quality traits, as well as contribute to the
genomic selection work of dairy cows in the lower reaches of the Yangtze River.
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INTRODUCTION

The production and quality of milk are key factors that influence
the profitability of dairy enterprises. Most milk-related traits,
including the milk yield (MY), milk fat percentage (MFP), milk
fat yield (MFY), milk protein percentage (MPP), andmilk protein
yield (MPY), are quantitative traits, which are controlled by
multiple genes and are sensitive to environmental influences
(Wang et al., 2019a). Understanding the genetic architecture,
estimating the genetic parameters, and revealing more
quantitative trait loci (QTL) regions underlying these milk-
related traits are beneficial to the genetic improvement of
dairy cows, as the genetic variation information could be
utilized more rationally and effectively.

The reliability of genetic parameter estimation is one of the
important factors affecting population genetic improvement. The
random regression test-day model has been widely applied to the
genetic evaluation of traits that are measured repeatedly at
different time points, as it simulates the environmental and
genetic effects along the lactation trajectory, and provides
higher accuracy (with a 6%–8% increase) than genetic
evaluation based on the lactation model (using full or
extended 305-day lactation records) in cows (Li et al., 2020).
In addition, it is convenient to infer the total variance
components of performance during the entire lactation period
based on the variance components estimated from test-day
records, without requiring individuals to have a record every
day of the lactation period (Wahinya et al., 2020). Due to the
goodness-of-fit and the low correlation among parameters,
Legendre polynomials (LP)—especially the high-order
polynomials—have generally been used to model the lactation
curve of cows (Silvestre et al., 2006; Bignardi et al., 2009a).
However, when estimating variance components (genetic
parameters) using LP of the order higher than three, the
further improvement becomes small, and the model generally
has difficulty in converging (Li et al., 2020). Therefore, the
appropriate selection of the LP order can improve the
calculation efficiency and the goodness-of-fit, thus, resulting in
a high accuracy of the genetic parameter evaluation in the test-
day model (Pereira et al., 2013; Li et al., 2020).

A genome-wide association study (GWAS) can effectively
identify the potential genetic variants that are associated with
quantitative traits, and can also facilitate molecular breeding of
animals (Hayes and Goddard, 2010). Previous studies have
reported that the QTLs detected by GWASs are helpful in
improving the accuracy of whole-genome prediction (Zhang
et al., 2014), and constructing the genomic kinship matrix by
all the causative quantitative trait nucleotides (QTNs) could
maximize the genomic prediction accuracy (Fragomeni et al.,
2017). Therefore, the discovery of more QTLs that affect milk-
related traits could provide support for the genetic selection
progress of dairy cows.

Chinese Holsteins are the crossbred progeny of the imported
Holstein bulls from Europe and North America and the native
yellow cattle breeds, thus, having complicated genetic
background (Li et al., 2017). It has been reported that
approximately 13% of Chinese Holstein blood comes from

local breeds, and a considerable number of Chinese Holsteins
are descendants of native Chinese cattle breeds (Liu et al., 2014;
Liu et al., 2020). A study has revealed that the Chinese Holstein
cattle population from Beijing showed a higher level of haplotype
diversity than those in other regions, and part of Holstein bulls in
Qinghai Province were crossed with the local yellow cattle and
yak to improve milk production of the local breeds (Ferreri et al.,
2011). Another study has also shown that the Chinese Holstein
cows from southern China are more adapted to the hot and
humid climate than the cows from northern China (Liu et al.,
2014). Therefore, the proper genetic evaluation of dairy cows in
different regions is necessary.

The lower reaches of the Yangtze River experience a temperate
climate, with warm springs, hot and rainy summers, cool
autumns, and relatively cold winters for the latitude (Ding
et al., 2017). The cows in this region are susceptible to
mastitis and heat stress in summer, as well as cold stress in
winter, resulting in performance differences of milk-related traits,
compared with farms in other areas (Yang et al., 2019). Among
previous GWASs on the milk-related traits of the Chinese
Holstein cows, most of the research populations were in the
west or north of China (Jiang et al., 2010; Liu et al., 2020), and
there have been very few association studies or estimation of
genetic parameters on the milk-related traits based on the
random regression test-day model focused on Chinese
Holstein cows in the lower reaches of the Yangtze River. In
this study, we estimated the genetic parameters of MY, MFP,
MFY, MPP, and MPY of Chinese Holstein cows in the lower
reaches of the Yangtze River, and conducted a GWAS on these
traits. We expect that the estimates of genetic variance, as well as
the newly identified genetic variants, may contribute to the
genomic selection and genetic improvement of dairy cows in
the lower reaches of the Yangtze River.

MATERIALS AND METHODS

Ethical Statement
This research was carried out in strict compliance with the
Institutional Animal Care and Use Committee of the School
of the Yangzhou University Animal Experiments Ethics
Committee [Permit Number: SYXK(Su)IACUC 2012–0029], in
the process of sample collection and data collection, and no
animals felt uncomfortable or experienced malnutrition during
this research.

Research Population and Phenotype
Collection
The research population in this study was 15,216 Holstein cows
from four farms in Jiangsu Province, China, and 149,065 test-day
records of these cows over 9 years (2010–2019) were collected. All
of the records were measured by the Nanjing Dairy Cattle
Performance Measurement Center (Nanjing, China). Five
traits evaluating the milk performance of dairy cows were
selected for genetic parameter evaluation and association
analyses; namely, MY, MFP, MFY, MPP, and MPY. The
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phenotypic quality control of each cow was carried out following
the criteria that the test-day records were from parity 1 to parity 3,
the first calving age was between 22 and 36 months, the DIM was
between 5 and 305, the number of records in a parity was greater
than 6, and the milk production ranged from 5 to 80 kg in each
record. After quality control, 9,834 Holstein cows and 95,375 test-
day records from them were retained for the subsequent analysis.
These cows were the offspring of 599 bulls. The pedigrees of these
cows were traced to at least three generations, and were used to
estimate genetic parameters of the traits with a random regression
test-day model. The summary statistics of the phenotypes are
presented in Table 1, and the distribution and correlation of the
phenotypes are shown in Supplementary Figure S2.

Genotypic Data
Among the 9,834 cows that passed the phenotypic quality control,
hair samples from the tails of 999 cows were collected for DNA
extraction and genotyping. The genotyping work was conducted
at Neogen Biotechnology Co., Ltd. (MI, United States) using
GGPBovine 100K SNP Chips, and the ARS-UCD 1.2 assembly of
the Bos taurus genome was used as the reference genome. In total,
95,256 variants were derived from the 30 chromosomes of each
cow. All of the variants were filtered, according to the following
quality control standards: Call rate of variant >90%, minor allele
frequency (MAF) >0.95, and Hardy–Weinberg Equilibrium
(HWE) >1.0 × 10−6. In addition, it required that the call rate
of individual genotypes be >0.95 (Marees et al., 2018). Finally, 984
cows and 84,407 variants passed the quality control, and were
used in the association analysis.

Estimated Genetic Parameters
A random regression test-day model was used for estimation of
variance components of the milk-related traits using the DMU
software (Madsen et al., 2006). In this model, we considered the
herd-test days, parties, and first calving ages as fixed effects, the
functions of DIM as fixed regression effects, and the individual
additive genetic effects and individual permanent environmental
effects as the random regression effects (Liu et al., 2020). The first
calving ages of dairy cows were divided into four levels (age
≤23 months; 24 ≤ age ≤ 27; 28 ≤ age ≤ 31; and age ≥ 32). The DIM
effect was fitted by a sixth-order Legendre polynomial, and the
individual additive genetic effects and individual permanent
environmental effects were fitted by a third-order Legendre
polynomial (Li et al., 2020). The random regression test-day
model was as follows (Li et al., 2020):

yijklmn � HTDi + PAj + FCAk +∑6
n�0

blnLn(ωt) +∑3
n�0

amnLn(ωt)

+∑3
n�0

pmnLn(ωt) + eijklmn, (1)

where the yijklmn is the phenotypic observation of the test-day
record,HTDi is the fixed effect of the ith herd-test day, PAj is the
fixed effect of the jth party, FCAk is the fixed effect of the kth level
of first calving age (k � 1, 2, 3, and 4), bln is the nth fixed regression
coefficient on the nth Legendre polynomial, amn is the nth
random regression coefficient of the additive genetic effect of
the mth cow, pmn is the nth random regression coefficient of the
permanent environmental effect of themth cow, Ln(ωt) is the nth
covariate of Legendre polynomial at day t in milk (DIMt), ωt is
the normalized time value at DIMt (DIM � 5, 6, . . . , 305), and
eijklmn is the random residual. The residuals were assumed to be
homogeneous throughout the whole lactation (Li et al., 2020).
The model was required for convergence at the criterion that the
norm of the update vector was less than 1.0 × 10−7 or the norm of
the gradient vector (AI) was less than 1.0 × 10−6 (Madsen et al.,
2006). The kinship matrix of animals was constructed
considering the pedigree.

After removing the fixed effects, all traits were calibrated to the
305-day performance and were then used as the adjusted
phenotypes for the subsequent association analysis. The
adjustment process of each trait was as follows:

yadj � ∑305
t�5

∑3
n�0

amnLn(ωt) +∑305
t�5

∑3
n�0

pmnLn(ωt) +∑305
t�5

et, (2)

where the yadj is the adjusted phenotype of the mth cow, amn is
the nth random regression coefficient of the additive genetic
effects of the mth cow, pmn is the nth random regression
coefficient of the permanent environmental effect of the mth
cow, Ln(ωt) is the nth covariate of the Legendre polynomial at
DIMt, ωt is the normalized value of DIMt, and et is the random
residual at DIMt. The distribution and correlation of the adjusted
phenotypes are shown in Supplementary Figure S3. The genetic
variance, permanent environmental variance, heritability of
traits, and genetic correlations between t1 day in milk (DIMt1)
and t2 day in milk (DIMt2) were estimated as follows (Schaeffer
et al., 2000):

σ2
at � L′

tĜLt, (3)

σ2pet � L′
tP̂Lt, (4)

TABLE 1 | Descriptive statistics of test-day records and estimated heritability of 305-day performance of the milk-related traits in the study population.

Traits N Mean SD Median Min Max Skew Kurtosis h2

(SE)

MY (kg) 95,375 33.33 6.23 33.00 5.00 80.00 0.31 0.43 0.34 (0.04)
MFP (%) 92,763 3.88 1.00 3.82 0.30 9.99 0.52 1.46 0.29 (0.05)
MFY (kg) 92,763 1.29 0.50 1.23 0.60 5.74 0.93 2.00 0.27 (0.02)
MPP (%) 92,763 3.27 0.37 3.25 0.30 9.46 0.75 4.95 0.32 (0.07)
MPY (kg) 92,763 1.09 0.32 1.07 0.10 4.58 0.36 1.02 0.28 (0.09)

Note. N, number of records; SD, standard deviation; Min, minimum; Max, maximum; h2, the total heritability of 305-day performance; SE, standard error.
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σ2
a(t1,t2) � L′

tĜLt2, (5)

ra(t1,t2) �
σ2
a(t1,t2)���������

σ2
a(t1)pσ

2
a(t2)

√ , (6)

h2t �
σ2at������������

σ2at + σ2
pet + σ2et

√ , (7)

h2T � ∑305
t1�5

∑305
t2�5

σ2
a(t1,t2)/⎛⎝∑305

t1�5
∑305
t2�5

σ2
a(t1,t2) +∑305

t1�5
∑305
t2�5

σ2pe(t1,t2) +∑305
5

σ2e⎞⎠,

(8)

where σ2at is the genetic variance at DIMt, σ2pet is the permanent
environmental variance at DIMt, σ2a(t1,t2) is the genetic
covariance between DIMt1 and DIMt2, Lt is a vector of
Legendre polynomials at DIMt, ra(t1,t2) denotes the genetic
correlations between DIMt1 and DIMt2, Ĝ and P̂ are the
estimated covariance matrixes for the random regression
coefficients of the genetic and permanent environmental
elements, respectively, h2t is the heritability at DIMt of the
trait, h2T is the heritability of the trait of the 305-day
performance, and σ2e is the residual variance.

Principal Component Analysis
The dairy cow populations used in this study came from four
different farms. To identify the population stratification, a
principal component analysis (PCA) was performed on the
984 genotyped cows using the FactoMineR package in the R
language (Le et al., 2008).

Genome-Wide Association Studies
The FarmCPU (Fixed and random model Circulating Probability
Unification) method, based on the multilocus linear mixed
model, was used to perform the genome-wide association
analysis in this study (Liu et al., 2016). The SNP genotypes
coded for the association analyses were converted to 0, 1, and
2 using the Plink software v1.90 (Purcell et al., 2007). Two models
were included in the FarmCPUmethod: a fixed effects model and
a random effects model. The markers that exceeded the
significant threshold in the fixed effects model were detected
as pseudo quantitative trait nucleotides (QTNs). Then, the
pseudo QTNs were further verified by the random effect
model, where the kinships were constructed using alternative
sets of pseudo QTNs (Liu et al., 2016). Iterative calculations were
carried out through the fixed effects model and the random effects
model, until no updated pseudo QTNs exceeded the significance
threshold (Liu et al., 2016). The first five highest principal
components (PCs), which explained 40% of the population
stratification, were considered as covariates in the fixed effects
model, in order to account for the other genetic variations except
for the pseudo QTNs (Marees et al., 2018). The fixed effects
model was as follows (Liu et al., 2016):

y � XbX +Mtbt + Sjdj + e, (9)

where y is the vector of the adjusted phenotypic values for MY,
MFP, MFY, MPP, or MPY; bX is the corresponding effect of the
first five PCs and X is the corresponding coefficient matrix; bt is

the fixed effect of the tth pseudo QTN, which was detected by the
fixed effect model and optimized by the random effect model in
each cycle andMt is the corresponding genotype matrix; Sj is the
genotype of the jth marker, which was converted to 0, 1, or 2, and
dj is the effect of the jth marker; and e is the random residual of
the model. The random effect model is as follows (Liu et al.,
2016):

y � u + e, (10)

where y is the vector of the adjusted phenotypic values of MY,
MFP, MFY, MPP, or MPY; u is the vector of total genetic effects
of individuals and is assumed to satisfy u � (0,Kσ2u), in whichK is
the kinship matrix constructed by the QTNs derived from the
fixed effect model, and σ2u is the unknown genetic variance; and e
is the random residual of the model. The explained phenotypic
variation (EVP) of the candidate SNPs in each trait was calculated
as follows (Dadousis et al., 2017a):

EVPn � 2pMAFnp(1 −MAFn)pβ2n
σ2y

, (11)

where EVPn is the explained phenotypic variation of the nth SNP,
MAFn is the minor allele frequency of the nth SNP, βn is the
regression coefficient of the phenotype to the nth corresponding
SNP, and σ2y is the variance of the adjusted phenotypic values.

The Bonferroni correction method (Armstrong, 2014) was
used as the threshold to verify the significance of SNPs, the type I
error rate in hypothesis testing was set to 5%, and the significance
threshold of the association analysis was 5.90 × 10−7 (0.05/
84,407).

Annotation and Enrichment Analysis of
Candidate Genes
The nearest genes and the genes within 200 kilobases (kb) of the
significant SNPs were selected as the candidate genes of traits,
according to the bovine reference genome ARS-UCD1.2 in the
UCSC database (ftp://hgdownload.soe.ucsc.edu/goldenPath/
bosTau9/). To better understand the biological interactions
between these candidate genes, the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways analysis and Gene
Ontology (GO) analysis were conducted using the Database
for Annotation, Visualization, and Integrated Discovery
(DAVID) online software (https://david.ncifcrf.gov) (Dennis
et al., 2003).

RESULTS

Variance Components and Genetic
Parameters
The heritabilities of the 305-day MY, MFP, MFY, MPP, and MPY
were 0.34, 0.29, 0.27, 0.32, and 0.28, respectively (Table 1). The
variance components and heritability of these five milk-related
traits at different DIMs are shown in Figure 1. In the early
lactation period (5–100 days), the additive genetic variances (σ2a)
and the heritability of MY, MFY, and MPY all showed downward
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trends, reached the lowest value at the mid lactation period
(100–200 days), and then increased gradually until the end of
lactation (Figures 1A,C,E). The σ2a and the heritability of MFP
decreased and reached its lowest value at the middle of the early
lactation period (5–100 days), showed an upward trend and
reached a peak at the mid lactation period (100–200 days),
then decreased again and reached a peak at the middle of the
late lactation (200–305 days), and finally gradually increased
again, until the end of the lactation (Figure 1B). The σ2a of
MPP was stable throughout the entire lactation (5–305 days),
with a small magnitude in its changes (from 0.008 to 0.013;
Figure 1D). The trend of heritability of MPP increased rapidly in
the early lactation period (5–100 days), reached amaximum value
at the end of the early lactation period (5–100 days), and then
decreased gradually until the end of the lactation, which was
approximately opposite to the trend of MFP (Figure 1B). The
heritability of the 305-day performance was out of the range of
heritabilities for trait performance in single test days. This could
be because the heritability of the 305-day performance involves
not only variance in each day but also covariance between days.

The changes in the permanent environmental variance (σ2pe) of
MY, MFY, and MPY were similar. All of these traits showed
downward trends and reached a peak at the early lactation period
(5–100 days), then increased gradually and reached a peak at the

middle of the mid lactation period (100–200 days), and then
decreased again gradually and reached a peak in the late lactation
(200–305 days), and decreased gradually again until the end of
the lactation (Figures 1A,C,E). ForMFP andMPP, the changes in
σ2pe decreased rapidly and reached a minimum value for the
entire lactation stage at the end of the early lactation period
(5–100 days), then increased slowly until the middle of the late
lactation (200–305 days), and then increased until the end of the
entire lactation stage (Figures 1A,D).

Genetic Correlations and Permanent
Environmental Correlations
The genetic correlations between MY, MFP, MFY, MPP, and
MPY and DIM are shown in Figure 2. The genetic correlations
between the DIM of the five milk-related traits showed downward
trends as the time interval increased, and the lowest genetic
correlations were between the beginning of the early lactation
(5–100 days) and the end of late lactation (200–305 days;
Figure 2). The genetic correlations between the DIM for MY
andMPYwere higher within each lactation stage than in different
lactation stages, and as the DIM interval increased, they decreased
gradually (Figures 2A,E). However, forMFP, MFY, andMPP, the
genetic correlations between DIM were high (>0.8) from the

FIGURE 1 | Variance component estimates of milk-related traits during the lactation (red line, additive genetic variance; blue line, permanent environmental
variance; black line, heritability; (A) MY, milk yield; (B) MFP, milk fat percentage; (C) MFY, milk fat yield; (D) MPP, milk protein percentage; (E) MPY, milk protein yield).
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beginning to the middle of the early lactation period
(5–100 days), and from the middle of the early lactation
period (5–100 days) to the end of the entire lactation, as
shown in Figures 2B–D.

The permanent environmental correlations between MY,
MFP, MFY, MPP, and MPY and DIM are shown in
Supplementary Figure S1. The permanent environmental
correlations between DIM and MY were high (>0.8) within
each lactation stage, and the correlations showed a gradually
declining trend as the time interval increased (Supplementary
Figure S1A). For MFY and MPY, the permanent environmental
correlations between DIMwere high (>0.8) from the beginning to
the middle of the early lactation period (5–100 days), and from
the middle of the early lactation period (5–100 days) to the end of
the entire lactation stage (Supplementary Figures S1C,E). For

MFP and MPP, the permanent environmental correlations
between DIM were high (>0.8) from the middle of the early
lactation period (5–100 days) to the middle of late lactation
(200–305 days). For these two traits, although the correlations
were high during the period from the beginning to the middle of
early lactation, and from the middle to the end of late lactation,
the correlation between early lactation and late lactation was low
(<0.2), or even negative (Supplementary Figures S1B,D).

Distributions and Correlations of
Phenotypes
The distributions and the correlations of the phenotypes and the
adjusted phenotypes of these milk-related traits are shown in
Supplementary Figures S2, S3. The distribution of raw

FIGURE 2 | Genetic correlations of milk-related traits in different DIM during lactation ((A) MY, milk yield; (B) MFP, milk fat percentage; (C) MFY, milk fat yield; (D)
MPP, milk protein percentage; (E) MPY, milk protein yield).
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phenotypic values was irregular (Supplementary Figure S2), and
after adjustment, the adjusted phenotypes were approximately
normally distributed (Supplementary Figure S3). The
correlations among the adjusted phenotypes of the five traits
all significantly differed from zero (p < 0.05; Supplementary
Figure S3). The correlations among the adjusted values of MY,
MFY, and MPY were high (>0.78), and even reached 0.91
between MY and MPY. The correlations between the adjusted
values of MY and MFP, and MY and MPP were significantly
negative (Supplementary Figure S3). The correlations between
the adjusted values of MFP and MFY were significantly positive
(0.28), contrary to the correlations between MPP and MPY
(−0.25; Supplementary Figure S3).

Marker Information and Population
Structure
After quality control, a total of 84,407 variants on 30
chromosomes remained for association analysis. The
relationship between the linkage disequilibrium (LD) value (r2)
and the average distance of markers is shown in Figure 3A. As the
distance increased, the average LD value between markers
decreased, and the average r2 exceeded 0.35 when the distance
of markers was less than 200 kb (Figure 3A).

Principal component analysis (PCA) was conducted on the
984 cows, according to the variant information. As shown in
Figure 3B, stratification existed in our study population, and
some cows in farms 1 and 4 were separated from other
individuals. The first two highest PCs explained 11.8% and
9.2% of the variation, respectively (Figure 3B). To reduce the
spurious genetic associations generated by population
stratification, the first five PCs, which explained 40% of the
population variation, were considered and incorporated into
the fixed effect model of GWAS.

Genome-Wide Association Study
In this study, 21 SNPs passed the Bonferroni correction threshold
(0.05/84,407) and were significantly associated with the five

milk-related traits (Figure 4A). Two SNPs (rs108962265 and
rs110246034), located on chromosomes 13 and 3, were
significantly associated with the trait MY, and the nearest
genes to them were PITRM1 (194 kb) and PRMT6 (788 kb),
respectively. Six SNPs (rs137071126, rs109278135,
rs109595510, rs210744919, rs133996308, and rs133840542),
located on chromosomes 14, 24, 3, 5, 28, and 12, were
significantly associated with the trait MFP, with the nearest
genes to them being SLC52A2 (within), NOL4 (139 kb),
RCSD1 (within), MGST1 (within), PLAU (1 kb), and SUPT20H
(within), respectively. Four SNPs (rs137260850, rs43527533,
rs42206791, and rs109656599), located on chromosomes 16, 7,
15, and 18, were significantly associated with the trait MFY, and
the nearest genes to them were PLA2G4A (75 kb), TENM2
(within), METTL15 (314 kb), and CDH13 (within),
respectively. Six SNPs (rs43002440, rs135708753, rs110387086,
rs132711282, rs43496186, and rs109425744), located on
chromosomes 14, 12, 17, 14, 7, and 10, were significantly
associated with the trait MPP, and the nearest genes to them
were KHDRBS3 (31 kb), ATP11A (within), MLXIP (within),
FBXO43 (within), WNT9A (44 kb), and CORO2B (37 kb),
respectively. Three SNPs (rs109957491, rs109097262, and
rs41906111), located on chromosomes 1, 13, and 19, were
significantly associated with the trait MPY, the nearest genes
to them being MFSD1 (40 kb), PLCB1 (288 kb), and MYO1D
(8 kb), respectively. The detected significant SNPs explained
5.44%, 12.39%, 8.89%, 10.65%, and 7.09% of the phenotypic
variation of MY, MFP, MFY, MPP, and MPY, respectively.
The summary statistics of these 21 SNPs are presented in Table 2.

To evaluate the statistical validity and rationality of the
association analysis, quantile–quantile (QQ) plots of the five
milk-related traits were generated (Figure 4B). The vast
majority of the SNPs conformed to the expected p-values, and
the inflation factor (λ) values of the fivemilk-related traits were all
close to 1 (Figure 4B), which illustrated that false positive and
false negative results were well avoided in the process of
association analysis. The QQ plots, as well as Manhattan plots,
of the five milk-related traits are shown in Figure 4.

FIGURE 3 | The linkage disequilibrium decay analysis (A) and the principal component analysis (B) according to the 84,407 single nucleotide polymorphisms
(SNPs) for the 984 cows.
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FIGURE 4 | Manhattan plots (A) and quantile-quantile (QQ) plots (B) demonstrated from the genome-wide association study (GWAS) results of the milk-related
traits. The significance threshold was 5.90 × 10−7. The red dots represent the significant SNPs. The abscissas and ordinates in the Manhattan plots represent the 30
chromosomes of cows and the negative logarithms of the p-values of the variants, respectively (A). The abscissas and ordinates in the QQ plots represent negative
logarithms of the expected p-values and negative logarithms of the observed p-values of each SNP (B) (MY. milk yield; MFP. milk fat percentage; MFY. milk fat yield;
MPP. milk protein percentage; MPY. milk protein yield, λ. inflation factor value).
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Enrichment Analysis
To deeply understand the biological functions of the 21
significant SNPs related to the five milk-related traits of cows
(MY, MFP, MFY, MPP, and MPY), KEGG and GO analyses were
conducted on the nearest genes and genes within 200 kb of these
SNPs. In total, 101 genes were obtained (Supplementary Table
S1). These genes were significantly enriched in metabolism and
decomposition of amino acids pathways and nerve signal
transduction pathways (Table 3, p < 0.05), such as
melanogenesis, Wnt signaling pathway, GnRH signaling
pathway, circadian entrainment, signaling pathways regulating
the pluripotency of stem cells, phospholipase D signaling
pathway, oxytocin signaling pathway, glutathione metabolism,
mTOR signaling pathway, and long-term potentiation (Table 3).
Twenty-five GO terms were significantly enriched

(Supplementary Table S2, p < 0.05). After removing the terms
that contained only one gene and the genes that were enriched in
only one term, 13 GO terms enriched by eight genes were retained
(Figure 5), which mainly participated in the progress of
metabolism of fat and protein, as well as regulation of
transcription, such as neutral lipid biosynthetic process,
acylglycerol biosynthetic process, negative regulation of the
cellular metabolic process, acylglycerol metabolic process,
neutral lipid metabolic process, negative regulation of
macromolecule metabolic process, protein processing,
glycerolipid biosynthetic process, negative regulation of
nitrogen compound metabolic process, protein maturation,
negative regulation of transcription, DNA-templated negative
regulation of RNA biosynthetic process, and negative
regulation of nucleic acid-templated transcription. Eight of the

TABLE 2 | Information of the identified 21 variants in the association analysis.

Trait SNP CHR Position Nearest
gene

Distance
(kb)

MAF EVP p
value

MY rs108962265 13 44,887,254 PITRM1 −193.90 0.0753106 3.24% 4.53 × 10−8

rs110246034 3 37,101,102 PRMT6 +788.23 0.380435 2.20% 2.64 × 10−7

MFP rs137071126 14 580,019 SLC52A2 Within (extro) 0.244565 3.46% 2.20 × 10−13

rs109278135 24 22,711,564 NOL4 −138.54 0.437888 2.50% 3.26 × 10−9

rs109595510 3 1,012,940 RCSD1 Within (exon) 0.462733 2.29% 6.76 × 10−8

rs210744919 5 93,520,138 MGST1 Within (intron) 0.298137 1.33% 2.23 × 10−7

rs133996308 28 29,790,048 PLAU −1.06 0.306677 1.32% 3.59 × 10−7

rs133840542 12 24,656,370 SUPT20H Within (intron) 0.295031 1.49% 3.84 × 10−7

MFY rs137260850 16 68,156,133 PLA2G4A +74.85 0.435559 2.73% 7.08 × 10−8

rs43527533 7 80,246,600 TENM2 Within (intron) 0.384317 1.99% 3.03 × 10−7

rs42206791 15 59,334,965 METTL15 +313.75 0.166149 2.00% 3.40 × 10−7

rs109656599 18 9,410,999 CDH13 Within (intron) 0.152174 2.17% 3.66 × 10−7

MPP rs43002440 14 6,369,558 KHDRBS3 −31.17 0.338509 3.80% 2.22 × 10−14

rs135708753 12 86,298,432 ATP11A Within (intron) 0.481366 2.02% 1.04 × 10−10

rs110387086 17 53,247,625 MLXIP Within (intron) 0.487578 1.58% 1.67 × 10−10

rs132711282 14 64,235,532 FBX O 43 Within (intron) 0.404503 1.16% 8.26 × 10−9

rs43496186 7 3,207,173 WNT9A +43.93 0.488354 1.07% 3.29 × 10−8

rs109425744 10 15,382,216 CORO2B −37.09 0.453416 1.02% 7.72 × 10−8

MPY rs109957491 1 108,667,188 MFSD1 −39.24 0.190994 2.87% 6.20 × 10−8

rs109097262 13 2,016,597 PLCB4 −287.69 0.459627 2.29% 9.60 × 10−8

rs41906111 19 17,322,522 MYO1D −8.28 0.476708 1.93% 4.66 × 10−7

Note. CHR, chromosome; MY, milk yield; MFP, milk fat percentage; MFY, milk fat yield; MPP, milk protein percentage; MPY, milk protein yield; MAF, minor allele frequency; EVP, explained
phenotypic variation. Distance (define within too), the negative sign indicates that the SNP is in the upstream of the gene, and the positive sign indicates that the SNP is in the downstream
of the gene.

TABLE 3 | Details of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways significantly enriched from the nearest genes and the genes within 200 kb of the
significant single-nucleotide polymorphisms (SNPs).

Pathway Description Gene name p-Value

bta04916 Melanogenesis CAMK2G, WNT3A, WNT9A, PLCB4 0.001
bta04310 Wnt signaling pathway CAMK2G, WNT3A, WNT9A, PLCB4 0.006
bta04912 GnRH signaling pathway CAMK2G, PLA2G4A, PLCB4 0.008
bta04713 Circadian entrainment ADCY10, CAMK2G, PLCB4 0.010
bta04550 Signaling pathways regulating pluripotency of stem cells SMAD9, WNT3A, WNT9A 0.026
bta04072 Phospholipase D signaling pathway PLA2G4A, ARF1, PLCB4 0.030
bta04921 Oxytocin signaling pathway CAMK2G, PLA2G4A, PLCB4 0.030
bta00480 Glutathione metabolism OPLAH, MGST1 0.031
bta04150 mTOR signaling pathway CLIP1, WNT3A, WNT9A 0.032
bta04720 Long-term potentiation CAMK2G, PLCB4 0.038
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101 genes were detected in the above 13 biological processes
(Figure 5).

DISCUSSION

A test-day model (TDM) can account for the persistence and the
test-day effect on individual phenotypes, making it a powerful
method to improve the reliability of EBV estimation (Schaeffer
et al., 2000). The additive genetic variances, permanent
environmental variances, and the heritabilities of five milk-
related traits changing during lactation were assessed in this
study (Figure 1), which revealed that the genes or the
expression of genes that control these milk-related traits might
differ along the lactation trajectory of cows (Wahinya et al., 2020).
The scope of the additive genetic variances of theMY in this study
(Figure 1A) was higher than that in cows in North Carolina and
Portugal (Silvestre et al., 2005), but was in the same range as the
cows in medium- and high-production systems in Kenya
(Wahinya et al., 2020). Furthermore, the trend and range of
additive genetic variations of MY during lactation (Figure 1A)
were consistent with those of Japanese Holstein cows (Togashi
et al., 2008). Many studies have shown that the cows with high
MY have greater genetic variances than low-yield cows (Togashi
et al., 2008; Wahinya et al., 2020). These higher additive variances
indicate that the cows are more genetically diverse (Wahinya
et al., 2020). The genetic variances and heritability at the
DIM5–DIM50 and DIM250–DIM305, with respect to the MY,
were higher than in other periods in this study, indicating that
genetic improvement for performance during these two periods
by selection could be more efficient than when considering other
periods (Figure 1A).

The trajectories of additive genetic variances and the
heritability of MFY and MPY with DIM (Figures 1C,E)
were the same in the studies performed on cows in the
United States; that is, they decreased in early lactation and
then increased until the end of the lactation, while in the
middle lactation stage, they all reached the minimum values
over the whole lactation (DeGroot et al., 2007). Therefore, in
the mid lactation period, the genetic improvement space for
MFY and MPY of dairy cows was smaller than that in the early
and late lactation periods. The scope and trend of the
heritability of MFY (Figure 1C) were also the same as those
for Tunisian Holsteins, but the trend for MPY was different
(Figure 1E) (Hammami et al., 2008), which may have been due
to the permanent environmental variances during the mid
lactation period of the Tunisian Holstein population in the
study of Hammami, being less than that observed in the cows
in our research. The changes in the genetic variances and the
heritability with DIM of MFP were similar to those of MFY,
but the lowest values of the genetic variances and the
heritability of MFP appeared in the middle of the early
lactation period, earlier than for MFY (Figures 1B, C). The
genetic variances of MPP were very stable over the whole
lactation, but the permanent environmental variances at the
beginning and the end of lactation changed dramatically,
which resulted in the heritability of MPP reaching the
lowest value at the beginning of early lactation (Figure 1D).
This may be due to the specific environmental influences in the
different farms, such as calving preparation and dry cow
management (Gengler and Wiggans, 2001; Hammami et al.,
2008). Our study also found that heritability of milk fat traits
(MFY and MFR) was, most of the time during lactation
(89.70% and 91.69%, respectively), lower than that for the

FIGURE 5 | Significant Gene Ontology (GO) terms enriched by the genes within 200 kb of significant SNPs. After quality control, 13 GO terms that are enriched by
eight genes are revealed in the circus plots (p < 0.05).
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corresponding milk protein traits (MPY and MPP; Figure 1),
which was in agreement with previous studies (Tijani et al.,
1999; Silvestre et al., 2005).

The genetic correlations between the DIM for the five milk-
related traits were high through the adjacent days, and then
decreased gradually as the time interval increased (Figure 2),
similar to the results of the group of Wahinya (Wahinya et al.,
2020). The genetic correlations between the beginning of the early
lactation period and the end of the late lactation period were not
high (<0.4), sometimes even being negative (MFP and MPY;
Figures 2B,E). This indicated that it might not be reasonable to
predict the milk potential of cows according to only their
performance during the early lactation period (Bignardi et al.,
2009b; Ojango et al., 2019). Therefore, keeping a record along the
whole lactation is necessary for a reliable genetic evaluation of
dairy cows in the lower reaches of the Yangtze River, especially for
MY andMPY, due to the genetic correlation between DIM during
different lactation stages being lower than that within each
lactation stage (Figures 2A,E). For MFP, MFY, and MPP, the
genetic correlations from DIM50 to DIM305 were as high than 0.8,
and extremely few individual records missing in the middle and
late stages of lactation might not make an excessive impact on the
accuracy of the overall genetic evaluation (Figures 2B–D).

Analyses of linkage disequilibrium (LD) and population
stratification are the premises and important steps for
association studies (Bulik-Sullivan et al., 2015; Lu et al., 2021).
In this study, the degree of LD (r2) showed a downward trend as
the average distance between SNPs increased (Figure 3A). It is
worth noting that in beef cattle populations, such as Angus cattle,
Brahman cattle, Belmont Red cattle, Santa Gertrudis cattle, and
Iranian water buffalo (Porto-Neto et al., 2014; Mokhber et al.,
2019), the decay rate is much higher than that observed for the
dairy cows in this research. This might be due to the process of
artificial domestication and selection in beef cattle being slower
than that for dairy cows (Porto-Neto et al., 2014). In the present
study, the r2 of the LD was approximately equal to 0.35 when the
average distance of SNPs was 200 kb, and it increased as the
average SNPs distance decreased (Figure 3A). Two hundred
kilobases is a common distance, which has been used to find
and annotate genes related to SNPs in previous association
studies (Sanchez et al., 2017; Mota et al., 2020; Lu et al.,
2021). Selecting the most significant principal components
(PCs), which were constructed from the SNP variables of the
research population, as the covariates in the fixed effect model of
the GWAS provides an effective method to reduce the effects
produced by population stratification (Marees et al., 2018; Jiang
et al., 2019b). In the present study, the PCA scatter plot showed
that population stratification, indeed, appeared in our study
population, and the highest two PCs explained 21% of the
variation (Figure 3B). After proper correction, the inflation
factor (λ) values of the five milk-related traits were all close to
1 (Figure 4B), and the overwhelming majority of observed
p-values of the SNPs were in line with our expectations
(Figure 4B), indicating that the population stratification was
effectively in control (Price et al., 2010).

In this study, a total of 21 SNPs exceeding the significance
threshold (5.90 × 10−7) were identified to be associated with MY,

MFP, MFY, MPP, and MPY (Figure 4A). Among these SNPs,
some were in QTL regions that have been reported previously,
such as rs137071126 (Buitenhuis et al., 2014; Fang et al., 2014),
rs42206791 (Jiang J. et al., 2019), rs43002440 (Jiang J. et al., 2019),
rs132711282 (Jiang J. et al., 2019), and rs109097262 (Cole et al.,
2011). The genes nearest these 21 SNPs are shown in Table 2,
some of which have been confirmed to be related to the
corresponding milk-related traits. PITRM1 has been reported
to be related to the milk production progress in Reggiana cows
(Bertolini et al., 2020). SLC52A2 plays a potential role in the
mammary gland and affects the fatty acid content in dairy cows
(Palombo et al., 2018). MGST1 has been identified to be highly
associated with MFP and other milk composition traits in cattle
(Littlejohn et al., 2016). It was reported that the expression level of
PLAU activity is high in the peak lactation periods of dairy cows
and could affect the composition of milk fatty acids
(Wickramasinghe et al., 2012). PLA2G4A participates in
catalyzing the hydrolysis of membrane glycerophospholipids,
promoting the production of free fatty acids in milk (Diouf
et al., 2006). CDH13 has been reported to be associated with
milk cholesterol in cows (Do et al., 2018). FBXO43 has been
primarily implicated in the MPY of cows (Tribout et al., 2020).
PLCB4 is a significant gene included in the phosphatidylinositol
pathway and may affect the stability of the cream emulsion in
milk (Dadousis et al., 2017b).

To further reveal the functional orientation of the significant
SNPs, an enrichment analysis was performed for the genes
nearest or within 200 kb of these variants, and 101 genes were
found (Supplementary Table S1). Due to the high phenotypic
(Supplementary Figures S2, S3) and genetic correlations (Liu
et al., 2020) of these five milk-related traits, we conducted the
enrichment analysis for all the candidate genes of the five traits,
and 10 KEGG pathways were significantly enriched (p < 0.05,
Table 3). All of these pathways have been reported to be highly
related tomilk-related traits in cattle. Themelanogenesis pathway
has been significantly related to the MY of river buffaloes (Menon
et al., 2016). The Wnt signaling pathway has been found to be
essential for the development of the mammary gland during
lactation in Holstein cows (Wang et al., 2013). GnRH is
synthesized and released in the hypothalamus from the GnRH
neurons, and GnRH and oxytocin are strongly related to
reproduction in mammals (Schneider et al., 2006);
Furthermore, a close relationship has been revealed between
reproduction and milk production in dairy cows (Dadousis
et al., 2017a). Phospholipase D, from the phospholipase D
signaling pathway, is not only the key enzyme for the
generation of phosphatidic acid but also the main molecular
substance in the synthesis of milk fat. In Thai multibreed dairy
population, the Wnt signaling pathway, the phospholipase D
signaling pathway, and circadian entrainment could explain 0.31,
0.47, and 0.38% of the genetic variance in MY, respectively, and
explained 0.30, 0.44, and 0.36% of the genetic variance in MFY,
respectively (Laodim et al., 2019). Folic acid regulates many key
metabolic-related genes in the glutathione metabolism pathway,
and the secretion of folic acid may increase milk yield in the
perinatal period of dairy cows (Khan et al., 2020). Melatonin can
inhibit the mTOR signaling pathway and suppress milk fat
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synthesis in bovine mammary epithelial cells (Wang Y. et al.,
2019). Long-term potentiation has been related to the amino acid
composition of theMFP, which could affect the taste and flavor of
milk (Dadousis et al., 2017a). We speculate that genes in these
pathways could be candidate genes for milk-related traits in cows.

The genes nearest or within 200 kb of the significant SNPs
were significantly enriched in 25 GO terms (p < 0.05,
Supplementary Table S2). To discover the core terms and
genes affecting the milk performance of cows, the GO terms
that contained only one gene and the genes enriched in only one
term were removed. Finally, 13 GO terms enriched by eight genes
remained for analysis (Figure 5). These 13 terms were mainly
involved in the lipid biosynthetic and metabolic process, protein
maturation process, regulation of transcription process, and
regulation of macromolecule metabolic processes (Figure 5),
which are all highly related to milk-related traits of cows
(Bauman et al., 2006; Osorio et al., 2016). Furthermore, eight
of the candidate genes were detected in these processes frequently
(Figure 5). It is well known that the DGAT1 gene is a
fundamental metabolic enzyme that plays important roles in
triglyceride biosynthesis, glyceride metabolism, and the
digestion and absorption of the fat in milk (Yen et al., 2008).
Many previous studies have revealed the relationships between
DGAT1 and milk-related traits, especially that the polymorphism
of K232A in DGAT1 significantly influences the MFY and MPY
(Bovenhuis et al., 2016; Yao et al., 2021).VPS28may regulate milk
fat synthesis through ubiquitylation in bovine mammary
epithelial cells (Liu and Zhang, 2020). It has been reported
that a single nucleotide polymorphism of HSF1 is related to
the milk fatty acid composition in Italian Holstein cows (Palombo
et al., 2018).MAF1 is a candidate gene related to MY and MPY in
Canadian Holstein cows (Oliveira et al., 2018). One
nonsynonymous coding SNP (rs136905662, p.Gly265Val,
c.794G>T) on the F7 gene has been reported to be associated
with the content of caproic acid in milk (Ibeagha-Awemu et al.,
2016). Therefore, we speculated that these genes may play key
roles in the variation of these milk-related traits.

CONCLUSION

In this study, we estimated the genetic parameters of five milk-
related traits using a random regression test-day model, and
performed genome-wide association analyses on these traits. The
additive genetic variances, the permanent environmental
variances, and the heritabilities of these traits constantly
changed throughout the whole lactation, and the genetic
correlations and permanent environmental correlations
between different DIMs within lactation decreased as the time
interval increased. A total of 21 SNPs were detected as being
significantly associated with these milk-related traits, five of
which were located in QTL regions that have been previously
reported. We also found 17 candidate genes that may play key

roles in the phenotypic variation of these traits. The presented
results could be useful for understanding the basis of quantitative
genetics and the genetic architecture of milk-related traits in dairy
cows, thus, contributing to the genetic improvement of dairy
cows in the lower reaches of the Yangtze River.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

ETHICS STATEMENT

The animal study was reviewed and approved by the Institutional
Animal Care and Use Committee of the School of the Yangzhou
University Animal Experiments Ethics Committee (Permit
Number: SYXK(Su)IACUC 2012-0029).

AUTHOR CONTRIBUTIONS

XL, GS, and ZY conceived and designed the study. XL wrote the
original draft. XL, AA, IA, and DL conducted all analysis. ZZ and
TX revised the manuscript. ZZ, TX, and DL helped with the data
collection and project coordination. All authors provided critical
feedback and helped shape the manuscript, and all authors have
read and agreed to the published version of the manuscript.

FUNDING

This research was funded by the Earmarked Fund for Jiangsu
Agricultural Industry Technology System (JATS(2021)486) and
the Postgraduate Research and Practice Innovation Program of
Yangzhou University (XKYCX20_026).

ACKNOWLEDGMENTS

We thank Yongjiang Mao of the Yangzhou University for his
professional genetic evaluation and statistical analysis guidance in
this study. We thank the China Scholarship Council for funding
the exchange study of XL at Aarhus University.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.799664/
full#supplementary-material

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 79966412

Lu et al. Genetic Evaluation and GWAS

https://www.frontiersin.org/articles/10.3389/fgene.2021.799664/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.799664/full#supplementary-material
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


REFERENCES

Armstrong, R. A. (2014). When to Use the Bonferroni Correction. Ophthalmic
Physiol. Opt. 34 (5), 502–508. doi:10.1111/opo.12131

Bauman, D. E., Mather, I. H., Wall, R. J., and Lock, A. L. (2006). Major Advances
Associated with the Biosynthesis of Milk. J. Dairy Sci. 89 (4), 1235–1243.
doi:10.3168/jds.S0022-0302(06)72192-0

Bertolini, F., Schiavo, G., Bovo, S., Sardina, M. T., Mastrangelo, S., Dall’Olio, S.,
et al. (2020). Comparative Selection Signature Analyses Identify Genomic
Footprints in Reggiana Cattle, the Traditional Breed of the Parmigiano-
Reggiano Cheese Production System. Animal 14 (5), 921–932. doi:10.1017/
S1751731119003318

Bignardi, A. B., El Faro, L., Cardoso, V. L., Machado, P. F., and Albuquerque, L. G.
(2009a). Parametric Correlation Functions to Model the Structure of
Permanent Environmental (Co)variances in Milk Yield Random Regression
Models. J. Dairy Sci. 92 (9), 4634–4640. doi:10.3168/jds.2009-2128

Bignardi, A. B., El Faro, L., Cardoso, V. L., Machado, P. F., and de Albuquerque, L.
G. (2009b). Random Regression Models to Estimate Test-Day Milk Yield
Genetic Parameters Holstein Cows in Southeastern Brazil. Livestock Sci. 123
(1), 1–7. doi:10.1016/j.livsci.2008.09.021

Bionaz, M., Loor, J., and Loor, J. J. (2008b). Gene Networks Driving Bovine Milk
Fat Synthesis during the Lactation Cycle. BMC Genomics 9, 366. doi:10.1186/
1471-2164-9-366

Bovenhuis, H., Visker, M. H. P. W., Poulsen, N. A., Sehested, J., van Valenberg, H.
J. F., van Arendonk, J. A. M., et al. (2016). Effects of the Diacylglycerol
O-Acyltransferase 1 (DGAT1) K232A Polymorphism on Fatty Acid,
Protein, and mineral Composition of Dairy Cattle Milk. J. Dairy Sci. 99 (4),
3113–3123. doi:10.3168/jds.2015-10462

Buitenhuis, B., Janss, L. L., Poulsen, N. A., Larsen, L. B., Larsen, M. K., and
Sørensen, P. (2014). Genome-wide Association and Biological Pathway
Analysis for Milk-Fat Composition in Danish Holstein and Danish Jersey
Cattle. BMC Genomics 15 (1), 1112. doi:10.1186/1471-2164-15-1112

Bulik-Sullivan, B. K., Loh, P. R., Loh, P.-R., Finucane, H. K., Ripke, S., Yang, J., et al.
(2015). LD Score Regression Distinguishes Confounding from Polygenicity in
Genome-wide Association Studies. Nat. Genet. 47 (3), 291–295. doi:10.1038/
ng.3211

Cole, J. B., Wiggans, G. R., Ma, L., Sonstegard, T. S., Lawlor, T. J., Crooker, B. A.,
et al. (2011). Genome-wide Association Analysis of Thirty One Production,
Health, Reproduction and Body Conformation Traits in Contemporary U.S.
Holstein Cows. BMC Genomics 12 (1), 408. doi:10.1186/1471-2164-12-408

Dadousis, C., Pegolo, S., Rosa, G. J. M., Bittante, G., and Cecchinato, A. (2017a).
Genome-wide Association and Pathway-Based Analysis Using Latent Variables
Related to Milk Protein Composition and Cheesemaking Traits in Dairy Cattle.
J. Dairy Sci. 100 (11), 9085–9102. doi:10.3168/jds.2017-13219

Dadousis, C., Pegolo, S., Rosa, G. J. M., Gianola, D., Bittante, G., and Cecchinato, A.
(2017b). Pathway-based Genome-wide Association Analysis of Milk
Coagulation Properties, Curd Firmness, Cheese Yield, and Curd Nutrient
Recovery in Dairy Cattle. J. Dairy Sci. 100 (2), 1223–1231. doi:10.3168/
jds.2016-11587

DeGroot, B. J., Keown, J. F., Van Vleck, L. D., and Kachman, S. D. (2007). Estimates
of Genetic Parameters for Holstein Cows for Test-Day Yield Traits with a
Random Regression Cubic Spline Model. Genet. Mol. Res. 6 (2), 434–444.

Dennis, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., et al.
(2003). DAVID: Database for Annotation, Visualization, and Integrated
Discovery. Genome Biol. 4 (9). doi:10.1186/gb-2003-4-9-r60

Ding, Y., Wang, W., Song, R., Shao, Q., Jiao, X., and Xing, W. (2017). Modeling
Spatial and Temporal Variability of the Impact of Climate Change on rice
IrrigationWater Requirements in theMiddle and Lower Reaches of the Yangtze
River, China. Agric. Water Manag. 193, 89–101. doi:10.1016/
j.agwat.2017.08.008

Diouf, M. N., Sayasith, K., Lefebvre, R., Silversides, D. W., Sirois, J., and Lussier,
J. G. (2006). Expression of Phospholipase A2 Group IVA (PLA2G4A) Is
Upregulated by Human Chorionic Gonadotropin in Bovine Granulosa Cells
of Ovulatory Follicles1. Biol. Reprod. 74 (6), 1096–1103. doi:10.1095/
biolreprod.105.048579

Do, D. N., Schenkel, F. S., Miglior, F., Zhao, X., and Ibeagha-Awemu, E. M. (2018).
Genome Wide Association Study Identifies Novel Potential Candidate Genes

for BovineMilk Cholesterol Content. Sci. Rep. 8 (1), 13239. doi:10.1038/s41598-
018-31427-0

Fang, M., Fu, W., Jiang, D., Zhang, Q., Sun, D., Ding, X., et al. (2014). A Multiple-
SNP Approach for Genome-wide Association Study of Milk Production Traits
in Chinese Holstein Cattle. PLoS ONE 9 (8), e99544. doi:10.1371/
journal.pone.0099544

Ferreri, M., Gao, J., Wang, Z., Chen, L., Su, J., and Han, B. (2011). Chinese Holstein
Cattle Shows a Genetic Contribution from Native Asian Cattle Breeds: A Study
of Shared Haplotypes and Demographic History. Asian Australas. J. Anim. Sci.
24 (8), 1048–1052. doi:10.5713/ajas.2011.10461

Fragomeni, B. O., Lourenco, D. A. L., Masuda, Y., Legarra, A., and Misztal, I.
(2017). Incorporation of Causative Quantitative Trait Nucleotides in Single-
step GBLUP. Genet. Sel Evol. 49 (1), 59. doi:10.1186/s12711-017-0335-0

Gengler, N., and Wiggans, G. (2001). Variance of Effects of Lactation Stage within
Herd by Herd Yield. J. Anim. Sci. 79, 216.

Hammami, H., Rekik, B., Soyeurt, H., Ben Gara, A., and Gengler, N. (2008).
Genetic Parameters for Tunisian Holsteins Using a Test-Day Random
Regression Model. J. Dairy Sci. 91 (5), 2118–2126. doi:10.3168/jds.2007-
0382

Hayes, B., and Goddard, M. (2010). Genome-wide Association and Genomic
Selection in Animal breedingThis Article Is One of a Selection of Papers from
the Conference "Exploiting Genome-wide Association in Oilseed Brassicas: a
Model for Genetic Improvement of Major OECD Crops for Sustainable
Farming". Genome 53 (11), 876–883. doi:10.1139/g10-076

Ibeagha-Awemu, E. M., Peters, S. O., Akwanji, K. A., Imumorin, I. G., and Zhao, X.
(2016). High Density Genome Wide Genotyping-By-Sequencing and
Association Identifies Common and Low Frequency SNPs, and Novel
Candidate Genes Influencing Cow Milk Traits. Sci. Rep. 6 (1), 31109.
doi:10.1038/srep31109

Jiang, J., Ma, L., Prakapenka, D., VanRaden, P. M., Cole, J. B., and Da, Y. (2019a). A
Large-Scale Genome-wide Association Study in U.S. Holstein Cattle. Front.
Genet. 10, 412. doi:10.3389/fgene.2019.00412

Jiang, L., Zheng, Z., Qi, T., Kemper, K. E., Wray, N. R., Visscher, P. M., et al.
(2019b). A Resource-Efficient Tool for Mixed Model Association Analysis of
Large-Scale Data. Nat. Genet. 51(12), 1749-1755. doi:10.1038/s41588-019-
0530-8

Khan, M. Z., Liu, L., Zhang, Z., Khan, A., Wang, D., Mi, S., et al. (2020). Folic Acid
Supplementation Regulates Milk Production Variables, Metabolic Associated
Genes and Pathways in Perinatal Holsteins. J. Anim. Physiol. Anim. Nutr. 104
(2), 483–492. doi:10.1111/jpn.13313

Laodim, T., Elzo, M. A., Koonawootrittriron, S., Suwanasopee, T., and Jattawa, D.
(2019). Pathway Enrichment and Protein Interaction Network Analysis for
Milk Yield, Fat Yield and Age at First Calving in a Thai Multibreed Dairy
Population. Asian-australas. J. Anim. Sci. 32 (4), 508–518. doi:10.5713/
ajas.18.0382

Lê, S., Josse, J., and Husson, F. (2008). FactoMineR: AnRPackage for Multivariate
Analysis. J. Stat. Soft. 25 (1), 1–18. doi:10.18637/jss.v025.i01

Li, J., Gao, H., Madsen, P., Li, R., Liu, W., Bao, P., et al. (2020). Impact of the Order
of Legendre Polynomials in Random Regression Model on Genetic Evaluation
for Milk Yield in Dairy Cattle Population. Front. Genet. 11 (1269). doi:10.3389/
fgene.2020.586155

Li, X., Lund, M. S., Janss, L., Wang, C., Ding, X., Zhang, Q., et al. (2017). The
Patterns of Genomic Variances and Covariances across Genome for Milk
Production Traits between Chinese and Nordic Holstein Populations. BMC
Genet. 18 (1), 26. doi:10.1186/s12863-017-0491-9

Littlejohn, M. D., Tiplady, K., Fink, T. A., Lehnert, K., Lopdell, T., Johnson, T., et al.
(2016). Sequence-based Association Analysis Reveals an MGST1 eQTL with
Pleiotropic Effects on Bovine Milk Composition. Sci. Rep. 6 (1), 25376.
doi:10.1038/srep25376

Liu, L., and Zhang, Q. (2020). Comparative Proteome Analysis Reveals VPS28
Regulates Milk Fat Synthesis through Ubiquitylation in Bovine Mammary
Epithelial Cells. PeerJ 8, e9542. doi:10.7717/peerj.9542

Liu, L., Zhou, J., Chen, C. J., Zhang, J., Wen, W., Tian, J., et al. (2020). GWAS-based
Identification of New Loci for Milk Yield, Fat, and Protein in Holstein Cattle.
Animals 10 (11), 2048. doi:10.3390/ani10112048

Liu, S., Tan, H., Yang, L., and Yi, J. (2014). Genetic Parameter Estimates for
Selected Type Traits and Milk Production Traits of Holstein Cattle in Southern
China. Turkish J. Vet. Anim. Sci. 38 (5), 552–556.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 79966413

Lu et al. Genetic Evaluation and GWAS

https://doi.org/10.1111/opo.12131
https://doi.org/10.3168/jds.S0022-0302(06)72192-0
https://doi.org/10.1017/S1751731119003318
https://doi.org/10.1017/S1751731119003318
https://doi.org/10.3168/jds.2009-2128
https://doi.org/10.1016/j.livsci.2008.09.021
https://doi.org/10.1186/1471-2164-9-366
https://doi.org/10.1186/1471-2164-9-366
https://doi.org/10.3168/jds.2015-10462
https://doi.org/10.1186/1471-2164-15-1112
https://doi.org/10.1038/ng.3211
https://doi.org/10.1038/ng.3211
https://doi.org/10.1186/1471-2164-12-408
https://doi.org/10.3168/jds.2017-13219
https://doi.org/10.3168/jds.2016-11587
https://doi.org/10.3168/jds.2016-11587
https://doi.org/10.1186/gb-2003-4-9-r60
https://doi.org/10.1016/j.agwat.2017.08.008
https://doi.org/10.1016/j.agwat.2017.08.008
https://doi.org/10.1095/biolreprod.105.048579
https://doi.org/10.1095/biolreprod.105.048579
https://doi.org/10.1038/s41598-018-31427-0
https://doi.org/10.1038/s41598-018-31427-0
https://doi.org/10.1371/journal.pone.0099544
https://doi.org/10.1371/journal.pone.0099544
https://doi.org/10.5713/ajas.2011.10461
https://doi.org/10.1186/s12711-017-0335-0
https://doi.org/10.3168/jds.2007-0382
https://doi.org/10.3168/jds.2007-0382
https://doi.org/10.1139/g10-076
https://doi.org/10.1038/srep31109
https://doi.org/10.3389/fgene.2019.00412
https://doi.org/10.1038/s41588-019-0530-8
https://doi.org/10.1038/s41588-019-0530-8
https://doi.org/10.1111/jpn.13313
https://doi.org/10.5713/ajas.18.0382
https://doi.org/10.5713/ajas.18.0382
https://doi.org/10.18637/jss.v025.i01
https://doi.org/10.3389/fgene.2020.586155
https://doi.org/10.3389/fgene.2020.586155
https://doi.org/10.1186/s12863-017-0491-9
https://doi.org/10.1038/srep25376
https://doi.org/10.7717/peerj.9542
https://doi.org/10.3390/ani10112048
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Liu, X., Huang, M., Fan, B., Buckler, E. S., and Zhang, Z. (2016). Iterative Usage of Fixed
and Random Effect Models for Powerful and Efficient Genome-wide Association
Studies. Plos Genet. 12 (2), e1005767. doi:10.1371/journal.pgen.1005767

Liu Y, Y., Xu, L., Yang, L., Zhao, G., Li, J., Liu, D., et al. (20201649). Discovery of
Genomic Characteristics and Selection Signatures in Southern Chinese Local
Cattle. Front. Genet. 11. doi:10.3389/fgene.2020.533052

Lu, X., Abdalla, I. M., Nazar, M., Fan, Y., Zhang, Z., Wu, X., et al. (2021). Genome-
Wide Association Study on Reproduction-Related Body-Shape Traits of
Chinese Holstein Cows. Animals 11 (7), 1927. doi:10.3390/ani11071927

Madsen, P., Milkevych, V., Gao, H., Christensen, O. F., and Jensen, J. (2014). "DMU
- A Package for Analyzing Multivariate Mixed Models in Quantitative Genetics
and Genomics").

Marees, A. T., de Kluiver, H., Stringer, S., Vorspan, F., Curis, E., Marie-Claire, C.,
et al. (2018). A Tutorial on Conducting Genome-wide Association Studies:
Quality Control and Statistical Analysis. Int. J. Methods Psychiatr. Res. 27 (2),
e1608. doi:10.1002/mpr.1608

Menon, R., Patel, A. B., and Joshi, C. (2016). Comparative Analysis of SNP
Candidates in Disparate Milk Yielding River Buffaloes Using Targeted
Sequencing. PeerJ 4, e2147. doi:10.7717/peerj.2147

Mokhber, M., Shahrbabak, M. M., Sadeghi, M., Shahrbabak, H. M., Stella, A.,
Nicolzzi, E., et al. (2019). Study of Whole Genome Linkage Disequilibrium
Patterns of Iranian Water buffalo Breeds Using the Axiom Buffalo Genotyping
90K Array. PLoS ONE 14 (5), e0217687. doi:10.1371/journal.pone.0217687

Mota, L. F. M., Lopes, F. B., Fernandes Júnior, G. A., Rosa, G. J. M., Magalhães, A. F.
B., Carvalheiro, R., et al. (2020). Genome-wide Scan Highlights the Role of
Candidate Genes on Phenotypic Plasticity for Age at First Calving in Nellore
Heifers. Sci. Rep. 10 (1), 6481. doi:10.1038/s41598-020-63516-4

Ojango, J. M. K., Mrode, R., Rege, J. E. O., Mujibi, D., Strucken, E. M., Gibson, J.,
et al. (2019). Genetic Evaluation of Test-Day Milk Yields from Smallholder
Dairy Production Systems in Kenya Using Genomic Relationships. J. Dairy Sci.
102 (6), 5266–5278. doi:10.3168/jds.2018-15807

Oliveira, H., Silva, F., Brito, L., Jamrozik, J., Lourenco, D., and Schenkel, F. (2018).
Genome-wide Association Study for Milk, Fat and Protein Yields in Different
Lactation Stages in Canadian Holstein and Jersey Cattle.

Osorio, J. S., Lohakare, J., and Bionaz, M. (2016). Biosynthesis of Milk Fat, Protein,
and Lactose: Roles of Transcriptional and Posttranscriptional Regulation.
Physiol. Genomics 48 (4), 231–256. doi:10.1152/physiolgenomics.00016.2015

Palombo, V., Milanesi, M., Sgorlon, S., Capomaccio, S., Mele, M., Nicolazzi, E., et al.
(2018). Genome-wide Association Study of Milk Fatty Acid Composition in Italian
Simmental and ItalianHolsteinCowsUsing SingleNucleotide PolymorphismArrays.
J. Dairy Sci. 101 (12), 11004–11019. doi:10.3168/jds.2018-14413

Pereira, R. J., Bignardi, A. B., El Faro, L., Verneque, R. S., Vercesi Filho, A. E., and
Albuquerque, L. G. (2013). Random Regression Models Using Legendre
Polynomials or Linear Splines for Test-Day Milk Yield of Dairy Gyr (Bos
indicus) Cattle. J. Dairy Sci. 96 (1), 565–574. doi:10.3168/jds.2011-5051

Porto-Neto, L. R., Kijas, J. W., and Reverter, A. (2014). The Extent of Linkage
Disequilibrium in Beef Cattle Breeds Using High-Density SNP Genotypes.
Genet. Sel Evol. 46 (1), 22. doi:10.1186/1297-9686-46-22

Price, A. L., Zaitlen, N. A., Reich, D., and Patterson, N. (2010). New Approaches to
Population Stratification in Genome-wide Association Studies. Nat. Rev. Genet.
11 (7), 459–463. doi:10.1038/nrg2813

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D.,
et al. (2007). A Tool Set for Whole-Genome Association and Population-Based
Linkage Analyses. Am. J. Hum. Genet. 81 (3), 559–575. doi:10.1086/519795

Sanchez, M.-P., Govignon-Gion, A., Croiseau, P., Fritz, S., Hozé, C., Miranda, G., et al.
(2017).Within-breed andMulti-BreedGWAS on ImputedWhole-Genome Sequence
Variants Reveal Candidate Mutations Affecting Milk Protein Composition in Dairy
Cattle. Genet. Sel Evol. 49 (1), 68. doi:10.1186/s12711-017-0344-z

Schaeffer, L. R., Jamrozik, J., Kistemaker, G. J., and Van Doormaal, J. (2000).
Experience with a Test-Day Model. J. Dairy Sci. 83 (5), 1135–1144. doi:10.3168/
jds.S0022-0302(00)74979-4

Schneider, F., Tomek, W., and Gründker, C. (2006). Gonadotropin-releasing
Hormone (GnRH) and its Natural Analogues: A Review. Theriogenology 66
(4), 691–709. doi:10.1016/j.theriogenology.2006.03.025

Silvestre, A. M., Petim-Batista, F., and Colaço, J. (2005). Genetic Parameter
Estimates of Portuguese Dairy Cows for Milk, Fat, and Protein Using a
Spline Test-Day Model. J. Dairy Sci. 88 (3), 1225–1230. doi:10.3168/
jds.S0022-0302(05)72789-2

Silvestre, A. M., Petim-Batista, F., and Colaço, J. (2006). The Accuracy of Seven
Mathematical Functions in Modeling Dairy Cattle Lactation Curves Based on
Test-Day Records from Varying Sample Schemes. J. Dairy Sci. 89 (5),
1813–1821. doi:10.3168/jds.S0022-0302(06)72250-0

Tijani, A., Wiggans, G. R., Van Tassell, C. P., Philpot, J. C., and Gengler, N. (1999).
Use of (Co)Variance Functions to Describe (Co)Variances for Test Day Yield1.
J. Dairy Sci. 82 (1), 226.e221–226.e214. doi:10.3168/jds.S0022-0302(99)75228-8

Togashi, K., Lin, C. Y., Atagi, Y., Hagiya, K., Sato, J., and Nakanishi, T. (2008).
Genetic Characteristics of Japanese Holstein Cows Based onMultiple-Lactation
Random Regression Test-Day Animal Models. Livestock Sci. 114 (2), 194–201.
doi:10.1016/j.livsci.2007.04.023

Tribout, T., Croiseau, P., Lefebvre, R., Barbat, A., Boussaha, M., Fritz, S., et al.
(2020). Confirmed Effects of Candidate Variants for Milk Production, Udder
Health, and Udder Morphology in Dairy Cattle.Genet. Sel Evol. 52. doi:10.1186/
s12711-020-00575-1

Wahinya, P. K., Jeyaruban, M. G., Swan, A. A., Gilmour, A. R., and Magothe, T. M.
(2020). Genetic Parameters for Test-Day Milk Yield, Lactation Persistency, and
Fertility in Low-, Medium-, and High-Production Systems in Kenya. J. Dairy
Sci. 103 (11), 10399–10413. doi:10.3168/jds.2020-18350

Wang, D., Ning, C., Liu, J.-F., Zhang, Q., and Jiang, L. (2019a). Short
Communication: Replication of Genome-wide Association Studies for Milk
Production Traits in Chinese Holstein by an Efficient Rotated Linear Mixed
Model. J. Dairy Sci. 102 (3), 2378–2383. doi:10.3168/jds.2018-15298

Wang, W., Pan, Y.-W., Wietecha, T., Zou, J., Abel, G. M., Kuo, C. T., et al. (2013).
Extracellular Signal-Regulated Kinase 5 (ERK5) Mediates Prolactin-Stimulated
Adult Neurogenesis in the Subventricular Zone and Olfactory Bulb. J. Biol.
Chem. 288 (4), 2623–2631. doi:10.1074/jbc.m112.401091

Wang, Y., Guo, W., Xu, H., Tang, K., Zan, L., and Yang, W. (2019b). Melatonin
Suppresses Milk Fat Synthesis by Inhibiting the mTOR Signaling Pathway via
the MT1 Receptor in Bovine Mammary Epithelial Cells. J. Pineal Res. 67 (3),
e12593. doi:10.1111/jpi.12593

Wickramasinghe, S., Rincon, G., Islas-Trejo, A., and Medrano, J. F. (2012).
Transcriptional Profiling of Bovine Milk Using RNA Sequencing. BMC
Genomics 13 (1), 45. doi:10.1186/1471-2164-13-45

Yang, F., Chen, F., Li, L., Yan, L., Badri, T., Lv, C., et al. (2019). Three Novel Players:
PTK2B, SYK, and TNFRSF21 Were Identified to Be Involved in the Regulation
of Bovine Mastitis Susceptibility via GWAS and Post-transcriptional Analysis.
Front. Immunol. 10, 1579. doi:10.3389/fimmu.2019.01579

Yao, D. W., Ma, J., Yang, C. L., Chen, L. L., He, Q. Y., Coleman, D. N., et al. (2021).
Phosphatase and Tensin Homolog (PTEN) Suppresses Triacylglycerol
Accumulation and Monounsaturated Fatty Acid Synthesis in Goat
Mammary Epithelial Cells. J. Dairy Sci. 104 (6), 7283–7294. doi:10.3168/
jds.2020-18784

Yen, C.-L. E., Stone, S. J., Koliwad, S., Harris, C., and Farese, R. V. (2008). Thematic
Review Series: Glycerolipids. DGAT Enzymes and Triacylglycerol Biosynthesis.
J. Lipid Res. 49 (11), 2283–2301. doi:10.1194/jlr.r800018-jlr200

Zhang, Z., Ober, U., Erbe, M., Zhang, H., Gao, N., He, J., et al. (2014). Improving
the Accuracy of Whole Genome Prediction for Complex Traits Using the
Results of Genome Wide Association Studies. PLOS ONE 9 (3), e93017.
doi:10.1371/journal.pone.0093017

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Lu, Arbab, Abdalla, Liu, Zhang, Xu, Su and Yang. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 79966414

Lu et al. Genetic Evaluation and GWAS

https://doi.org/10.1371/journal.pgen.1005767
https://doi.org/10.3389/fgene.2020.533052
https://doi.org/10.3390/ani11071927
https://doi.org/10.1002/mpr.1608
https://doi.org/10.7717/peerj.2147
https://doi.org/10.1371/journal.pone.0217687
https://doi.org/10.1038/s41598-020-63516-4
https://doi.org/10.3168/jds.2018-15807
https://doi.org/10.1152/physiolgenomics.00016.2015
https://doi.org/10.3168/jds.2018-14413
https://doi.org/10.3168/jds.2011-5051
https://doi.org/10.1186/1297-9686-46-22
https://doi.org/10.1038/nrg2813
https://doi.org/10.1086/519795
https://doi.org/10.1186/s12711-017-0344-z
https://doi.org/10.3168/jds.S0022-0302(00)74979-4
https://doi.org/10.3168/jds.S0022-0302(00)74979-4
https://doi.org/10.1016/j.theriogenology.2006.03.025
https://doi.org/10.3168/jds.S0022-0302(05)72789-2
https://doi.org/10.3168/jds.S0022-0302(05)72789-2
https://doi.org/10.3168/jds.S0022-0302(06)72250-0
https://doi.org/10.3168/jds.S0022-0302(99)75228-8
https://doi.org/10.1016/j.livsci.2007.04.023
https://doi.org/10.1186/s12711-020-00575-1
https://doi.org/10.1186/s12711-020-00575-1
https://doi.org/10.3168/jds.2020-18350
https://doi.org/10.3168/jds.2018-15298
https://doi.org/10.1074/jbc.m112.401091
https://doi.org/10.1111/jpi.12593
https://doi.org/10.1186/1471-2164-13-45
https://doi.org/10.3389/fimmu.2019.01579
https://doi.org/10.3168/jds.2020-18784
https://doi.org/10.3168/jds.2020-18784
https://doi.org/10.1194/jlr.r800018-jlr200
https://doi.org/10.1371/journal.pone.0093017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Genetic Parameter Estimation and Genome-Wide Association Study-Based Loci Identification of Milk-Related Traits in Chinese  ...
	Introduction
	Materials and methods
	Ethical Statement
	Research Population and Phenotype Collection
	Genotypic Data
	Estimated Genetic Parameters
	Principal Component Analysis
	Genome-Wide Association Studies
	Annotation and Enrichment Analysis of Candidate Genes

	Results
	Variance Components and Genetic Parameters
	Genetic Correlations and Permanent Environmental Correlations
	Distributions and Correlations of Phenotypes
	Marker Information and Population Structure
	Genome-Wide Association Study
	Enrichment Analysis

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


