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In-silico classification of the pathogenic status of somatic variants is shown to be promising
in promoting the clinical utilization of genetic tests. Majority of the available classification
tools are designed based on the characteristics of germline variants or the combination of
germline and somatic variants. Significance of somatic variants in cancer initiation and
progression urges for development of classifiers specialized for classifying pathogenic
status of cancer somatic variants based on the model trained on cancer somatic variants.
We established a gold standard exclusively for cancer somatic single nucleotide variants
(SNVs) collected from the catalogue of somatic mutations in cancer. We developed two
support vector machine (SVM) classifiers based on genomic features of cancer somatic
SNVs located in coding and non-coding regions of the genome, respectively. The SVM
classifiers achieved the area under the ROC curve of 0.94 and 0.89 regarding the
classification of the pathogenic status of coding and non-coding cancer somatic
SNVs, respectively. Our models outperform two well-known classification tools
including FATHMM-FX and CScape in classifying both coding and non-coding cancer
somatic variants. Furthermore, we applied our models to predict the pathogenic status of
somatic variants identified in young breast cancer patients from METABRIC and TCGA-
BRCA studies. The results indicated that using the classification threshold of 0.8 our
“coding” model predicted 1853 positive SNVs (out of 6,910) from the TCGA-BRCA
dataset, and 500 positive SNVs (out of 1882) from the METABRIC dataset.
Interestingly, through comparative survival analysis of the positive predictions from our
models, we identified a young-specific pathogenic somatic variant with potential for the
prognosis of early onset of breast cancer in young women.
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1 INTRODUCTION

Leverage of high-throughput technologies has given rise to an ever-increasing list of sequenced
genes, exomes, transcriptomes and genomes. However, availability of a great amount of raw data
would not be valuable without being translated into useful information (Trisilowati and DG, 2012).
Genomic variants identified through sequencing can relate to susceptibility to complex diseases such
as cancer. This is particularly applicable to the variants that affect the genes associated with critical
cellular events such as cell cycle process regulation, DNA mismatch repair, metabolism and
immunity (Landau et al., 2015; Oldridge et al., 2015). Accurate interpretation of the sequence
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data helps to choose the most efficient therapy, predict responses
to a therapy, and estimate critical clinical consequences such as
patient’s overall survival, tumor recurrence-free survival, etc.
(Richards et al., 2015).

Our understanding of the pathogenicity of any given genomic
variant falls into a spectrum between almost certainly pathogenic
to almost certainly benign for a disease (Richards et al., 2015). A
principal aim in cancer research has been to identify the
mutations affecting the genes with causal roles in cancer
susceptibility. Following the report of the first somatic
mutation identified in a human oncogene (Reddy et al., 1982;
Tabin et al., 1982), a substantial number of oncogenes and their
relevant somatic mutations have been detected (Futreal et al.,
2004). These mutations can be either pathogenic driver variants,
conferring fitness advantages to tumor cells (Hodis et al., 2012),
or passenger benign variants, biologically neutral mutations with
no growth/survival advantages (Greenman et al., 2007). The
biggest challenge of all systemic mutation screenings is to
distinguish between the two groups of variants.

In-silico experimentation approaches combine mathematical
strategies with expert opinion to interpret the biological
significance of genomic data (Trisilowati and DG, 2012) in an
efficient and economical manner. In-silico approaches save
laboratory costs while allowing for numerous experiments to
be conducted simultaneously, be observed and controlled at any
level of detail, and be repeated as many times as desired. Many
experts in the closely related areas of theoretical and
computational biology have shared a view that in-silico
experiments can be used as a pioneer or in association with
experimental studies (Trisilowati and DG, 2012).

To date, many computational tools have been developed to
classify pathogenic status of genomic variants using different
training approaches and datasets. Most classification tools have
been only benchmarked for classifying the type of variants (e.g.
germline variants) included in their original training dataset
(Gonzalez-Perez et al., 2013), while being widely used for
classifying other types of variants (e.g. both germline and
somatic variants) as well. A good example of this circumstance
is implementation of FATHMM-MKL (designed based on the
characteristics of germline non-cancer variants) for predicting the
pathogenic status of cancer somatic mutations in Catalogue of
Somatic Mutations in Cancer (COSMIC) dataset.

Considering the importance of both coding and noncoding
somatic point mutations in cancer initiation and progression,
as well as the increasing emergence of cancer sequence
databases such as the international Cancer Genome
Consortium (Zhang et al., 2011), The Cancer Genome
Atlas (Weinstein et al., 2013), Genomics England (100,000
genomes) Projects (Samuel and Farsides, 2017) there is a
strong demand for development of interpretation tools
specified for classifying pathogenic status of cancer
somatic variants based on the model trained on cancer
somatic variants. Here, we developed a computational tool
specified for classification of pathogenic status of cancer
somatic single nucleotide variants (SNVs). Our models
trained on only cancer somatic variants are capable of
classifying both coding and noncoding somatic SNVs into

two distinct groups of pathogenic somatic mutations and
non-pathogenic somatic mutations.

Despite the low occurrence rate of breast cancer in individuals
under the age of 40 (7% in developed world and 25% in
developing world) compared to their older counterparts, they
suffer from more severe presentation, lower survival rate, and
higher risks of disease relapse (Saghir et al., 2007; Azim et al.,
2012). Various studies have examined patterns of somatic
mutations in breast cancer patients. However, there exists a
lack of evidence about the landscape of somatic mutations in
young patients (Stephens et al., 2012). Using our classification
models, we investigated cancer somatic variants in young breast
cancer patients to identify the potential age-specific biomarkers
and genomic signatures.

2 MATERIALS AND METHODS

A detailed workflow of the methods and materials used in this
study is delineated in Figure 1. The materials include: 1) a list of
labeled cancer somatic SNVs constituting the gold standard
dataset, 2) a list of cancer un-labeled somatic SNVs
constituting the prediction dataset, and 3) feature sets that
characterize the cancer somatic SNVs in the gold standard.

2.1 Gold Standard
Our gold standard dataset involves somatic SNVs identified in
coding and non-coding regions of the DNA from either cancer
patients or healthy individuals. Generally, mutations occurring in
coding and non-coding regions of the genome share the same
basic characteristics such as the innate changes they introduce
into the DNA sequence. However, coding mutations can be
studied from additional aspects in terms of affected genes,
transcripts, and proteins. Accordingly, we split our gold
standard into coding and non-coding subsets to train each set
individually based on their relevant features. Labels assigned to
the pathogenic status of variants in the gold standard form the
foundation of model development. Therefore, it is of critical
importance that maximum precautions be taken in labeling the
pathogenic (positive) and non-pathogenic (negative) examples.

2.1.1 Labelling Positive Examples
Our positive (pathogenic) examples are cancer somatic SNVs
extracted from COSMIC database (Forbes et al., 2011) which
assembles and organizes thorough information about cancer
somatic mutations from majority of known cancer types. To
filter out pathogenic SNVs from COSMIC, we first excluded
all the SNVs that were mutual between healthy individuals
and cancer patients. Next, we defined a recurrence threshold
to ascertain that our positive samples are true representatives
of pathogenic somatic SNVs. Rogers et al. define a threshold
as the number of repetitions of a given mutation across the
whole dataset. They based their choice of the best threshold
on the size of the remaining positive dataset after filtering out
mutations with a frequency of less than a given threshold. In
this approach, increasing the threshold decreases the number
of remaining positive samples to the point that an extremely
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high threshold may result in a potential bias by limiting the
samples pertaining to only a set of relevant genes. They
suggested that the best threshold would provide the
classifier with a sufficient number of training examples
while introducing the minimum bias (Rogers et al., 2017).
In this study, we followed a more conservative approach by
defining a bi-dimensional threshold spanning both frequency
of a given SNV across the dataset, as well as the number of
cancer types in which the mutation occurred. The novelty of
this score is that it considers occurrence of a given mutation
in more than one cancer type. This is a valid approach as
traditionally an obvious step in defining the clinical
implications of a new mutation is to determine if it has
been involved in other cancers or disorders (Gonzalez-
Perez et al., 2013; Rogers et al., 2017).

2.1.2 Labelling Negative Examples
Our negative (non-pathogenic) dataset includes SNVs from
COSMIC chosen based on information from dbSNP database
(Sherry et al., 2001) and 1,000 Genome Project (Altshuler
et al., 2012). Firstly, we extracted the SNVs with a minor allele
frequency of equal or greater than 1% in at least one, 1,000
Genomes population reported in dbSNP. This assured us that
the collected SNVs are confidently non-pathogenic as
reported by two validated resources of genetic variations in
healthy individuals. At this point, our negative dataset was a
mixture of germline and somatic variants. To extract somatic
SNVs from this mixture, we first collected all the SNVs
annotated as “found in healthy individuals” from
COSMIC, providing us with somatic variants, and
subsequently identified the mutual SNVs between these
mutations and our mixture. Eventually, we were confident
each SNV in our negative dataset is a somatic benign variant
found in healthy individuals.

2.2 Genomic Features
One goal of our classification models is to learn the discrepancies
and similarities between pathogenic and non-pathogenic cancer
somatic SNVs. To this aim, we used genomic features
characterizing mutations through criteria such as sequence
characteristics, genomic content of the mutation sites, and
functional and structural consequences of the mutations.
Genomic features defined in this study are mostly annotations
from different projects such as ENCODE (Dunham et al., 2012),
CADD (Rentzsch et al., 2019), and ENSEMBL variant effect
predictor (VEP) (McLaren et al., 2016), scores from
pathogenic SNV predictors such as POLYPHEN (Adzhubei
et al., 2013) and SIFT (Ng and Henikoff, 2003), as well as
information from variant browsers such as BRAVO
(bravo.sph.umich.edu/freeze5/hg38). We have grouped the
features into four major subsets, each portraying the
mutations from a specific aspect including 1) structural and
genomic context features, 2) epigenetic features, 3) genomic
distance features, 4) genomic conservation features, described
in Table 1. Overall, we defined 65 genomic features for coding
and non-coding variants, with an additional 15 coding specific
features adding up to a total of 80 features that were included in
coding gold standard (Supplementary Table S1).

2.3 Handling Missing Data
Like most data collection-based studies, missing data were
inevitable in our study. Our sample size would shrink
significantly (more than 5%) in the event of removing all
the SNVs that have any missing values. Therefore, the MICE
(Multivariate imputation by chained equations) imputation
approach was used for estimating the potential values of the
missing data. MICE is applicable to datasets with missing
values in multiple variables (Wulff and Jeppesen, 2017), and
is also adapted to handle different types of data (e.g.

FIGURE 1 | A flowchart overview of the steps of the study modelling and application of computational algorithms designed based on supervised classification
methods.
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continuous or binary) (Van Buuren and Groothuis-
Oudshoorn, 2011).

2.4 Data Normalization
Data normalization or scaling is known to be beneficial in
improving the performance of some classifiers such as support
vector machine (SVM). To investigate the effect of data
normalization on our models we used Python Scale package
from sklearn library (Pedregosa et al., 2011) to normalize the
feature values in our gold standard datasets. Generally, two major
issues are addressed in data normalization: first, to avoid large
values in wider numeric scales which can cause numerical
problems; second, to simplify the classification calculation
process.

2.5 Classification Methods
In this study we have used two relatively popular classification
methods with demonstrated capability of dealing with cancer
genomic data:

1) Lasso (least absolute shrinkage and selection operator)
regression model is a type of linear regression that sums up
penalty scores equal to the absolute value of the
coefficients resulting in elimination of features with
large penalty scores (Tibshirani, 1996). The final
coefficients estimated by Lasso regression indicate the
contribution of each feature in predicting the outcome
value. Lasso conducts feature selection by setting the
coefficients of non-discriminative features to zero. This
is especially suitable for models with high levels of
multicollinearity (Farrar and Glauber, 1964) which
occurs when there is a high correlation between two or
more features in the model.

2) SVM is a powerful classification method capable of
predicting labels of two classes based on their defined
features (Huang et al., 2018). SVM discriminates the two
groups by creating a decision boundary called hyperplane
which is oriented in a way that keeps the largest possible
distance from the closest data points of each class known as
support vectors. In addition to linear classification, SVM is
supplied with a kernel method which facilitates certain
calculations needed for high dimensional space non-linear

classification (Huang et al., 2018). Among other parameters,
choice of the kernel can affect SVM classification power
enormously. However, there is no certain way of choosing
the best kernel without conducting trial and error practices
starting from a simple SVM model.

2.6 Model Evaluation
We used two strategies to evaluate our model’s performance. In
the first approach, we used 2/3 of the total samples for training
and the remaining 1/3 for testing. In the second approach, we
performed 10-fold cross-validation (10F CV) of each of the gold
standards. We used area under the ROC (receiver operating
characteristic) curve as an estimation of the discrimination
power of our classification models (Cook, 2007).

2.7 Applying the Models to Breast Cancer
Cohort Studies
We studied the landscape of somatic SNVs in young breast cancer
patients by applying our trained models to the data from two
cohort studies including METABRIC (Molecular Taxonomy of
Breast Cancer International Consortium) (Pereira et al., 2016)
and TCGA-BRCA (The Cancer Genome Atlas Breast Invasive
Carcinoma) (Grossman et al., 2016), both representing the
genomic profile of breast cancer tumors. In the interest of our
study aims, we only examined the SNVs from patients younger
than 45 years of age.

METABRIC is based on exome sequencing of 173 previously
established risk genes from 2,433 primary breast cancer samples.
From a total of 32,476 SNVs identified in METABRIC, we were
able to define the genomic features for 13,942 somatic SNVs of
which 1882 were from 326 patients younger than 45 years of age
at diagnosis. TCGA-BRCA characterizes human breast tumors
using five molecular assessment platforms involving Affymetrix
SNP arrays, Illumina Infinium DNA methylation chips, Agilent
mRNA expression microarrays, whole exome sequencing and
microRNA sequencing. From a total of 80,227 somatic SNVs
from 976 patients, we were able to define the genomic features for
8,647 somatic SNVs from 142 young patients (<45 years old at
diagnosis). Regarding the data collection approaches followed by
TCGA-BRCA study, 6,910 somatic SNVs were from coding
regions (e.g., provided by whole exome sequencing) and 1737
somatic SNVs were from noncoding regions (e.g. provided by
microRNA sequencing) of the genome.

TABLE 1 | Four major genomic feature groups characterizing the SNVs in gold standard datasets.

Feature group Description Example

Structural and genomic context
features

Characterizing sequence attributes of the mutation location. These features estimate the
disruption in the mutations surrounding sequence both in coding and non-coding regions

Percentage of GC in a ±75 bp window

Epigenetic features Describing epigenetic changes such as histone modifications and methylation alterations Maximum H3K4 methylation level from
Encode

Genomic distance features Measuring the distance between a given SNV and critical functional and structural genomic
elements such as transcription start and end sites

Minimum distance to Transcribed
Sequence Start (TSS)

Genomic conservation features Measuring the evolutionary conservation at the mutation alignment sites in an effort to help
the trainingmodels learn the relationships between themeasurements and pathogenicity of
the SNVs

Scores from PhastCons and Phylop
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2.7.1 Survival Analysis
Based on different events of interests we conducted two types of
survival analysis in our study.

1) SNV-level survival analysis, which regards the recurrence of a
given mutation in a given patient as the event of interest, was
conducted for the somatic SNVs from METABRIC and
TCGA-BRCA that were predicted to be pathogenic by our
models. We were particularly interested in the predicted
somatic pathogenic mutations with the most frequency
(recurrence frequency of ≥4 and ≥2 in coding and
noncoding regions, respectively). SNV-level survival
analysis assesses whether the survival time of the patients
who harbor a specific mutation in their tumour genome is
significantly different from the patients whose tumours do not
harbor the mutation. We identified the mutations that were
significantly associated with the survival time of young
patients and compared the results with outcomes from
SNV-level survival analysis of old patients.

2) Gene-level survival analysis, when considering a given gene as
mutated or not as the event of interest, was conducted for the
genes from METABRIC and TCGA-BRCA data sets.
Consistent with the purpose of our study we were only
interested in those genes whose mutation status was
significantly associated with the survival time of young
patients but not the survival time of the older patients. We
defined a gene as mutated if it was affected by at least one
predicted pathogenic SNV in a given sample.

2.7.2 Gene Set Enrichment Analysis (GSEA)
Gene set enrichment analysis also referred to as functional enrichment
analysis is an analytical method that determines whether themembers
of a given list of genes are over-represented in an a priori known set of
genes or proteins (Subramanian et al., 2005). GSEA also helps in
investigating the association between expression of a given list of genes
with disease phenotypes. In this studywe used Enrichr software (Chen
et al., 2013; Kuleshov et al., 2016) to conduct enrichment analysis
investigating whether the genes that are affected by the somatic SNVs
predicted as pathogenic by our models are over-represented in any
interesting cellular pathway or function.

3 RESULTS

3.1 Gold Standard
Following our bi-dimensional scoring approach for labeling
positive cancer somatic SNVs, we computed the number of
SNVs reaching different thresholds of each dimension of the
scoring methods shown in Supplementary Table S2 and
Supplementary Table S3 for coding and non-coding datasets,
respectively. For example, the highlighted cells in Supplementary
Table S2 indicate 122,054 SNVs are repeated at least 4 times across
the whole dataset, and 206,349 SNVs are identified in at least two
cancer types (e.g. skin and breast cancers). Following the “sufficient
examples with minimum bias” condition, in coding dataset, four
and two were chosen as optimal thresholds regarding the first and
second dimension of the final score, respectively. The chosen

threshold for the first and second dimensions of the final score
in the non-coding dataset were 3 and 2, respectively. Ultimately,
the coding gold standard included 12,313 positive (pathogenic) and
16,594 negative (non-pathogenic) cancer somatic variants. and the
non-coding gold standard included 28,993 positive (pathogenic)
and 58,995, negative (non-pathogenic) SNVs, respectively.

3.2 Most Discriminative Genomic Features
Identifying the features with highest contribution to the
discrimination power of a model is important in evaluating the
model from biological aspects. In the Lasso model the bigger the
absolute value of the coefficient of a feature themore discriminative
the feature. Accordingly, the coefficient of zero effectively implies
that the feature is discarded in the feature selection process and has
not been used for model training. The coefficients of features from
coding and noncoding Lasso models (Supplementary Table S4
and Supplementary Table S5) indicate that among coding features
“structural and genomic context features” (e.g. percentage of CpG
islands, GC percentage in a ±75 window from a given mutation,
and the number of single occurrence of SNVs (MAF<0.05) in a
±100 window from the given mutation), “genomic distance
features” (e.g. relative distance of a SNV from transcription
start site), and “genomic conservation features” (e.g. scores form
PhastCons, and methylation modifications to protein histone H3
(H3K9me3) at ninth lysine residue) are ranked as the most
discriminative features, respectively. Two features including the
number of amino acid distance from coding start site and the
p-values fromGerpRS evolution scoring tool have not been used in
the coding model as they have a coefficient of 0.

A similar trend was repeated in ranking the most
discriminative noncoding features; “Structural and genomic
context” (e.g. CpG islands in a ± 75 window from the
mutation, number of single occurrences of the SNVs
(MAF<0.05) in ± 100 window from the mutation,
transverison/transition identity of the nucleotide change, and
GC percentage in a ± 75 window from the mutation), “genomic
conservation features” (e.g. scores from Phylop), and “epigenetic
features” (e.g. methylation modifications to protein histone H3
(H3K36me3) at 36th lysine residue). Interestingly, unlike the
coding model, no features had the coefficient of zero in the non-
coding Lasso model. Hence, For the Lasso models, 78 and 65
features were used in the models for coding and non-coding
regions, respectively. However, for the SVM models, no features
were filtered out, and 80 and 65 features were used in the final
models for the coding and non-coding regions, respectively.

3.3 Model Selection and Visualization
We applied our modeling methods [LASSO and SVM with radial
basis function (SVM-rbf)] to both normalized and non-
normalized data and evaluated their performance
(Supplementary Table S6 and Supplementary Table S7).
Using the 10F CV, we observed that data normalization does
not affect the performance of Lasso models while significantly
increases the classification performance of SVM models. Using
the normalized data, we plotted the ROC curves based on 10F CV
of the final candidate Lasso and SVMmodels shown in Figure 2A
and Figure 2B for the coding and noncoding models,
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respectively. Classification models return a continuous
probability value (from 0 to 1) which needs to be mapped to a
binary category (e.g. pathogenic or non-pathogenic) using a
classification threshold. ROC curves can be beneficial in
identifying the best classification threshold (also called
optimum threshold) yielding the highest true positive and
lowest false positive results. We chose the classification
threshold of 0.55 as the optimum threshold for our coding
model, reaching the true positive rate (TPR) of 0.80 and false
positive rate (FPR) of 0.06 (Supplementary Table S8). To acquire
the same TPR by our noncoding model we chose the optimum
threshold of 0.41, reaching the TPR of 0.80 and FPR of 0.09
(Supplementary Table S9).

3.4 Model Benchmarking
We compared the performance of our final SVM models, in
the task of classifying cancer somatic variants, with two of the

leading variant classifiers including FATHMM-XF and
Cscape. Using FATHMM web server (http://fathmm.
biocompute.org.uk/), we applied FATHMM-XF and Cscape
to the same coding and noncoding test data sets used for
evaluating our SVM models. Please note that we did not use
10F CV for the model benchmarking, instead, we used the
same test data sets used in the train/test strategy for
evaluating and comparing the model performance (the
details are descripted in the first approach of Section 2.6).
Figure 3A and Figure 3B show the ROC curves and the AUC
values of the three classifiers for coding and noncoding SNVs,
respectively. As evident by the AUC values, SVM models
outperformed their competitors in both coding and
noncoding datasets. In the task of classifying cancer
somatic SNVs, our study suggests the following hierarchy
in ranking classifiers based on their performance; 1) A models
designed based on the characteristics of only cancer somatic

FIGURE 2 | ROC curves of the models designed for classifying cancer somatic variants from coding (A) and non-coding (B) regions of the genome.

FIGURE 3 | ROC curves comparing the performance of our model (SVM) with FATHMM-XF and CScape for somatic cancer variants in coding (A) and non-coding
(B) regions of the genome.
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variants (our SVM model), 2) A model designed based on the
characteristics of a mixture of somatic and germline cancer
variants (Cscape), 3) A model designed based on the
characteristics of germline variants (FATHMM-XF).

3.5 Model Predictions
Results from applying our SVM models to the prediction datasets
(METABRIC, TCGA-coding, TCGA-noncoding) are shown in
Table 2. Please note that some somatic pathogenic SNVs used in
training set were also predicted to be somatic pathogenic SNVs in the

METABRIC and TCGA-BRCA datasets. The second column of
Table 2 indicates the number of predicted somatic pathogenic SNVs
that are overlapped with the training pathogenic somatic SNVs.
Furthermore, there are 21 overlapped somatic pathogenic SNVs
between the TCGA and METABRIC cohorts, which are listed in
Supplementary Table S10. We reported the number of SNVs
predicted as pathogenic as well as the number of genes affected by
these SNVs in Supplementary Table S8 and Supplementary Table S9.

We further investigated the biological aspects of prediction
results by identifying the genes that were affected by the most

TABLE 2 |Number of pathogenic SNVs. They were predicted by the SVMmodels for the SNVs from prediction datasets regarding the optimum cut-offs [0.55 for METABRIC
and TCGA-coding (TCGA-CD), and 0.41 for TCGA-noncoding (TCGA-NC)].

Dataset No. of
pathogenic
predictions

No. of
pathogenic
predictions

overlapped with
training SNVs

No. of
affected
genes

The frequency of
pathogenic SNVs ≥2

The frequency of
pathogenic SNVs ≥3

The frequency of
pathogenic SNVs ≥4

No. of
SNVs

No. affected
of genes

No. of
SNVs

No. of
affected
genes

No. of
SNVs

No. of
affected
genes

METABRIC 959 27 154 52 18 17 5 12a 3
TCGA-CD 3,510 59 2,537 232 184 6 2 4 2
TCGA-NC 943 4 331 58 25 0 0 0 0

aBold ones are the number of SNVs that were used in the SNV-level survival analysis.

TABLE 3 | An overview of the genes harboring the recurrent pathogenic SNVs predicted by our models. The “SNV ID” column shows the ID of the recurrent SNV that affects
the gene mentioned in “Gene” column. “Ref” column shows the nucleotide in the reference genome sequence and “Alt” column shows the alternative nucleotide that is
substituted for the reference nucleotide. The highlighted row shows the SNV that appeared as significant through our subsequent survival analysis.

Cohort Gene SNV ID Ref Alt SNV position
[Chr: Position
(base pair:
GRCh38)]

SNV consequence
from VEP
Ensembl

METABRIC AKT1 14:104780214_C > T C T 14:104780214 Missense
METABRIC PIK3CA 3:179203765_T > Aa T A 3:179203765 Missense
METABRIC PIK3CA 3:179218294_G > A G A 3:179218294 Missense
METABRIC PIK3CA 3:179218303_G > A G A 3:179218303 Missense
METABRIC PIK3CA 3:179234297_A > T A T 3:179234297 Missense
METABRIC TP53 17:7673802_C > T C T 17:7673802 Missense
METABRIC TP53 17:7674220_C > T C T 17:7674220 Missense
METABRIC TP53 17:7674221_G > A G A 17:7674221 Missense
METABRIC TP53 17:7675088_C > T C T 17:7675088 Missense
TCGA-CD PIK3CA 3:179203765_T > A T A 3:179203765 Missense
TCGA-CD PIK3CA 3:179218294_G > A T A 3:179218294 Missense
TCGA-CD PIK3CA 3:179218303_G > A G A 3:179218303 Missense
TCGA-CD TP53 17:7675088_C > T C T 17:7675088 Missense
TCGA-NC ZFP30 19:37613150_G > A G A 19:37613150 Missense
TCGA-NC CLIC3 9:136993900_A > C A C 9:136993900 Regulatory_region_SNV
TCGA-NC AC211476.2 7:72926895_G > C G C 7:72926895 Missense
TCGA-NC ZNF512 2:27578227_C > T C T 2:27578227 Missense
TCGA-NC KRTAP19-11P 21:30541689_G > A G A 21:30541689 Missense
TCGA-NC AL034345.1 6:38924007_C > G C G 6:38924007 Missense
TCGA-NC PGAM1P6 2:23869699_C > A C A 2:23869699 Missense
TCGA-NC ZDHHC11B 5:711218_G > C G C 5:711218 Noncoding_exon_SNV
TCGA-NC AC120498.10 16:1220974_G > A G A 16:1220974 Missense
TCGA-NC RF00092 1:37880149_C > G C G 1:37880149 Missense
TCGA-NC MIR519A2 19:53761153_G > A G A 19:53761153 Mature miRNA variant
TCGA-NC AL049555.1 6:54941625_C > T C T 6:54941625 Missense
TCGA-NC PLIN5 19:4538646_C > T C T 19:4538646 Missense
TCGA-NC CDC27P1 2:132257729_T > G T G 2:132257729 Noncoding_exon_SNV

aBold ones are the SNVs that are overlapped with the somatic pathogenic SNVs in the training set. In other words, they are known somatic pathogenic SNVs.
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FIGURE 4 | Results from disease specific survival (DSS) analysis comparing the survival time of breast cancer patients with and without the mutation
X17.7674220_C.T. The difference between the two groups of patients (with and without the mutation) is significant among young (under 45 years of age) individuals
(p-value � 0.037), but not significant in older patients (p-value � 0.88).

FIGURE 5 | Results from overall survival (OS) analysis comparing the survival time of breast cancer patients with and without the mutation X17.7674220_C.T. The
difference between the two groups of patients (with and without the mutation) is significant among young (under 45 years of age) individuals (p-value � 0.018), but not
significant in older patients (p-value � 0.98).

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 8056568

Feizi et al. Predict Pathogenic Status of Somatic Variants

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


frequent pathogenic SNVs (recurrence frequency of ≥4 and ≥ 2 in
coding and noncoding prediction data sets, respectively)
predicted by our models. As indicated in Table 3 the genes
from coding prediction data sets (METABRIC and TCGA-
coding) included AKT1, PIK3CA, and TP53 which all are
demonstrated to play a critical role in breast cancer initiation
and progression. The genes affected by the pathogenic SNVs from
noncoding prediction dataset (TCGA-coding) mostly belong to
three major categories including pseudogenes (KRTAP19-11P,
AL034345.1, PGAM1P6, CDC27P1), RNA genes (AC211476.2,
AC120498.10, RF00092, MIR519A2, AL049555.1), and members
of zinc finger gene family (ZNF512, ZFP30, ZDHHC11B).

3.5.1 SNV-Level Survival Analysis
We evaluated the association between predicted pathogenic SNVs
with the most frequency (recurrence frequency of ≥4 and ≥2 in
coding and noncoding prediction data sets, respectively), and
survival outcome of the patients. We grouped the patients based
on their age (Age <45 and Age ≥ 45) and compared the survival
outcomes between the two groups. The results from disease specific
survival analysis (Figure 4) and overall survival analysis (Figure 5)

consistently suggested that occurrence of “17:7674220_C>T” SNV
is significantly (p-value<0.05) associated with the survival
experience of patients younger than 45 years of age, while not
significantly associated with survival of older patients in the
METABRIC data set. However, we did not replicate this finding
in the TCGA-Breast data set, whichmay be due to the small sample
size of the young women with breast cancer in the cohort.
Following our subsequent investigations, it was found that “17:
7674220_C > T” SNV, which is regarded as a “hotspot mutation”
in the literature, is an arginine to glutamine single nucleotide
substitution occurring at 248th residue of TP53 (Shajani-Yi et al.,
2018).We also explored the location of the identifiedmutation “17:
7674220_C >T” (R248) in the three-dimentional structure of TP53
protein using the web service Swiss-PO (Krebs et al., 2021). The
structure is shown in Supplementary Figure S1. It is suggested that
the mutation disrupts the tumor suppressive activity of TP53 by
hindering the binding of the TP53 product to DNA (Bullock and
Fersht, 2001; Saha et al., 2015; Soussi and Wiman, 2015).

Furthermore, we investigated the biochemical properties of
arginine and glutamine to unravel the impact of their substitution
on proteins structure and function. The positively charged

TABLE 4 |Number of genes affected per different thresholds. The thresholds indicate the number of positive somatic point mutations each gene is harboring. The highlighted
ones were used in the gene level survial analysis.

Frequency
threshold

1 2 3 4 5 6 7 8 9

Count of genes-METABRIC 154 106 74 55 44 36 29 27 23

Count of genes-TCGA-coding 2,539 412 92 29 11 7 3 2 2
Count of genes-TCGA- non-coding 330 22 3 0 0 0 0 0 0

FIGURE 6 | Results from disease free survival (DFS) analysis comparing the survival time of breast cancer patients possessing a mutated or un-mutated Muc16
gene. The difference between the two groups (with and without mutations in Muc16 gene) is significant among young (under 45 years of age) individuals (p-value �
0.011), while not significant in older patients (p-value � 0.14).
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guanidinium group in arginine makes it a hydrophilic amino-acid
appropriate for being located on the surface of proteins in an
aqueous environment (Borders et al., 1994). Arginine has an
important role in binding of a protein’s active site to negatively
charged cofactors, effectors, substrates (Riordan et al., 1977).
Arginine also participates in formation of salt bridges which
stabilize the tertiary and quaternary structure of proteins
(Borders et al., 1994). Glutamine on the other hand is a polar
neutral amino acid. Accordingly, glutamine would likely not
compensate for the role arginine would have in maintaining a
protein’s structure and function.

3.5.2 Gene-Level Survival Analysis
To select the candidate genes for conducting gene-level survival
analysis we computed the number of positive SNVs affecting each
gene in the prediction datasets. To be consistent with the
frequency threshold we defined for labeling positive examples
in our gold standards at the very first steps of the model building
process, we selected the genes harboring at least four and two
pathogenic SNVs in coding (METABRIC and TCGA-BRCA
coding) and noncoding (TCGA-BRCA) datasets, respectively.
As inferred from Table 4 the selected thresholds provided us
with 55 genes from METABRIC, 29 genes from TCGA-coding,
and 22 genes from TCGA non-coding datasets.

Through gene-level survival analysis of the selected genes we
investigated whether the fact that a given gene is mutated or not,
can significantly affect the survival experience of the patients. We
conducted the gene-level survival analysis for both young
(<45 years old) and old (≥45 years old) groups of patients and
compared the results from the two groups. The results revealed
that mutated “Muc16” gene significantly (p-value < 0.05) affected
the survival experience of the young patients but did not have a

significant (p-value > 0.05) impact on the survival of the older
patients.

Figure 6 and Figure 7 show the Kaplan Maier survival plots
from disease free and overall survival analysis for “Muc16” gene
in the METABRIC data set, respectively. Muc16 expression is
demonstrated to be associated with the development of different
cancer types including pancreatic (Wu et al., 2009) and breast
cancers (Moritani et al., 2008). Lakshmanan et al. suggested that
Muc16 contributes to breast cancer progression by increasing
cell’s proliferation through interaction with Janus kinase (JAK2)
as well as inhibiting cell apoptosis by downregulating of TRAIL
(LeBlanc and Ashkenazi, 2003; Lakshmanan et al., 2012).
Interestingly, consistent with our findings Muc16
overexpression in epithelial breast cancer tissues is
demonstrated to be positively associated with the stage of the
disease (Lakshmanan et al., 2012). In addition, Norum et al.
regarded the elevated expression of Muc16 in breast cancer as a
sign of advanced disease. They demonstrated that increased
expression of Muc16 is associated with metastasis and poor
prognosis in the stage IV of the disease (Norum et al., 2001).

To our knowledge, to date there is no evidence concerning
the association between Muc16 deregulation and early onset of
breast cancer. However, association between the stage of breast
cancer and elevated Muc16 expression as well as incidence of
higher stages of the disease in younger patients support our
findings.

3.5.3 Gene Set Enrichment Analysis
We conducted GSEA of the genes affected by the pathogenic
SNVs from both coding (METABRIC and TCGA coding) and
noncoding (TCGA noncoding) prediction datasets. No
significant results (adjusted p-value > 0.05) were obtained for

FIGURE 7 | Results from overall survival (OS) analysis comparing the survival time of breast cancer patients possessing a mutated or un-mutated Muc16 gene. The
difference between the two groups (with and without mutations in Muc16 gene) is significant among young (under 45 years of age) individuals (p-value � 0.011), while not
significant in older patients (p-value � 0.14).
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TABLE 5 | Significant (adjusted p-value<0.05) gene sets showing an overrepresentation of our candidate gene lists. For each library we have only reported the five top
significant gene sets.

Gene
list

Reactome 2016 Panther 2016 KEGG 2019
human

GO biological
process 2018

GO molecular
function 2018

ChEA 2016

A Chromatin modifying
enzymes_Homo
sapiens_R-HSA-
3247509

EGF receptor signaling
pathway_Homo
sapiens_P00018

Endometrial
cancer

positive regulation of
nucleic acid-templated
transcription

Protein kinase
activity

AR_22383394_ChIP-
Seq_PROSTATE_CANCER_Human

A Chromatin
organization_Homo
sapiens_R-HSA-
4839726

p53 pathway feedback
loops 2_Homo
sapiens_P04398

Hepatocellular
carcinoma

Positive regulation of
gene expression

Protein kinase
binding

STAT3_23295773_ChIP-
Seq_U87_Human

A Diseases of signal
transduction_Homo
sapiens_R-HSA-
5663202

Angiogenesis_Homo
sapiens_P00005

Pathways in
cancer

Positive regulation of
transcription, DNA-
templated

Transcription
coactivator activity

SMAD4_21799915_ChIP-
Seq_A2780_Human

A PI-3K cascade:
FGFR1_Homo
sapiens_R-HSA-
5654689

Insulin/IGF pathway-
protein kinase B
signaling
cascade_Homo
sapiens_P00033

Human
papillomavirus
infection

Phosphatidylinositol 3-
kinase signaling

Ubiquitin protein
ligase binding

ZNF217_24962896_ChIP-Seq_MCF-
7_Human

A PI-3K cascade:
FGFR2_Homo
sapiens_R-HSA-
5654695

Apoptosis signaling
pathway_Homo
sapiens_P00006

Breast cancer Chromatin
disassembly

Ubiquitin-like
protein ligase
binding

DROSHA_22980978_ChIP-
Seq_HELA_Human

B Neuronal
System_Homo
sapiens_R-HSA-
112316

Endothelin signaling
pathway_Homo
sapiens_P00019

Endometrial
cancer

Calcium ion import Calcium ion
transmembrane
transporter activity

STAT3_23295773_ChIP-
Seq_U87_Human

B Transmission across
Chemical
Synapses_Homo
sapiens_R-HSA-
112315

p53 pathway feedback
loops 2_Homo
sapiens_P04398

PI3K-Akt
signaling
pathway

Axonogenesis ATPase activity ( TCF4_23295773_ChIP-
Seq_U87_Human

B PI-3K cascade:
FGFR1_Homo
sapiens_R-HSA-
5654689

p53 pathway_Homo
sapiens_P00059

Pathways in
cancer

Calcium ion
transmembrane
transport

Calcium channel
activity

SMAD4_21799915_ChIP-
Seq_A2780_Human

B PI-3K cascade:
FGFR2_Homo
sapiens_R-HSA-
5654695

Ionotropic glutamate
receptor
pathway_Homo
sapiens_P00037

Breast cancer Protein
phosphorylation

Motor activity AR_22383394_ChIP-
Seq_PROSTATE_CANCER_Human

B PI-3K cascade:
FGFR3_Homo
sapiens_R-HSA-
5654710

Wnt signaling
pathway_Homo
sapiens_P00057

Pathways in
cancer

Calcium ion transport Voltage-gated
cation channel
activity

PAX3-FKHR_20663909_ChIP-
Seq_RHABDOMYOSARCOMA_Human

C PI-3K cascade:
FGFR1_Homo
sapiens_R-HSA-
5654689

p53 pathway feedback
loops 2_Homo
sapiens_P04398

Endometrial
cancer

protein
phosphorylation (GO:
0006468)

MAP kinase kinase
activity

STAT3_23295773_ChIP-
Seq_U87_Human

C PI-3K cascade:
FGFR2_Homo
sapiens_R-HSA-
5654695

EGF receptor signaling
pathway_Homo
sapiens_P00018

Gastric cancer Protein
autophosphorylation
(GO:0046777)

Calcium ion
transmembrane
transporter activity

TCF4_23295773_ChIP-
Seq_U87_Human

C PI-3K cascade:
FGFR3_Homo
sapiens_R-HSA-
5654710

Endothelin signaling
pathway_Homo
sapiens_P00019

Thyroid
hormone
signaling
pathway

Calcium ion import
(GO:0070509)

Protein kinase
activity (GO:
0004672)

SMAD4_21799915_ChIP-
Seq_A2780_Human

C PI-3K cascade:
FGFR4_Homo
sapiens_R-HSA-
5654720

p53 pathway_Homo
sapiens_P00059

Central carbon
metabolism in
cancer

Peptidyl-serine
phosphorylation (GO:
0018105)

ATPase activity
(GO:0016887)

AR_22383394_ChIP-
Seq_PROSTATE_CANCER_Human

C PI3K events in ERBB4
signaling_Homo
sapiens_R-HSA-
1250342

Wnt signaling
pathway_Homo
sapiens_P00057

Breast cancer Phosphorylation (GO:
0016310)

ATP-dependent
microtubule motor
activity, minus-
end-directed (GO:
0008569)

DROSHA_22980978_ChIP-
Seq_HELA_Human

(Continued on following page)
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the genes from TCGA noncoding dataset. The results of GSEA for
the genes from coding datasets are represented in Table 5.

The GSEA results suggested that our candidate genes are most
significantly overrepresented in gene sets associated with pathways/
biological functions contributing to breast cancer. For instance, gene sets
related to pathways such as PIK3 cascade (“PI-3K cascade: FGFR1”,
“PI-3K cascade: FGFR2”, “PI-3K cascade: FGFR3”, “PI3K events in
ERBB4”, “PI3K/AKT Signaling in Cancer”) and TP53 pathway (“p53
pathway feedback loops 2”, “p53 pathway”) frequently appeared among
themost significant results. Interestingly, consistent with the purpose of
our analysis, the results from “KEGG 2019” database identified breast
cancer as one of the cancersmost significantly associated with the input
gene lists. Accordingly, the GSEA results fully support the association
between the input gene lists (genes identified as significant through our
analysis) and breast cancer development.

4 CONCLUSION

Computationalmodels for classifying the pathogenic status of cancer
somatic variants located in coding and noncoding regions of the
genome were developed in this study. The novelty of the proposed
classification models is the development of a bi-dimensional
threshold that spans the recurrent frequency of a given somatic
SNV across the whole dataset as well as the number of cancer types
the SNV is identified in. Furthermore, both the pathogenic somatic
SNVs and benign negative somatic SNVs included in the gold
standard datasets are exclusively cancer somatic variants
distinguishing our models from the currently available classifiers.

The developedmodels outperform themost powerful available
classification tools which is evidence to support the robustness of

the discrimination capabilities of our models in terms of
classifying cancer somatic variants. The high classification
accuracy of the developed models is promising in terms of
predicting the pathogenic status of a set of cancer somatic
variants whose pathogenicity has not been assigned previously.
The potential application of the computational models in
identifying novel candidate target genes and biomarkers is also
suggested through our study. Our survival analysis on pathogenic
cancer somatic SNVs (predicted by our models) and their related
genes highlighted the age-specific prognostic significance of a
SNV and a gene impacting the survival time of young (<45 years
old) breast cancer patients more than their older counterparts.

Our classification models are designed based on a robust
labelling process defined for the first time in this study.
However, labels from clinical wet lab experiments are
assumed more reliable. To date there is no major dataset
available that includes the clinical significance of cancer
somatic variants based on the validated results from wet
lab experiments. A higher number of features can usually
positively affect the classification power of a computational
model. The genomic features we used for training our models
are annotations from the limited available annotating tools. A
greater number of annotation tools potentially for generating
more genomic features can considerably elevate the
discrimination power of computational models.

As future directions, firstly, more advanced machine learning
models such as deep learning could be tested to further improve
the performance of the prediction systems. However, the
interpretability of these advanced machine learning models
might be a concern as the pathogenic prediction problem is
related to patient healthcare, which requires that results are

TABLE 5 | (Continued) Significant (adjusted p-value<0.05) gene sets showing an overrepresentation of our candidate gene lists. For each library we have only reported the
five top significant gene sets.

Gene
list

Reactome 2016 Panther 2016 KEGG 2019
human

GO biological
process 2018

GO molecular
function 2018

ChEA 2016

D Chromatin modifying
enzymes_Homo
sapiens_R-HSA-
3247509

CCKR signaling map
ST_Homo
sapiens_P06959

Endometrial
cancer

Regulation of
megakaryocyte
differentiation (GO:
0045652)

ATP-dependent
microtubule motor
activity, minus-
end-directed (GO:
0008569)

AR_19668381_ChIP-Seq_PC3_Human

D Chromatin
organization_Homo
sapiens_R-HSA-
4839726

Wnt signaling
pathway_Homo
sapiens_P00057

Human
papillomavirus
infection

Regulation of myeloid
cell differentiation (GO:
0045637)

ATP-dependent
microtubule motor
activity (GO:
1990939)

TCF4_23295773_ChIP-
Seq_U87_Human

D Developmental
Biology_Homo
sapiens_R-HSA-
1266738

Huntington
disease_Homo
sapiens_P00029

Hepatocellular
carcinoma

Cellular response to
caffeine (GO:0071313)

Ligand-gated
calcium channel
activity (GO:
0099604)

SMAD4_21799915_ChIP-
Seq_A2780_Human

D PI3K/AKT Signaling in
Cancer_Homo
sapiens_R-HSA-
2219528

p53 pathway_Homo
sapiens_P00059

Lysine
degradation

Response to caffeine
(GO:0031000)

Protein kinase
binding (GO:
0019901)

STAT3_23295773_ChIP-
Seq_U87_Human

D PKMTs methylate
histone lysines_Homo
sapiens_R-HSA-
3214841

Beta1 adrenergic
receptor signaling

Huntington
disease

Regulation of cardiac
muscle cell contraction
(GO:0086004)

ATPase activity
(GO:0016887)

ZNF217_24962896_ChIP-Seq_MCF-
7_Human
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interpretable. Secondly, majority of the existing tools used for
predicting pathogenic status of the SNVs were trained based on
the mixture of somatic and germline pathogenic SNVs. Here we
explored to train the models based on only somatic pathogenic
SNVs. Although we have shown the advantages of our new tool
over the two state-of-the-art existing tools, more work is still
needed to compare the new tool to other existing tools. Thirdly,
conducting further analysis on the prediction results from
applying our models to somatic mutations from breast cancer
datasets can lead to identification of novel therapeutic targets and
biomarkers. Our model could also be applied to explore other
cancer types, but not limited to breast cancer. Furthermore,
experimental validation of the results from our model
predictions can provide a strong proof of the classification
performance of our computational models.
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