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The llumina HumanMethylation BeadChip is one of the most cost-effective methods to
quantify DNA methylation levels at single-base resolution across the human genome,
which makes it a routine platform for epigenome-wide association studies. It has
accumulated tens of thousands of DNA methylation array samples in public
databases, providing great support for data integration and further analysis. However,
the majority of public DNA methylation data are deposited as processed data without
background probes which are widely used in data normalization. Here, we present
Gaussian mixture quantile normalization (GMQN), a reference based method for
correcting batch effects as well as probe bias in the HumanMethylation BeadChip.
Availability and implementation: https://github.com/Mengweili-project/gmagn.

Keywords: DNA methylation, epigenome-wide association studies, batch effect, probe bias, HumanMethylation
BeadChip

1 INTRODUCTION

As a well-known epigenetic marker, DNA methylation plays a crucial role in numerous physiological
processes as well as complex traits, such as development, phenotype and cancer (Smith and Meissner,
2013; Xu et al,, 2013; Joehanes et al, 2016). With the advancement of epigenetic sequencing
technologies and a radical decline in sequencing costs, especially the DNA methylation array,
massive samples can be used to the explore epigenetic basis of complex traits, which has also resulted
in the accumulation of a large amount of DNA methylation array data in public databases (Barrett
etal, 2012; Li et al., 2018; Xiong et al., 2020). According to the statistics of DNA methylation array
data in the GEO database, Illumina HumanMethylation450 BeadChip (450 k) has become the most
widely used means of large-scale methylation profiling of human samples in recent years. The newly
emerging [llumina HumanMethylationEPIC BeadChip (EPIC/850 k) uses the same technology as
450 k but covers nearly double the number of CpG sites and will become the main effective strategy of
epigenome-wide association studies (EWAS) in the future (Figure 1A). Integrating both large
samples from public resources and private data will become a common and main research strategy
for future research on potential regulatory mechanisms of complex traits, particularly for EWAS
(Yuan et al., 2019). As sample processing and sequencing processes varied amongst laboratories,
there are some unavoidable differences which have nothing to do with biological factors but are
between-array bias defined as batch effects (Leek et al., 2010; Forest et al., 2018), which will reduce the
signal-to-noise ratio and adversely affect downstream analysis.
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FIGURE 1 | (A) Statistics of 450 k and EPIC data by year and project number in NCBI GEO database. (B) Distribution of data types of DNA methylation chip
projects submitted to the GEO database as of December 2020. There were a total of 1,114 items containing the original “idat” files, and 1,349 items containing TXT or
C8V files, indicating that most of the items missed original file. (C) The workflow of GMQN.
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TABLE 1 | Overview of benchmark test dataset.

Reference-Based Method for Correcting Batch Effects

Project id Number of samples Benchmark test Annotation Platform
GSE52731 56 batch effects detection - 450 k
GSE139687 27 batch effects detection — EPIC
GSE42861 689 case-control study Rheumatoid Arthritis 450 k
GSE128235 537 case-control study Depression 450 k
GSE125105 210 regression analysis Age 450 k
GSE42861 335 regression analysis Age 450 k
GSE87571 732 regression analysis Age 450 k
GSE87571 732 comparison of the methylation levels of adjacent sites — 450 k
GSE42861 689 case-control study (reference evaluation) Rheumatoid Arthritis 450 k
GSE125105 210 regression analysis (reference evaluation) Age 450 k
GSE42861 335 regression analysis (reference evaluation) Age 450 k
GSE87571 732 regression analysis (reference evaluation) Age 450 k

A number of DNA methylation array normalization methods
have been proposed, each with its own set of advantages and
disadvantages in different study scenarios(Niu et al, 2016; Xu
et al, 2017; Wang et al, 2020). Many methods, on the other
hand, are not well suited to the analysis of a large amount of
public data. The majority of methods rely on data from control
probes or OOB (out of band) probes, as a result, cannot be used for
public data unless the original data are available. However, only
approximately half of the 450k and EPIC projects in GEO, the
largest publicly accessible DNA methylation array database, provide
original data (Figure 1B). As the well-known normalization method
on B-values of DNA methylation, SWAN and BMIQ do not use the
information from these two types of probes. Instead, they only deal
with within-array bias. (Infinjum I and II bias) (Maksimovic et al,,
2012; Teschendorff et al., 2013).

Without control probes or OOB, we still have to deal with four
types of deviations: Infinium I and II bias, red and green channel
signal deviations, background noise, and batch effects. Therefore, we
propose a reference-based method for correcting batch effects as well
as probe bias in the HumanMethylation BeadChip, which is called
Gaussian Mixture Quantile Normalization (GMQN). The method
includes four steps: (I) A two-state Gaussian mixture model was fitted
to the median values of each Infinium I probe signal intensity from a
large single study (GSE105018). For rescaling Infinium I probes, the
mean and variance of two components were used as a reference. (II)
Fitting of a two-state Gaussian mixture model to the input Infinium I
probe signal intensity. (III) Transform the probability of Infinium I
probes from each component of input data to quantiles using the
inverse of the cumulative Gaussian distribution with the mean and
variance estimated from the corresponding reference component.
(IV) After reversing the batch effect, GMQN can also normalize
Infinium II probes on the basis of Infinium I probes in combination
with BMIQ and SWAN, the two well-known normalization methods
on P-values of DNA methylation (Maksimovic et al, 2012;
Teschendorff et al., 2013) (Figure 1C).

2 MATERIALS AND METHODS
2.1 DNA Methylation Data

Data for method development and testing are taken from the
GEO and TCGA databases, which contain 450k and EPIC

records (Table 1). Respectively, the sample information is
annotated using a combination of automatic grabbing and
manual analysis. The R package “minfi” (http://www.
bioconductor.org/packages/release/bioc/html/minfi.html) is
primarily used to interpret and preprocess the original signal
(Fortin et al., 2016). Considering that some public data only have
original methylated and unmethylated signal value files, we use
the “preprocessRaw” method to extract the original signal values
without any processing. To ensure fairness, the methylated and
unmethylated signal values of all probes except the control probe
are collected and used as the input value in all subsequent tests
and comparisons. The methylation level is represented by B, f =
M/(M + U), where M and U represent the intensity of methylation
and non-methylation signal values, respectively.

2.2 Reference Data

In GMQN, there are two ways to set the reference signal value
distribution. To begin, users can use the function “set reference”
in the “GMQN” package to match their own data to fit their own
reference distribution. The second option is to use the default
reference, which is a two-state Gaussian mixture model fitted to
the median values of each Infinium I probe signal intensity from a
large single study (GSE105018), including 1,658 whole blood
samples obtained from E-Risk cohort participants when they
were 18 years old (Hannon et al., 2018). The mean and variance of
two components are used as reference for rescaling Infinium I
probes.

2.3 GMQN

To eliminate any source of variation that is not related to biology
but rather to technical limitations, such as dye bias or batch
effects, we must first identify the manifestations of these
variations in the data (Dedeurwaerder et al., 2014). To that
end, we investigate the signal value distribution characteristics
of two types of probes. We found that the signal values of the red
and green channels of Infinium I probes can be decomposed into
the superposition of two Gaussian distributions, and that the
fitting parameters of these Gaussian distributions may efficiently
distinguish batches (details in result). Using this feature, we draw
on the idea of BMIQ, respectively fit the Gaussian mixture
distribution to the signal values of the red and green channels
of Infinium I probes, and then adjust the shape of the Gaussian
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distribution corresponding to different samples to the same shape
to the reference to minimize batch effects and other deviations.
To achieve this process, GMQN standardizes the data in
three steps.

The first step is the establishment of the reference distribution.
In order to address the issue of the rapid growth of public data,
GMOQN adopts a data normalization method based on reference
distribution, which is also widely used in the normalization of
data in the EWAS Data Hub (https://ngdc.cncb.ac.cn/ewas/
datahub/index) (Xiong et al., 2020; Xiong et al, 2021).
Usually, we need to average the signal intensity of each probe
on the reference data set between samples, and fit the Gaussian
mixture distribution to the probe signal intensity on the red and
green channels of Infinjum I probes respectively. The
Expectation-Maximization algorithm is used to estimate the
parameters, and the red channel fitting result is expressed as:
{(R, 0tR), (uiR,a5R)} , the green channel fitting result is
expressed as: {(¢'¢, 079), (Ui, 0%C)} , where r is the reference,
1 and 2 respectively represent the two states of the mixed model
with a smaller and larger mean, and R and G represent the red and
green channels, respectively.

The second step is the normalization between arrays. Between-
array normalization is carried out separately for the red and green
channels of Infinium I probes. Taking the green channel as an
example, we first fit the Gaussian mixture distribution to the
signal intensity of the green channel of the input Infinium I probe
to obtain the fitting parameters { (/,llc, 0?), (yg;, U?)}. For the state
with the smaller mean value, state 1, we perform the following
conversion:

p =EF(Si|uf, o)
q=F"(plu; o))

where S; is the signal belonging to state 1 in the green channel
signal, p is the cumulative distribution probability of the signal
value in the Gaussian distribution, and q is the signal value
corresponding to the cumulative probability in the reference
distribution. Through this step, we map the input signal to the
reference signal and eliminate biases such as dye bias and batch
effects. The signal in state 2 and the signal in the red channel are
processed using similar steps.

The third step is within-array normalization, which mainly
includes Infinium I/II-type bias correction. In the second step, we
obtained the normalized Infinium I probes signal. Based on
Infinjum I probes signal, we used BMIQ or SWAN to
standardize the Infinium II probes signal. BMIQ and SWAN
were fine-tuned to improve the speed and effectiveness,
respectively.

2.4 Benchmark Test

Since other methods cannot be used in the absence of original
data, in the benchmark test, we compare GMQN, SWAN, BMIQ,
and GMQN combined with SWAN and BMIQ (GMQN.SWAN
and GMQN.BMIQ). In order to test whether GMQN can
improve the effect of SWAN and BMIQ, we designed the
following four benchmark tests.

Reference-Based Method for Correcting Batch Effects

2.4.1 Batch Effects Detection

In order to make the method more universal, we searched the
GEO database for two sets of technical replicates, including 450 k
and EPIC. The first set (EPIC, GSE139687) has nine samples that
are replicated three times each, while the second set (450k,
GSE52731) has 56 repetitions of one sample. For the first data
set, we measured the variance at the probe level between every
three technical replicates and then averaged the variance among
the nine samples. For the second, we directly calculated the
variance of the sample at the probe level.

2.4.2 Case-Control Study

Case-control studies are the most common form of research in
EWAS. Researchers classify samples into case and control groups
and look for differences in methylation sites between the two
groups in this form of study. We used the data of two diseases in
public sources to evaluate the performance of GMQN in the case-
control studies. To simulate two separate batches, we divide the
samples in the data set at a ratio of 2:1 into training and test sets
for each disease. In the training set, we aim to keep the samples in
the same batch of chips, and the batch effect and other errors are
kept to a minimum. Differential methylation analysis was
performed in both the training and test sets, with the results
of the training set acting as the gold standard for detecting
consistency between the training and test sets and drawing the
receiver operating characteristic (ROC) curve.

2.4.3 Regression Analysis

The term “regression analysis” refers to the process of associating
DNA methylation levels with continuous variables such as age,
BM]I, and so on in order to identify DNA methylation sites that
are associated with these variables. Age is a trait that has been
reported more frequently in EWAS, and there is a substantial
amount of data on it. As a result, we use age as the research object
in this study and collect 1,277 sample data sets containing age
information from three independent projects. Data from these
projects ensure that the sample’s batch effect is high, allowing
each standardized method’s effect to be better measured. A large
number of studies have reported that there is a linear relationship
between DNA methylation and age (Horvath, 2013; Chung et al.,
2021), and the Pearson correlation coefficient is particularly
suitable for quantifying the linear relationship. Therefore, we
calculated the Pearson correlation coefficient between DNA
methylation and age as quantitative indicators.

2.4.4 Comparison of the Methylation Levels of
Adjacent CpG Sites

Studies have reported that DNA methyltransferase has a limited
range of action, resulting in nearly identical methylation levels at
adjacent CpG sites in the genome (Zhang et al., 2015; Guo et al,,
2017). In this part, we selected 141,653 pairs of probes with a
genome distance of less than 10 bp on the chip. We determined
the average difference in DNA methylation levels of these probes
for each sample and chose 141,653 pairs of probes randomly as
controls.
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FIGURE 2 | The signal intensity distribution characteristics of Infinium | probes (450 k data (A,B), EPIC data (C,D)) and clustering results of different batches of

3 RESULTS

3.1 The Signal Intensity Distribution
Characteristics of Infinium | Probes and the
Principle of GMQN

The signal from the control probe can, ideally, be used to quantify
the batch effect between samples. However, most public data lack
original data, so we tried to find other manifestations of batch
effects. We found that the signal intensity of the red and green
channels of Infinium I probes can be approximately decomposed
into the superposition of two Gaussian distributions, both in

450 k and EPIC arrays (Figure 2). We speculate that this may be
related to the bimodal distribution of human DNA methylation
levels. When the methylation value is extremely high (>0.8) or
extremely low (< 0.2), one of the two Infinium I probes that
detects the site’s methylation level emits almost no light, and the
fluorescence signal intensity of these probes constitutes the first
peak of the Gaussian distribution, that is, the peak with the
smaller mean. The fluorescence signal intensity of other probes
constitutes the second Gaussian distribution. Since the
methylation levels of the sites corresponding to these probes
are dispersed, the Gaussian distribution variance is larger. We
cluster the Gaussian distribution parameters fitted by different
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FIGURE 4 | The result of Benchmark Test. (A) and (B): batch effects detection. (C) and (D): case-control study. (E): regression analysis. (F): comparison of the
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used to distinguish the batches, and that even if the sample
difference is large, the parameter difference will be small within
the batches (Figure 2).

samples to see if these Gaussian peaks are related to batches. The
results show that the fitting parameters of the four Gaussian
distributions (two for each of the red and green channels) can be
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Using this feature, we propose a GMQN standardization
method. The basic principle of this method is to fit a Gaussian
mixture model for Infinium I probes of different batches, and
then adjust the Gaussian distribution shapes fitted by different
batches to the same to eliminate the batch effect on Infinium I
probes. Finally, the Infinium I probes are taken as the standard,
and BMIQ or SWAN are used to standardize the Infinium II
probes. The signal strength distribution of the red and green
channels of Infinium I probes was then measured in two batches
of samples in a TCGA tumor project before and after GMQN
normalization. We found that the distribution of the two batches
differed greatly in both 450 k and EPIC data, and the differences
were not due to biological differences (tumor and normal). The
distributions of the two batches tend to be consistent after
GMAQN standardization (Figure 3, Supplementary Figure S3).

3.2 GMQN Reduces Technical Variability
Technical repetition is the most direct way to measure the batch
effect. As a result, we chose two different sets of technical replicates.
The first set (EPIC, GSE139687) has nine samples that are repeated
three times each, while the second set (450 k, GSE52731) has 56
repetitions of one sample (Aryee et al, 2014; Li et al., 2020). The
variances of the probes of the two sets of samples were determined
separately. While each method decreased the variance of the probe
methylation level relative to the original data in the two sets of
technical replicates, the variance of the probe methylation level after
GMQN + BMIQ and GMQN + SWAN treatment was the lowest
and second lowest, respectively (Figures 4A,B). In particular,
without combining SWAN and BMIQ, GMQN performed best
in the first data set (Figure 4A). This demonstrates that GMQN,
especially when used in combination with BMIQ and SWAN, is
capable of effectively reducing batch effects.

3.3 GMQN Leads to Better Detection of

Differential Methylation

In order to test the effects of GMQN in the case-control studies, we
selected normal and disease samples for rheumatoid arthritis and
depression (Liu et al.,, 2013; Zannas et al,, 2019). The differential
methylation estimation results indicate that there are approximately
50,000 and 1,000 differential methylation positions in the normal
and disease samples of these two diseases, respectively (see
Supplementary Table S1). The ROC curve shows that compared
with the original data, the consistency of the training set and the test
set results is greatly improved in rheumatoid arthritis, GMQN +
BMIQ has the best effect, while SWAN and the original data have
poor results, but whether it is BMIQ or SWAN, the effect can be
achieved after combination with GMQN, GMQN, GMQN + BMIQ,
and GMQN + SWAN all outperform other methods in the
depression group (Figures 4C,D). In case-control studies, these
results suggest that GMQN can enhance SWAN and BMIQ effects.

3.4 GMQN Improves the Effectiveness of

Regression Analysis
Regression analysis is a crucial form of analysis in EWAS. For
continuous traits such as age and BMI, the relevant DNA

Reference-Based Method for Correcting Batch Effects

methylation sites can be found through regression analysis.
Compared with case-control studies, the results of regression
analysis are often more influenced by data processing
methods.

We used data processed by different methods to identify age-
related DNA methylation sites to examine the effect of GMQN in
regression analysis. Our data in this analysis come from three
separate projects, where the batch effect is high and the sample
age period is large (from 14 to 94 years old) (Johansson et al.,
2013; Liu et al, 2013; Aryee et al., 2014). Using Pearson
correlation coefficients of 0.5, 0.6, and 0.7 as thresholds, we
measured the number of age-related DNA methylation sites
identified by each method (see Supplementary Table S2). The
findings show that the GMQN + SWAN treatment group can find
more age-related methylation sites than other methods under
various thresholds, and GMQN can boost the effects of BMIQ
and SWAN under a strict threshold, and improve the effect of
regression analysis (Figure 4E). To ensure that the sites found by
GMAQN are true positive sites, we further analyzed these sites.
Surprisingly, we examined the five sites (cgl15448975,
cgl6419235, g07416237, cg04875128, cgl4692377) with
Pearson correlation coefficients less than 0.7 after BMIQ
analysis and greater than 0.7 after GMQN + BMIQ analysis in
the EWAS Atlas (https://ngdc.cncb.ac.cn/ewas/atlas), a curated
knowledgebase of epigenome-wide association studies (Li et al.,
2019; Xiong et al., 2021), and discovered that all of them were age-
related, indicating that the majority of the newly discovered age-
related sites in GMQN are true positives.

3.5 GMQN Reduces Differences in
Methylation Levels Between Adjacent CpG
Sites

The difference in methylation levels between adjacent CpG
sites is approximately 13% of that between random sites.
Meanwhile, the difference in methylation levels between
adjacent CpG sites in the original data group was greater
than that in other groups, confirming that this benchmark
test is reasonable. The GMQN + BMIQ processed group had
the smallest difference in methylation levels between adjacent
CpG sites, while the GMQN + SWAN treatment was not as
efficient as BMIQ but still better than SWAN (Figure 4F).

3.5 Selection and Evaluation of Reference
Data

To help users better choose reference data, we evaluated the
default reference (provided by GMQN) and the user’s own
data fitting reference by two benchmark test, case-control
study and regression analyses (Supplementary Figure S4).
The evaluation results show that in the case-control study,
there is almost no difference between the two methods of
establishing references (Supplementary Figure S4A,
Supplementary Figure S4B). In regression analysis, more
relevant methylation sites were obtained using the default
reference (Supplementary Figure S4C, Supplementary
Figure S4D).
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4 DISCUSSION

The accumulation of public DNA methylation array data has
provided favorable conditions for the advancement of EWAS,
allowing data analysts to investigate the association between
various traits by massive public data mining without relying
on experiments. As a result, we proposed GMQN, a
standardized method suitable for massive public DNA
methylation array data. In comparison to other DNA
methylation array normalization approaches, GMQN has the
following advantages: First and foremost, GMQN is a reference-
based Gaussian mixture quantile normalization method. It can be
used to calibrate a newly added sample to the same level as the
previous batch of samples without wasting a lot of computational
resources, which will solve the N+1 issue in big data integration.
The EWAS data portal of EWAS Open Platform (https://ngdc.
cncb.ac.cn/ewas) currently integrates and stores 115,852
methylation chip data using the GMQN (Xiong et al., 2020;
Xiong et al., 2021). Second, GMQN will address the issue of batch
effect processing and standardization in public data due to
missing original data, making it easier for researchers to
combine self-produced and public data to investigate
epigenetic mechanisms of various phenotypes. Finally, since
most DNA methylation chip processing software packages are
written in R, GMQN is written in R as well to increase
compatibility with other software. Users can easily achieve
GMQN standardization using the R package “GMQN”. Users
can combine SWAN and BMIQ to perform parallel analysis on
multiple CPUs using the two functions “gmqn_swan_parallel”
and “gmqn_bmiq_parallel”.

By evaluating 450 k and EPIC array data in four separate
application scenarios above, we found that GMQN can effectively
minimize noise in public data and increase the accuracy of
downstream analysis. GMQN will boost the two well-known
methylation chip standardization methods, BMIQ and SWAN,
even if it does not perform well in some scenarios, especially when
the reference methylation distribution and the methylation data
distribution to be standardized are vastly different, as in DNA
methyltransferase gene knockout samples versus normal samples.
Many DNA methylation array data standardization methods
have been developed in recent years (Triche et al, 2013;
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