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Breast cancer (BC) is the most diagnosed cancer and the leading cause of cancer-related
deaths in women. The purpose of this study was to develop a prognostic model based on
BC-related DNA methylation pattern. A total of 361 BC incidence-related probes (BCIPs)
were differentially methylated in blood samples from women at high risk of BC and BC
tissues. Twenty-nine of the 361 BCIPs that significantly correlated with BC outcomes were
selected to establish the BCIP score. BCIP scores based on BC-related DNA methylation
pattern were developed to evaluate themortality risk of BC. The correlation between overall
survival and BCIP scores was assessed using Kaplan–Meier, univariate, and multivariate
analyses. In BC, the BCIP score was significantly correlated with malignant BC
characteristics and poor outcomes. Furthermore, we assessed the BCIP score-related
gene expression profile and observed that genes with expressions associated with the
BCIP score were involved in the process of cancer immunity according to GO and KEGG
analyses. Using the ESTIMATE and CIBERSORT algorithms, we discovered that BCIP
scores were negatively correlated with both T cell infiltration and immune checkpoint
inhibitor response markers in BC tissues. Finally, a nomogram comprising the BCIP score
and BC prognostic factors was used to establish a prognostic model for patients with BC,
while C-index and calibration curves were used to evaluate the effectiveness of the
nomogram. A nomogram comprising the BCIP score, tumor size, lymph node status,
and molecular subtype was developed to quantify the survival probability of patients with
BC. Collectively, our study developed the BCIP score, which correlated with poor
outcomes in BC, to portray the variation in DNA methylation pattern related to BC
incidence.
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INTRODUCTION

Breast cancer (BC), the most diagnosed cancer globally, is the
leading cause of cancer-related deaths in women (Siegel et al.,
2020). As the incidence of BC has continuously increased
over recent years, BC has become a major public health
problem, and one in eight women would be affected by BC
by the age of 85 years in high-income countries (Britt et al.,
2020). With a deep understanding of cancer biology, BC is
subdivided into four molecular subtypes (luminal A, luminal
B, HER2, and TNBC) based on the expression of the estrogen
receptor (ER), progesterone receptor (PR), HER2 receptor,
and Ki-67 (Abreu et al., 2020). Although BC therapy guided
by molecular subtyping greatly reduces BC mortality, cancer
recurrence inevitably occurs (Alwan and Tawfeeq, 2019).
Investigations of prognostic methods for predicting
outcomes in BC may provide clues for improving cancer
treatment.

DNA methylation, an epigenetic modification, plays an
important role in cancer development (Jones et al., 2016).
Although previous studies have shown that BC is a genetic
disease, genome-wide variations in DNA methylation have
been observed in cancer cells (Flavahan et al., 2017;
Widschwendter et al., 2018). DNA methylation induces
chromatin structure changes and inhibits gene expression
mediated by DNA methyltransferases. Aberrations in DNA
methylation, which are affected by environmental, lifestyle-
related, and heritable factors, may induce cancer development
by silencing tumor suppressors and/or re-activating oncogenes
(Baylin and Jones, 2011; Koo et al., 2015; Muvarak et al., 2016).
In BC, hypomethylation of stemness- and proliferation-
associated genes in circulating tumor cells promotes
stemness and metastasis (Gkountela et al., 2019). Thienpont
et al. indicated that tumor hypoxia induces hypermethylation
and promotes BC progression by inactivating TET enzymes
(Thienpont et al., 2016). Thus, tracking the changes in DNA
methylation pattern associated with BC is helpful for
developing prognostic methods for BC.

The purpose of our study was to discover DNA methylation
pattern and develop a prognostic model based on BC-
related DNA methylation pattern. We identified 361 breast
cancer incidence-related probes (BCIPs) that were
differentially methylated in blood samples from women at a
high risk of BC and BC tissues. Twenty-nine of the 361
BCIPs that were significantly correlated with BC outcomes
were included to establish the BCIP score. In BC, the
BCIP scores were significantly correlated with malignant
BC characteristics and poor outcomes. Furthermore, we
assessed the BCIP score-related gene expression profile
and observed that the BCIP score-related gene profile
participated in the process of cancer immunity. BCIP scores
were negatively correlated with immune cell infiltration
and the immune checkpoint inhibitor (ICI) response in BC
tissues. Finally, a nomogram comprising the BCIP score,
tumor size, lymph node status, and molecular subtype was
developed to quantify the survival probability of patients
with BC.

MATERIALS AND METHODS

Data Collection and Processing
For the GSE51057, GSE72308, and TCGA-BRCA DNA
methylation datasets, genome-wide methylation data were
profiled using Illumina Infinium HumanMethylation450
BeadChips Assay (Illumina 450 K platform). For the
GSE57285 DNA methylation dataset, genome-wide
methylation data were profiled using Illumina Infinium
HumanMethylation27 BeadChips Assay (Illumina 27 K
platform). The DNA methylation level of each probe was
calculated using β values ranging from 0 (no DNA
methylation) to 1 (complete DNA methylation). Probes
containing missing values in over half of the samples in each
dataset were removed, while missing values of the remaining
probes were imputed with the k-nearest neighbors imputation
method. Probes located on the sex chromosome and probes
containing known single-nucleotide polymorphisms were
removed (Price et al., 2013). Finally, 23,614 probes were
selected for further investigation. The above process was
performed using the R package Champ (Tian et al., 2017).

For gene expression data, mRNA expression data were
obtained from the Cancer Genome Atlas (TCGA) database.
Background correction and normalization of mRNA
expression data were performed using the R package limma
(Ritchie et al., 2015). Expression data for protein-encoding
genes were included in further analysis.

Calculation of the BCIP Score
GSE51057 (including 177 blood samples from normal women and
146 blood samples from women diagnosed with BC after sample
donation) and GSE57285 (including 49 blood samples from
normal women and 35 blood samples from women diagnosed
with BC after sample donation) were selected to identify
differentially methylated probes (DMPs) that correlated with a
high risk of BC. In addition, 76 cases with matched tumor and
tumor-adjacent breast tissues from TCGA database were enrolled
to identify DMPs in BC tissues. CpG probes that were commonly
demethylated in blood samples from women with high risk of BC
and BC tissues were defined as BCIPs.

DMPs were identified using the R package limma. Differential
hyper/hypo-methylation probe was defined according to logFc
value. Hyper-methylation probe are defined as logFc >0, p value
<0.05 (blood/cancer sample of BC patients VS blood/cancer
sample of non-BC patients). Hypo-methylation probe are
defined as logFc <0, p value <0.05 (blood/cancer sample of BC
patients VS blood/cancer sample of non-BC patients). The
distribution of BCIPs on chromosomes, CpG islands, and TSS
regions was investigated using the R package Champ. The hazard
ratios (HRs) of BCIPs with respect to OS were evaluated using
TCGA-BRCA data.

Univariate Cox regression was used to calculate the HR of each
BCIP, and BCIPs significantly correlated cancer survival in BC
were included to develop the BCIP score model. The BCIP score
model was assessed as follows: BCIP score � [(transformed HR1

*β value of BCIP1) + (transformed HR2 *β value of BCIP2) + ······
(transformed HRn *β value of BCIPn)]/[abs (transformed HR1) +
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abs (transformed HR2) + ······ (transformed HRn)]. The cutoff
value of BCIP score was 0.2, identified using x-tile (https://
medicine.yale.edu/lab/rimm/research/software/). Samples with
a BCIP score of <0.2 were assigned to the low BCIP group,
while those with a BCIP score of ≥0.2 were assigned to the high
BCIP group.

Functional and Clinical Characteristics
Analysis of the BCIP Score in BC
BCIP scores of TCGA-BRCA tissues (76 cases with matched
tumor and tumor-adjacent breast tissues and 699 cases with
unmatched tumor tissues) were calculated using DNA
methylation data. The correlation between the BCIP score and
BC-related characteristics (tumor size, oncogene copy number
variation, and oncogene expression) was assessed using linear
regression and Spearman’s correlation coefficient. The
correlation between gene mRNA expression and the BCIP
score was analyzed using Spearman’s correlation. The gene
expression profile associated with BCIP score was identified
based on Spearman’s coefficient (cutoff value: 0.1), and
functional study of the related gene expression was performed
using the GO and KEGG databases. The above procedure was
performed using R software.

Correlation Analysis Between the BCIP
Score and Immune Microenvironment in BC
The degree of infiltration of immune cells and stromal cells in
each sample was assessed using the ESTIMATE algorithm
(Yoshihara et al., 2013). The proportion of 22 immune cells in
each tissue was evaluated using the CIBERSORT algorithm
(http://cibersort.stanford.edu/) (Gentles et al., 2015).
Correlations between the BCIP score and ESTIMATE and
CIBERSORT scores were assessed using linear regression and
Spearman’s correlation coefficient.

TABLE 1 | Characteristics of patients in the training and validation cohort.

Variate Training cohort
(n = 587) Num (%)

Validation cohort
(n = 231) Num (%)

Age
0–39 37 (6.3) 28 (12.1)
≥40 550 (93.7) 203 (87.8)
Tumor size
≤2 cm 154 (26.2) 117 (50.6)
>2 cm 433 (73.8) 114 (49.4)

Lymph node status
Non-metastasis 261 (44.5) 130 (56.3)
Metastasis 326 (55.5) 101 (43.7)

Subtype (IHC)
Luminal A/B 504 (85.9) 111 (48.1)
HER2 16 (2.7) 55 (23.8)
TNBC 67 (11.4) 65 (28.1)

BCIP score
Low 425 (72.4) 146 (63.2)
High 162 (27.6) 85 (36.8)

Survival status
Alive 536 (91.3) 189 (81.8)
Dead 51 (8.7) 42 (18.2)

FIGURE 1 | Flow chart of study design. We identified BCIPs that were commonly hypermethylated or hypomethylated in blood samples and cancer tissues in
patients with BC; 29 BCIPs that significantly correlated with BC patient survival were selected to develop the BCIP score. The correlation between the BCIP score and
clinical characteristics of BC was assessed. We then evaluated the BCIP score-related gene profile and the relationship between the BCIP score and tumor immune
response in BC tissues. Furthermore, we assessed the prognostic effect of the BCIP score and developed a prognostic prediction model based on the BCIP score
using TCGA database. The efficacy of the prognostic prediction model was validated using the GEO cohort.
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Correlation Analysis Between the BCIP
Score and Cancer Immunotherapy
Response
Four biomarkers were used to assess the response to
immunotherapy—CD274, CD8, IFN-c signature (IFNG) (Ayers
et al., 2017), and IFNG hallmark gene set (IFNG.GS) (Benci et al.,
2019). Three biomarkers were used to assess resistance to
immunotherapy—IFN-stimulated gene resistance signature
(ISG.RS) (Benci et al., 2019), myeloid-derived suppressor cells
(MDSCs), and cancer-associated fibroblasts (CAFs) (Joyce and
Fearon, 2015). IFNG was calculated by averaging six genes (IFNG,
STAT1, IDO1, CXCL9, CXCL10, and HLA-DRA). IFNG. GS was
calculated as previous reported (Benci et al., 2019). CD274, CD8,
ISG. RS, MDSCs, and CAFs were assessed using a web application
(http://tide.dfci.harvard.edu).

Establishment and Validation of the
Nomogram
A total of 587 BC cases with DNA methylation data, clinical
characteristics, and complete follow-up in TCGA database
were enrolled as the training cohort, while 231 BC cases
with data of DNA methylation, clinical characteristics, and
complete follow-up in the GSE72308 dataset were selected as
the external validation cohort. The clinical and pathological
characteristics of patients with BC are listed in Table 1. Tumor
size was defined as ≤2 cm or >2 cm. Lymph node status was
defined as non-metastasis or lymph node metastasis. The
molecular subtypes were defined based on the IHC
assessment of ER, PR, and HER2 as follows: luminal A/B
(ER+/PR+/HER2−, ER−/PR+/HER2−, ER+/PR−/HER2−,
ER+/PR+/HER2+, ER-/PR+/HER2+, ER+/PR-/HER2+),

FIGURE 2 | Identification of BCIPs. (A) Venn diagram of probes commonly hypermethylated (left panel) or hypomethylated (right panel) in blood samples and
cancer tissues from patients with BC. For the GSE51057 andGSE57285 datasets: cases diagnosed with BC vs. normal cases; for TCGA: BC tissues vs. tumor-adjacent
tissues. (B) Distribution of BCIPs referring to (Left) chromosome, (Middle) transcription Start Sites, CpG island neighborhood are listed as number (proportion).
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FIGURE 3 | Establishment of a prognostic risk score based on BCIPs for BC. (A)HRs of BCIPs were calculated using univariate analysis in TCGA-BRCA cohort (n �
682). (B) Distribution of BCIP scores (upper panel) in the low-score and high-score subgroups, the death incidence of patients (middle panel), and heatmap of the 29
BCIPs methylation profiles (lower panel) in TCGA cohort. The cutoff value of the BCIP score was identified using x-tile and determined to be 0.2. The DNA methylation
levels of BCIPs were normalized using z-score. (C) (left panel) Survival analysis of BCIP scores and (right panel) survival prediction ROC curve of the BCIP score in
TCGA cohort. (D) (left panel) Survival analysis of the BCIP score and (right panel) survival prediction ROC curve of the BCIP score in the GSE72308 cohort. (E) Forest plot
depicting HRs of BCIP scores in subgroups of TCGA cohort. In subgroups labeled in red, BCIP scores were significantly correlated with overall survival of BC patients.
For (C–D) (left panel), p-values were determined using log-rank test.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 8144805

Xiong et al. DNA Methylation-Based Prognostic Nomogram

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


HER2 (ER−/PR−/HER2+), and TNBC (ER−/PR−/HER2−).
Age was defined as 0–39 and ≥40 years.

BC features, which were significantly correlated with BC
survival in the multivariate Cox regression, were selected to
establish the nomogram model. The patients’ survival
probability was assumed by summing the scores of the
variates, with a higher score corresponding to a higher
mortality risk. The efficiency of the model was evaluated with
regard to discrimination and calibration. The concordance index
(c-index) was used to quantify discrimination ranging from 0 to 1
(<0.5, absolute discordance; 0.5, equal concordance to chance;
and 1, best concordance). The calibration curve was used to
compare the predicted survival probability with the observed
survival probability at 3, 5, and 10 years in the training and
validation cohorts.

RESULTS

Identification of BCIPs
To identify CpG probes associated with BC incidence, two GEO
datasets (GSE51057 and GSE57285), including 226 blood samples
from healthy women (177 cases in GSE51057 and 49 cases in
GSE57285) and 181 blood samples from women diagnosed
with BC after sample donation (146 cases in GSE51057 and 35
cases in GSE57285; Figure 1), were used. The 448 and 383 CpG
probes were commonly hypermethylated or hypomethylated
in samples from women with BC compared to those in samples
from healthy women (Figure 2A). Further, we included 76
paired tumor-adjacent breast tissues and tumor tissues from
TCGA-BRCA database and identified 9,327 differentially
methylated probes (tumor vs. tumor-adjacent;

FIGURE 4 |Correlation of BCIP score with BC related characteristics. (A) Analysis of BCIP score differences between (left panel) tumor tissues andmatched tumor-
adjacent breast tissues; (middle panel) cases with tumor size ≤2 cm and cases with >2 cm (right panel) cases with local regional disease (M0) and cases with de novo
metastasis disease (M1) in TCGA-BRCA cohort. (B) Correlations between the BCIP score and (upper panel) copy number and (lower panel) mRNA expression of
CCND1. (C) Correlations between the BCIP score and (upper panel) copy number and (lower panel) mRNA expression of ERBB2. (D) Correlations between the
BCIP score and (upper panel) copy number and (lower panel) mRNA expression of FGFR1. For A (left panel), p-values were determined by paired t-test; for A (middle and
right panel), p-values were determined by t-test; for (B–D), p-values were determined by r and Spearman’s correlation coefficient.
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hypermethylated: 6,349; hypomethylated: 2,978). By
integrating the results from the GEO and TCGA cohorts,
234 hypermethylated and 127 hypomethylated CpG probes
were identified as BCIPs in blood samples from women with

high risk of BC and BC tissues (Figure 2A). Next, we assessed
the distribution of BCIPs based on chromosomes,
transcription start sites, and CpG islands. Among the 22
pairs, chromosomes (Chr) 1, 6, 11, and 17 were the most

FIGURE 5 | Functional analysis of BCIP score-related gene profile in BC. (A,B) Analysis of BCIP score-related gene enrichment in the KEGG pathway. (A) Analysis
of genes whose mRNA expressions were positively correlated with BCIP score; (B) analysis of genes whose mRNA expressions were negatively correlated with BCIP
score. Gene ratio was defined as the number of genes enriched to target pathway/number of BCIP score-related gene included in the KEGG dataset. (C,D)GO function
analysis of BCIP score-related gene. (C) Analysis of genes whose mRNA expressions were positively correlated with the BCIP score. (D) Analysis of genes whose
mRNA expressions were negatively correlated with the BCIP score.
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common regions for BCIP distribution; 45.2% were distributed
in CpG islands and 42.9% were distributed in the promoter
regions (TS200 and TS1500; Figure 2B).

Establishment of a Prognostic Risk Score
Based on BCIPs for BC
Using a univariate Cox regression model, we evaluated the
association between methylation levels of BCIPs and overall
survival in TCGA-BRCA cohort. DNA methylation levels of
29/361 BCIPs significantly correlated with OS in BC, and
these probes were selected to establish the BCIP score model
(Figure 3A and Supplemental Table S1). Using X-Tile analysis,
the cutoff value for the BCIP score was set at 0.2; patients with a

BCIP score ≤0.2 were assigned to the low score group, while
patients with a BCIP score of >0.2 were assigned to the high
score group (Figure 3B). In TCGA cohort, patients with low
BCIP scores had better survival rates than those in the high
score group (Figure 3C). The ROC curve showed that the
BCIP score exhibited a high predictive efficacy for OS in BC
(Figure 3C). Likewise, a high BCIP score predicted a high
mortality risk for BC in the GEO cohort (Figure 3D). Further,
subgroup analysis indicated that the BCIP score was a negative
prognostic factor in subgroups of BC with luminal A/B
subtype, old age (≥40 years), larger tumor size, and lymph
node metastasis status (Figure 3E and Supplemental Table
S2). These data show that the BCIP score is an efficient
prognostic model for BC.

FIGURE 6 | Correlations between the BCIP score and immune microenvironment and ICI response in BC. (A) Correlation between the BCIP score and the level of
stromal cells (estimate-Stromal score) in BC tissues (TCGA-BRCA, n � 587). Numerical distribution of BCIP scores and estimate-Stromal scores are shown on the above
the x-axis and on the right of the y-axis, respectively. (B)Correlation between the BCIP score and the level of stromal cells (estimate-Immune score) in BC tissues (TCGA-
BRCA, n � 587). Numerical distribution of BCIP scores and estimate-Immune scores is shown on the above the x-axis and on the right of the y-axis, respectively.
(C) Correlation between the BCIP score and the level of stromal cells (estimate-Estimate score) in BC tissues (TCGA-BRCA, n � 587). Numerical distribution of BCIP
scores and estimate-Estimate scores are shown on the above the x-axis and on the right of the y-axis, respectively. (D) Correlation between the BCIP score and the 22
type of immune cell components is shown by dot plot. Cell contents correlated with the BCIP score are labeled in red. (E) Correlation between DM-BMI and markers for
ICI response/resistance is shown by dot plot. r, Spearman’s correlation coefficient.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 8144808

Xiong et al. DNA Methylation-Based Prognostic Nomogram

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Functional and Clinical Characteristic
Analysis of the BCIP Score in BC
Compared to tumor-adjacent breast tissues, BC tissues exhibited
a significantly higher BCIP score (Figure 4A). In BC, patients
with a larger tumor size and de novo metastatic disease had a
higher BCIP score (Figure 4A). By assessing the gene copy
number in BC tissues, the BCIP score was associated with an
increased copy number of several oncogenes (including CCND1,
ERBB2, and FGFR1; Figures 4B–D). Consistently, the BCIP score
was positively correlated with the mRNA levels of CCND1,
ERBB2, and FGFR1 (Figures 4B–D).

Next, we evaluated the biological significance of the BCIP
score in BC. By assessing the correlation between the BCIP score
and gene expression, we identified the BCIP score-related gene
expression profile. The results of correlation analysis are shown in
Supplementary Table S3. Genes with expression correlated with
the BCIP score were included in GSEA analysis using the KEGG
and GO databases. KEGG and GO analyses showed that genes
with expression that positively correlated with the BCIP score
were significantly enriched in pathways involving cell cycle
regulation, DNA replication, DNA repair (base excision repair,
mismatch repair, nucleotide excision repair, and homologous
recombination), and energy metabolism (Figures 5A,C).
Interestingly, both KEGG and GO analyses showed that genes
with expressions that negatively correlated with the BCIP score
were significantly involved in cancer-immunity-related pathways
(including antigen binding, T cell differentiation and activation,
the PD-1 checkpoint pathway, NK cell-mediated cytotoxicity,
and immune receptor activity) (Figures 5B,D).

Correlations Between the BCIP Score and
Immune Microenvironment and ICI
Response in BC
Further, we used the ESTIMATE algorithm to evaluate the
correlation between the BCIP score and degree of immune cell
infiltration in BC tissues. The BCIP score was significantly

correlated with decreased levels of immune and stromal cell
content, indicating that the BCIP score was negatively
correlated with immune cell infiltration in BC tissues (Figures
6A–C). The CIBERSORT algorithm was used to evaluate the
association between the BCIP score and 22 immune cell contents
in BC tissues (TCGA-BRCA cohort). The BCIP score was
negatively correlated with the level of several immune cells
with antitumor activity (including plasma, CD8+ T, CD4+ T,
and gamma delta T cells; Figure 6D). In addition, the level of
resting dendritic cells, which play a critical role in antigen
phagocytosis and processing, decreased in BC tissues with
increased BCIP scores (Figure 6D). In contrast, the level of
M2 macrophages, which promote tumor progression, was
positively correlated with the BCIP score (Figure 6D). These
results indicate that the BCIP score was correlates with poor
antitumor immunity. As a previous study showed that ICIs (Shah
et al., 2012) significantly improved cancer survival through T cell
immunity in BC, we further investigated whether the BCIP score
correlated with the ICI response in BC. Four markers for ICI
sensitivity and three markers of ICI resistance were selected to
evaluate the ICI response in BC tissues. The BCIP score was
negatively correlated with ICI-sensitive markers (CD274, CD8,
IFNG, and IFN. GS; Figure 6E). In contrast, two of the three ICI
resistance markers (MDSC and CAF) were positively correlated
with the BCIP score in BC (Figure 6E). Collectively, the BCIP
score was a negative marker of immune cell infiltration and ICI
response in BC.

Establishment of a BCIP Score-Based
Nomogram Model to Predict Overall
Survival in BC
Univariate and multivariate Cox regression analyses showed that
tumor size, molecular subtype, lymph node status, and the BCIP
score were significant prognostic factors for BC (Table 2). After
including the above variables, we developed a comprehensive
prognostic nomogram based on TCGA-BRCA cohort

TABLE 2 | Univariate and multivariate analysis for patients with BC in TCGA cohort.

Variate Univariate Multivariate

HR 95% CI p Value HR 95% CI p Value

Age 0.339
Age 1
0–39 1.799 0.54–5.989
≥40 0.04 0.045
Tumor size 1 1
≤2 cm 2.467 1.044–5.83 2.41 1.021–5.688
>2 cm <0.001 <0.001
Lymph node status 1 1
Non-metastasis 4.18 2.087–8.371 3.959 1.997–7.848
Subtype (IHC) <0.001
Luminal A/B 1 <0.001 1
HER2 3.39 0.789–14.561 3.445 0.801–14.816
TNBC 6.034 3.016–12.073 5.561 2.833–10.918
BCIP score <0.001 <0.001
Low 1 1
High 6.618 3.628–12.073 6.748 3.701–12.304

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 8144809

Xiong et al. DNA Methylation-Based Prognostic Nomogram

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


(Figure 7A). Factors correlated with high mortality risk (larger
tumor size, TNBC subtype, metastatic lymph node status, and
high BCIP score) were scored higher than those correlated with
low mortality risk (smaller tumor size, luminal A/B subtype,
non-lymph node metastasis, and low BCIP score). The c-index
of this model was 0.831 (95% CI: 0.774–0.888) in TCGA-BRCA
cohort. Furthermore, data from the GSE72308 dataset were
selected for external validation of the nomogram. The
c-index of the model was 0.734 (95% CI: 0.665–0.803) in the
external validation cohort. The calibration curve was
constructed to evaluate the accuracy of model prediction and
indicated that the BCIP score-based nomogram exhibited good
consistency in the prediction of 3-, 5-, and 10-year survival

probabilities in both TCGA-BRCA and the GSE72308 cohorts
(Figures 7B,C).

DISCUSSION

For years, prognostic prediction in patients with BC has been
mostly based on the pathological features of the tumor (including
tumor size, lymph node status, distant metastatic status, and
molecular subtype) (Harbeck and Gnant, 2017). BC therapy
guided by these prognostic indicators has significantly
improved cancer survival and avoids the therapeutic side
effects caused by overtreatment in BC (DeSantis et al.,

FIGURE 7 | Establishment of the BCIP score-based nomogram model to predict overall survival in BC. (A) Prognostic nomogram for patients with BC with factors
including tumor size, molecular subtype, lymph node status, and the BCIP score. Points are defined based on the prognostic contribution each factor. Points summing
the contribution of tumor size, molecular subtype, lymph node status, and the BCIP score are translated to the survival probability at 3, 5, and 10 years (B,C) Calibration
plots for predicting patient overall survival at 3, 5, and 10 years in (B) TCGA and (C) the GSE72308 cohorts. Probability of survival based on the nomogram is listed
on the x-axis, while the actual probability of survival is listed on the y-axis.
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20192019). With advances in BC treatment, more precise
prognostic methods are required (Denkert et al., 2017). Several
prognostic biomarkers, including gene sequencing, gene copy
number, and circulating tumor cells, have been used in clinical
practice for BC (Lord and Ashworth, 2016; Tsai et al., 2018;
Radovich et al., 2020). For instance, the 21-gene assay (Oncotype
Dx) has been used to identify patients with low recurrence risk
who could be exempted from chemotherapy in T1b/c and T2,
HR+, HER2-, and lymph node-negative BC (Giuliano et al.,
2017). Detection of BRCA1/2 mutation status is helpful in
identifying the potential benefits of PARP inhibitors
(Tarsounas and Sung, 2020). Recently, Fackler et al. identified
hypermethylation signatures that were correlated with cancer
recurrence in TNBC (Fackler et al., 2020). In this study, we
identified DNA methylation signatures related to BC incidence
and developed a nomogram based on DNA methylation to
calculate the 3-, 5-, and 10-year survival probabilities for BC.

An increasing amount of data has shown that aberrations in
DNAmethylation correlated with breast malignancy development is
a prerequisite for the transformation of normal cells into BC cells,
and these changes in DNA methylation accumulate in malignant
cells, inducing an enhanced ability for proliferation and self-renewal
(Zhuang et al., 2012; Wienken et al., 2016). As DNA methylation is
regulated by environmental factors, genetic predisposition, and
individual lifestyle, variation in DNA methylation pattern can be
a reflection of the individual response to exposure to BC risk
(Widschwendter et al., 2018). Identification of cancer incidence-
related DNA methylation pattern is of great value for prognostic
prediction in BC. Hence, we developed the BCIP score based on BC-
related DNA methylation pattern and observed that the BCIP score
was significantly correlated with poor outcomes in patients with BC.

In BC tissues, the BCIP score not only acted as a prognostic
biomarker but also significantly correlated with aggressive BC
features (such as larger tumor size, distant metastatic disease, and
oncogene amplification). In addition to being a reflection of biological
changes, changes in DNA methylation play a critical role in tumor
progression through the regulation of gene expression. By assessing
the BCIP score-related gene expression profile, we discovered that
genes with expressions that were negatively correlated with the
BCIP score were also significantly involved in the cancer immunity-
related pathway. As a high BCIP score correlated with increased
mortality, an aberration of cancer immunity might account for the
poor outcome of patients with a high BCIP score.

In our study, we observed that BCIP scores were negatively
correlated with the degree of T cell infiltration in BC tissues,
indicating that the T-cell-mediated immune response (cellular
immunity) was aberrantly inactivated. Cellular immunity is the
main type of tumor immune response, which is mediated by the
direct killing effect of T cells and release of cytokines by T cells
(Joyce and Fearon, 2015). When activated by tumor antigens,
T cells become immunoreactive and acquire the ability to
recognize and kill tumor cells. However, T cell activation is
often blocked by immune checkpoint molecules (including
PD-1/PDL1, CTLA-4, and TIM-3) in individuals with cancer
(Joyce and Fearon, 2015; Voorwerk et al., 2019). In BC, ICIs
targeting PD1/PDL1 have been proven to improve survival in
some patients, while most patients exhibit a poor response to ICIs

(Voorwerk et al., 2019). To improve the efficacy of ICIs, effective
biomarkers are required to identify potential beneficiaries. As our
data showed that the BCIP score was negatively correlated with
ICI response markers, the BCIP score is a potential biomarker to
predict the sensitivity of BC to ICIs.

It is well known that DNA methylation correlates with
suppressed gene expression, indicating that DNA methylation
alterations can be exploited in cancer diagnosis. Compared with
other genetic approaches (such as mutational analysis), DNA
methylation-based approaches present advantages with regard to
their clinical application (Heyn and Esteller, 2012). For instance,
DNA methylation detection mostly focuses on a specific
promoter region containing CpG islands, while mutational
studies can cope with large regions since point mutations are
located throughout the length of the gene (Heyn and Esteller,
2012). Moreover, alterations in DNA methylation were detected
in a higher proportion of tumor tissue than genetic alterations,
leading to higher sensitivity in prognostic analysis (Esteller et al.,
2001). In our study, we developed a BCIP scoring system based on
BC-related DNA methylation variation and observed that the
BCIP score was positively correlated with mortality in patients
with BC. Further, we adjusted for the confounding effects of
tumor size, lymph node status, and molecular subtypes using Cox
regression and found that BCIP was an independent prognostic
factor for BC. By integrating the BCIP score, tumor size, lymph
node status, and molecular subtypes, we established a nomogram
model that could accurately quantify the survival probability of
patients with BC. Based on our nomogram, patients with BC and
a low mortality risk could be identified and might be exempted
from aggressive and excessive medical treatment. However,
patients with a high mortality risk should undergo more
intensive surveillance for cancer recurrence.

Collectively, our study identified the variation in DNA
methylation pattern related to BC incidence and developed a
BCIP score model depicting BC-related DNA methylation
variation. In BC, the BCIP score was significantly correlated with
malignant BC characteristics and poor outcomes. Furthermore,
we observed that the BCIP score was negatively correlated with
immune cell infiltration and ICI response markers in BC tissues.
Finally, a nomogram comprising the BCIP score, tumor size,
lymph node status, and molecular subtype was developed to
quantify the survival probability of patients with BC.
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