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Peptide–protein complexes play important roles in multiple diseases such as
cardiovascular diseases (CVDs) and metabolic syndrome (MetS). The peptides may
be the key molecules in the designing of inhibitors or drug targets. Many Chinese
traditional drugs are shown to play various roles in different diseases, and
comprehensive analyses should be performed using networks which could offer
more information than results generated from a single level. In this study, a network
analysis pipeline was designed based on machine learning methods to quantify the
effects of peptide–protein complexes as drug targets. Three steps, namely, pathway
filter, combined network construction, and biomarker prediction and validation based
on peptides, were performed using cinnamon (CA) in CVDs and MetS as a case.
Results showed that 17 peptide–protein complexes including six peptides and four
proteins were identified as CA targets. The expressions of AKT1, AKT2, and ENOS
were tested using qRT-PCR in a mouse model that was constructed. AKT2 was shown
to be a CA-indicating biomarker, while E2F1 and ENOS were CA treatment targets.
AKT1 was considered a diabetic responsive biomarker because it was down-regulated
in diabetic but not related to CA. Taken together, the pipeline could identify new drug
targets based on biological function analyses. This may provide a deep understanding
of the drugs’ roles in different diseases which may foster the development of
peptide–protein complex–based therapeutic approaches.
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INTRODUCTION

Peptide–protein complexes are the key components of protein–protein interaction (PPI) networks.
Nearly 15–40% PPIs are mediated by these short linear peptides (Neduva et al., 2005). The
peptide–protein complexes are proven to play important roles predominantly in both signaling
and regulatory pathways, implicating that the peptides are involved in many human diseases
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(Pawson and Nash, 2003). As a result, the peptides are attracting
more attention in drug research fields since they may be the key
molecules in the designing of inhibitors or drug targets
(Parthasarathi et al., 2008; London et al., 2010).

Due to the characters of peptide–protein interactions, it is
reasonable to perform network analyses based on machine
learning methods since the relationships between those
peptides and proteins could be illustrated clearly in the
form of graphs (Zhu et al., 2020; Ji et al., 2021; Yingying
et al., 2021). Similarly, some complex diseases are found to be
similar based on network analyses, indicating that more
relationships between different diseases could be predicted
using bioinformatics pipelines (Wang et al., 2019). Many
Chinese traditional drugs are shown to play various roles in
different diseases, and comprehensive analyses should be
performed using networks which may offer more
information than results generated from a single level.
However, no pipeline aiming to predict the peptide–protein
complex as drug targets in different diseases had been
proposed. In this study, a network analysis pipeline was
designed based on machine learning methods to quantify
the effects of peptide–protein complexes as drug targets.

In this pipeline, diseases with at least 20 related genes and
drugs with at least one related biological functional term could be
used as analysis objects. Diseases that are similar to each other on
at least one level (such as medical or biological level) are
recommended. The candidate drugs do not need to be proven
useful in the diseases analyzed since predicting new roles of the
candidate drugs is also one application of the pipeline. Based on
the abovementioned concerns, two types of diseases
(cardiovascular diseases (CVDs) and metabolic syndrome
(MetS)) and a Chinese traditional drug (cinnamon) as a case
were chosen.

Cinnamon (Cinnamomum zeylanicum and Cinnamon
cassia, CA) is one of the most important spices used daily
(Hariri and Ghiasvand, 2016). Cinnamaldehyde is one of the
main resinous ingredients found in CA, which is commonly
used as a Chinese medicine for blood circulation disturbance
and inflammation (Sheng et al., 2008; Cao et al., 2010; Yang
et al., 2015). It was shown that cinnamaldehyde played
important roles in both CVDs and MetS (patients suffering
from type 2 diabetes (T2D), and glucose/insulin metabolism
disturbance or insulin resistance, and was involved with at
least two of the following four items: hypertension,
dyslipidemia, obesity, and microalbuminuria defined by the
WHO criteria) (Mollazadeh and Hosseinzadeh, 2016). CVDs
and MetS are not independent since MetS is one of the most
undeniable reasons of CVDs. Besides, there are multiple types
of biomarkers identified as common features of CVDs and
MetS, such as non-coding RNAs, proteins, and metabolites
(Das et al., 2020).

It is of great importance to explore the mechanism of CA
since this drug could participate in both of the disease types at
the same time (Sheng et al., 2008; Yang et al., 2015). One
possible reason may be its antidiabetic action by modulating
the insulin and insulin-like growth factor (IGF1) signaling
pathways (Schriner et al., 2014) since insulin resistance was

proven to play a fundamental key role for MetS complications
(Khan et al., 1990). Besides, CA was shown to retard the
progression of cardiac hypertrophy and fibrosis via blocking
the ERK signaling pathway (Zhang et al., 2015; Xiao et al.,
2017). However, functional analysis for CA in a system way,
especially based on biological pathways, is still lacking.

As an integration of molecular interaction; genetic, cellular,
and environmental information processing; and metabolism
reactions, biological pathways are often used in systematic
analyses of complex diseases such as CVDs, T2D, and cancers
(Salt and Hardie, 2017; Kakiuchi-Kiyota et al., 2019; Kaku,
2019). Peptide–protein complexes were also proven to be the
key components in pathways. It was postulated that there may
be associations between the common pathways shared by
CVD/MetS and CA which could be detected based on
peptide–protein complex analyses. In this study, a new
network analysis pipeline was proposed based on machine
learning methods to identify common drug targets in different
diseases.

MATERIALS AND METHODS

The analyses were performed using the following three steps: (as
shown in Figure 1).

Step1: Pathway filter. The similarity between any two selected
diseases was calculated and used to filter the disease pairs.
Enrichment analyses were performed for the related genes of
the disease pairs. Meanwhile, the CA-related pathways were
found through literature searching. Common pathways were
then filtered and used as the inputs for step 2.

Step2: Combined network construction. All the common
pathways were then converted into networks. The network
structure similarities were calculated using two types of
machine learning methods, and an integrate score was
designed to measure the similarity between any two
common pathways on the structural level in order to
explore the potential correlations of these pathways. The
pathways were then merged into a combined pathway
network. Proteins in the pathways were merged into a
combined protein network.

Step3: Biomarker prediction and validation based on
peptides. The nodes in the combined protein network were
first ranked according to the network topological characters.
Then protein–peptide complexes containing these top proteins
as receptors were selected, and the peptides were then
clustered. The top genes with peptides clustered into the
same clusters were selected as candidate biomarkers and
validated using qRT-PCR in a mouse diabetic model that
was constructed.

Disease Similarity Calculation
Methods that can calculate the distances between any two
diseases based on any biological or medical level could be
used. In this case, a module-based method (Menche et al.,
2015) was used. The similarity Sij between two diseases i and j
was calculated as follows:
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Sij ≡ 〈dij〉 − 〈dii〉 + 〈djj〉
2

.

Of which, <dii> and <djj>represented the average shortest
distances inside diseases i and j, respectively, while
<djj>represented the pairwise average shortest distance
between disease i and j. The shortest distances were calculated
for any protein pairs inside/between diseases using the
relationships integrated from multiple molecular interaction
levels including protein, regulatory, and metabolic pathways,
and kinase substrate.

A z-score was calculated based on the random control
networks by 1000 permutations of disease lists preserving
randomization. A p-value for each Sij score was calculated
using the Mann–Whitney U test. Then FDR was used to
obtain the q-values.

Information Converting
From Genes to Biological Pathways
The information conversions from genes to biological
pathways were performed using the DAVID EASE score
(Huang et al., 2009a; Huang et al., 2009b), which was a
modified Fisher exact p-value. For any disease-related gene
list li and biological pathway wa, the EASE score was calculated
as follows:

e(li, wa) � 1 − ∑GH−1

i�0

(OH
i

)(OT − OH
GT − i

)
( OT
GT − 1

) .

Of which, the calculation methods of GH (gene hits), GT (gene
total), OH (genome hits), and OT (genome total) are shown in the
following 2*2 table:

An e-value not above the threshold supported the alternative
hypothesis that the probability of the first cell in the 2*2 table
was actually greater than that expected under the null
hypothesis that the two variables were independent. The
conclusion was that there was an association between the
row and the column variables in the table, which meant the
proportions of those genes falling into each category were
different among groups.

From Biological Pathways to Graphs
The information conversions from biological pathways to
protein–protein networks were performed using the R package
“graphite” (Sales et al., 2012). The algorithm in this package kept
the information of protein complexes, gene families, and

removing chemical compounds from the final graphs, which was
especially important in the peptide complex analyses of this study.

Network Structure Similarity Calculation
The network structure similarity calculation algorithms could be
divided into two types: alignment-free and alignment-based
network comparison (Frigo et al., 2021). In this pipeline, it
was recommended to use at least one alignment-free algorithm
and one alignment-based algorithm to compare the different
networks and combine the scores together.

Alignment-Free Algorithm Based on
Graphlet Degree Distribution Agreement
The alignment-free network comparison algorithms performed the
network similarity analyses by quantifying the overall topological
similarity between networks, irrespective of node mappings between
the networks, and without any conserved edges or subgraph
identification. In this pipeline, the algorithm named GDD
agreement was chosen, which performed the structural similarity
(SS) between networks based on the graphlet degree distribution as
follows (Przulj, 2007):

The similarity between any two networks G and W was
calculated as follows:

SGDD(G,W) � 1
n
∑n−1
j�0

SjGDD(G,W).

Of which,

SjGDD(G,W) � 1 −⎛⎜⎜⎜⎜⎝∑∞
k�1

⎡⎢⎢⎢⎢⎢⎢⎢⎣dj
G(k)
k /∑∞

k�1
dj
G(k)
k

− dj
W(k)
k /∑∞

k�1
dj
W(k)
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦2⎞⎟⎟⎟⎟⎠1
2

.

Of which, djG(k) is the sample distribution of the number of
nodes in network G touching the appropriate graphlet k times.
The range of SGDD is [0,1]; a higher score meant the two networks
compared were more similar to each other.

Alignment-Based Algorithm Based on the
Hungarian Method
The alignment-based network comparison methods referred to a
series of algorithms aiming to find a mapping between the nodes
of at least two networks that preserved edges and a large subgraph
between the networks. In this pipeline, an alignment-based
algorithm was chosen based on a Hungarian method as follows:

Number of genes in li Number of genes in the genome

Number of genes in wa GH-1 OH-GH+1
Number of genes not in wa GT-GH OT-GT-(OH-GH)
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The network alignment scores, that is, SAE (G, W) (between
any two networks G and W), were performed using the
Hungarian method (Kuhn, 1955) on a square distance matrix
C (if the sizes of the two networks were different, the larger
number of nodes was used), which was calculated as follows:

Cab �
����������������∑
t∈T

(MGa,t −MWb,t)2√
.

Of which, MGa,t �
−∑NG

j�1 A
(t)
Ga,j

ln(A(t)
Ga,j

)
H(ING ) , where A(t)

Ga,j
is a transition

matrix of network G, which was constructed by converting the
raw square transition matrix into Markov processes by
normalizing each row sum to unity. A(t)

G contained
probabilities of edges transferring information from the ith to
the jth member of the system in exactly t units of time. For
t ∈ {2y}∀y ∈ N, tmax ≥ 2D and tmax−1 < 2D, where D is the max
diameter of the two networks G and W being compared, and the
R packages “igraph” and “netcom” were used to perform the
calculation.

Integrated Network Similarity Score
The integrated network similarity scores between the two
networks G and W were calculated as follows:

S(G,W) � SGDD(G,W) + SAE(G,W).
A higher S score indicated that the two networks compared

were more similar to each other on the structural level.

Biomarker Prediction and Validation
The prediction and validation of the biomarkers were performed
using the following steps:

1) The proteins in the combined protein network were ranked
according to the network topological characters. For each
node, degree and node betweenness were calculated. The edge
betweenness was calculated for each edge using the R package
“igraph.”

2) The protein–peptide complexes containing these top proteins
as receptors were selected, and the peptides were then
clustered. The high-resolution structures of protein–peptide
complexes containing genes in the combined network as
receptors were downloaded from the Protein Data
Bank (PDB).

3) The top proteins with peptides clustered into the same clusters
were selected as candidate biomarkers. The peptide sequences
of these complexes were then classified using Hammock
(1.2.0) (Krejci et al., 2016), which used hidden Markov
model profiles for peptide sequence clustering. The
consensus sequence for each cluster was generated using
ClustalW (Thompson et al., 1994) and WebLogo (Crooks
et al., 2004).

4) The candidate biomarkers were validated using qRT-PCR in a
mouse diabetic model constructed as follows:

Fifty-nine male C57 mice (14–16g/28–35 days) were
purchased from Guangdong Medical Experimental Animal

Center (Certificate No.: 44007200062167, License No.: scxk
(Guangdong) 2018-0002, SPF clean grade).

The mice were divided into four groups as follows: 1) Group A
(Control + vehicle): 5 mice were given solvent control (0.5%
carboxymethyl cellulose solution (CMC)) by gavage; 2) Group B
(Control + CA): 6 mice were given CA by gavage (the dose was
20 mg/ kg/ BW); 3) Group C (T2D + vehicle): 24 diabetic mice
were given solvent by gavage; 4) Group D (T2D + CA): 24
diabetic mice were given CA by gavage.

Of which, the models of 48 diabetic mice were constructed
using streptozotocin (STZ) using the following steps: 1)
pretreatment: all the mice were made to starve 12 h before
modeling; 2) model construction: STZ was intraperitoneally
injected at a dose of 150 mg/ kg/ BW; 3) model test: the blood
glucose value was measured continuously after 3 days of STZ
injection. If the random blood glucose was >16.7 mmol/ L, the
model was considered successful. Otherwise, another injection of
STZ was administered until the random blood glucose was
>16.7 mmol/ L.

Drug treatment (Groups C and D) was started 5 weeks after
modeling. After 7 weeks of administration, all animals were
killed, and the hearts of mice were treated with TRIzol and
stored at −80°C. Then qRT-PCR was performed for the
candidate genes (the top proteins were mapped to their
coding genes). The animal experiment was approved and
recognized by the experimental Animal Ethics Committee
of Shenzhen Sun Yat sen Cardiovascular Hospital (Approval
No.: rye2019102806).

RESULTS

Pathway Filtrations
CVD (such as coronary disease) and MetS (such as diabetes
mellitus) lists were extracted from Medical Subject Heading
(MeSH) ontology with at least 20 disease-related genes from
either OMIM or GWAS (listed in Supplementary Table S1). 553
disease pairs were shown to be similar with each other with a
z-score ≥ 1.6 and q-value ≤ 0.001. The 19 CVDs and 18 MetS
comprising the 553 disease pairs were selected as HM
(HeartMetS) datasets. As shown in Figure 2A, the average
numbers of genes related to MetS (179.0556) were 2-fold of
CVDs (86.42105). This indicated that MetS may be more
complex than CVDs since these diseases involve the
abnormality of multiple systems, such as endocrine, digestive,
and immune systems.

The gene lists of each disease were then used as inputs of the
information converting calculation. 179 pathways in KEGG
(Kanehisa et al., 2017) and Biocarta with at least one e-value
not above 0.05 were selected as HM-enriched pathways (see
Supplementary Table S2). The common pathways in the two
databases were named using KEGG ID. Otherwise, if there exists
any difference between the two pathways, both of the pathways
were kept.

CA was shown to play important roles through biological
pathways in reducing metabolic syndrome complications and
CVDs as reviewed in the former research (Yang et al., 2015;
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Mollazadeh and Hosseinzadeh, 2016). The words “cinnamon”
and “cinnamaldehyde” were used for literature searching through
the NCBI PubMed to find the related pathways since 32 CA-
related pathways were selected and binned into two groups
according to their effects on diseases types: antidiabetic
(including 28 pathways) and antihypertensive (including four
pathways).

Combined Pathway Network Analyses
As shown in Figure 2B, there were 12 common pathways
between the 179 HM-enriched pathways and 32 CA-related
pathways. This indicated the dynamical roles CA played in
different diseases or disease stages, including diabetes mellitus,
obesity, MetS, and CVDs. The combined pathway network was
built using the 12 common pathways as nodes. Sixty-seven
connections were built if the two pathways shared at least one
gene/protein.

The 12 common pathways were enriched by different
numbers of diseases in the HM datasets. Of which, the
insulin signaling pathway (hsa04910, marked as “Insulin

signaling-1”) was enriched by 12 diseases, while the
following three pathways were only enriched by one
disease: IL-2 receptor beta chain in T-cell activation
(h_il2rbPathway, marked as “Cardiac Remodeling”), the
IGF-1 receptor and longevity (h_longevityPathway, marked
as “Insulin secretion-1”), multiple antiapoptotic pathways
from IGF-1r signaling lead to bad phosphorylation
(h_igf1rPathway, marked as “Insulin secretion-3”), and
sprouty regulation of tyrosine kinase signals (hsa04911,
marked as “Insulin signaling-2”).

The 12 common pathways could be divided into three types
according to their contributions to CVD and MetS (as shown in
Figure 2C).

1) Insulin signaling: CA could enhance the insulin signaling
pathway in the skeletal muscle by increasing the tyrosine
phosphorylation level (Qin et al., 2003). Three pathways
were involved in this stage, including the insulin signaling
pathway (enriched by MetS and CVDs), tyrosine
metabolism (enriched by MetS), and sprout regulation of

FIGURE 1 | Flowchart of this study. This pipeline consists of three steps, namely, “pathway filter,” “combined network construction,” and “biomarker prediction and
validation based on peptides.”
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tyrosine kinase signals (enriched by CVD). It was interesting
to see that the “insulin signaling pathway” was closely
connected not only to MetS such as diabetes mellitus but
also to CVDs, such as heart diseases. This may be explained
by the fact that insulin signaling was an integral pathway

regulating the life span of laboratory organisms (Schriner
et al., 2014).

2) Insulin secretion and obesity: Since impaired insulin secretion
was one of the pathophysiological abnormalities in type 2
diabetes, IGF (insulin-like growth factors)-I, which was

FIGURE 2 | (A)Distribution of genes in CVDs andMetS. (B)Common pathways enriched by HM datasets. The diameter of each bubble represented the number of
diseases significantly enriched in this pathway. (C) Relationships between common pathways and diseases. (D) Network similarity of common pathways.
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shown to inhibit insulin secretion, would play a key role in
the process (Leahy and Vandekerkhove, 1990; Pørksen
et al., 1997). CA could increase the phosphorylation
levels of the IGF-I receptor and its downstream signaling
molecules (Takasao et al., 2012). It was interesting
that binding IGF-I to its receptor could cause the
activation of the tyrosine kinase, leading to
autophosphorylation of the intrinsic tyrosines, which
transduced the IGF-I signal to a complex network that
was ultimately responsible for cell proliferation,
modulation of tissue differentiation, and protection from
apoptosis (Laviola et al., 2007).

3) Insulin resistance and CVD: The study showed that the
insulin action on cAMP was severely impaired in insulin-
resistant patients (Laviola et al., 2007). The cyclic-AMP
signaling pathway was shown to be modulated by CA to
exhibit antidiabetic action (Schriner et al., 2014). “Regulation
of lipolysis in adipocytes” (marked as “Obesity”) was closely linked
to MetS since the variations of insulin resistance severity may be
related to the regulation of lipolysis in adipocytes (Guilherme et al.,
2008). The “AMPK signaling pathway”was proven to be a master
regulator of key molecular effectors involved in both metabolic
processes and cardiovascular homeostasis by modulating the
mTOR signaling and IGF-1 pathway (Salminen andKaarniranta,
2012). The pathway “Il-2 receptor beta chain in T-cell activation”
was proven to significantly attenuate ventricular remodeling by
reducing infarct size and improving left ventricular (LV) function
(Zeng et al., 2016).

The SGDD and SAE were calculated for all the 32 CA-related
pathways and the 179 HM-enriched pathways. Overall, the
average intra-similarity (pathways of the same types including
“insulin signaling,” “insulin secretion and obesity,” and
“insulin resistance and CVD” as illustrated above) in either
CA-related or HM-enriched pathways was similar: higher
SGDD score and lower SAE scores (see Table 1 for details). This
indicated that these pathways may have small similar structures
instead of the whole network. Each pathway may be an up or
downstream event in a disease since the biological processes
inducing diseases were complex. There may be local similar

structures between two pathways, especially the adjacent ones,
that may help transform the information quickly.

The combined pathway network similarity scores between the 12
common pathways are shown in Figure 2D. Of which, the pathway
“Regulation of lipolysis in adipocytes (hsa04923)” (marked as
“Obesity” in Figure 2D) got the highest average combined
network similarity score (0.438) in the 12 common pathways. As
illustrated above, this pathway was involved in the “Insulin resistance
and CVD” processes of CVD and MetS, which was the downstream
event of CVD and MetS, indicating that more cross-talks may exist
between this pathway and the upstream events through the similarity
network structures. Compared with this, the pathway “Insulin
signaling pathway (hsa04910/h_insulinPathway)” (marked as
“Insulin signaling-1” in Figure 2D) got the smallest average
combined network similarity score (0.218). Interestingly, this
pathway was the node with the highest degree 15 in the
combined pathway network. Considering the biological character
of this pathway, these indicated that this upstream event inMetS and
CVD may play a triggering role regardless of structure similarities to
other downstream pathways.

Peptide–Protein–Based Drug Targets
Selection
The combined protein network was built using all the proteins of
the 12 common pathways. The network comprised 335 nodes and
1793 edges. The proteins with top 10 degree, node betweenness,
and edge betweenness are listed in Table 2 and selected as raw
candidate biomarkers. The degree of a node indicated the
importance of a node in the network. A higher degree meant
more connections with other nodes; thus, the proteins with
higher degree may be the key targets of CA. Five of the top 10
degree proteins had been proven to be regulated by CA, including
IRS1, AMPK1, AMPK2, PRKAB1, and PRKAB2. The other five
proteins could be divided into two groups: monoamine oxidase
(MAOA and MAOB) and protein kinase AMP-activated non-
catalytic subunit gamma (PRKAG1, PRKAG2, and PRKAG3)
which may be the candidate targets of CA. Cinnamon extracts
(CEs) were shown to increase insulin sensitivity by increasing the
mRNA expression of INSR (insulin receptor) (Anderson et al.,

TABLE 1 | Pathway similarity results of different pathways.

Type of pathway sets Number of pathways SGDD SAE

Common 12 0.257095099 0.047247541
CA-related 32 0.355600743 0.091677581
HM-related 179 0.324632623 0.061221968

TABLE 2 | List of top 10 nodes and edges in the combined protein network.

Topological character Protein symbols/protein–protein pairs

Degree IRS1, MAOA, MAOB, AMPK1, AMPK2, PRKAB1, PRKAB2, PRKAG1, PRKAG2, and PRKAG3
Node betweenness IRS1, OGT, AKT2, INS, AKT1, RAPGEF4, INSR, PDE3B, PTPA, and GNAS
Edge betweenness PTPA-AKT2, IRS1-IGF1R, PPARGC1A-OGT, AKT1-E2F1, IGF1R-RAF1, AKT2-PDE3B, OGT-AKT1, E2F1-IL2RA, PRKCE-

INSR, and NOS3-IRS1
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2013), promoting IRS1 (insulin receptor substrate 1)
phosphorylation (Liu et al., 2016), and activating AMPK1/2
(protein kinase AMP-activated catalytic subunit alpha 1/2) (Hu

et al., 2013). On the contrary, CE was shown to decrease the
expression of genes encoding insulin signaling pathway proteins,
including IGF1R (Cao et al., 2010). INS-encoded insulin and trimer

TABLE 3 | Peptide in the CA-related cluster.

PDB Peptide
chain

Peptide
size

Peptide
sequence

Peptide
description

Peptide
molecular
weight

Peptide
aromaticity

Peptide
instability

Peptide
isoelectric

point

6buu F 11 GRPRTTXFAEX GLY-ARG-PRO-ARG-THR-THR-ZXW-PHE-
ALA-GLU

− 0.09 − 9.6

6buu G 11 GRPRTTXFAEX GLY-ARG-PRO-ARG-THR-THR-ZXW-PHE-
ALA-GLU

− 0.09 − 9.6

6npz F 11 GRPRTTXFAEX Bisubstrate − 0.09 − 9.6
6npz G 11 GRPRTTXFAEX Bisubstrate − 0.09 − 9.6
2jdo C 10 GRPRTTSFAE Glycogen synthase kinase-3 beta 1121.2 0.1 20.72 9.6
2jdr C 10 GRPRTTSFAE Glycogen synthase kinase-3 beta 1121.2 0.1 20.72 9.6
2uw9 C 10 GRPRTTSFAE Glycogen synthase kinase-3 beta 1121.2 0.1 20.72 9.6
3e87 C 10 GRPRTTSFAE Glycogen synthase kinase-3 beta peptide 1121.2 0.1 20.72 9.6
3e87 D 10 GRPRTTSFAE Glycogen synthase kinase-3 beta peptide 1121.2 0.1 20.72 9.6
3e88 C 10 GRPRTTSFAE Glycogen synthase kinase-3 beta peptide 1121.2 0.1 20.72 9.6
3e88 D 10 GRPRTTSFAE Glycogen synthase kinase-3 beta peptide 1121.2 0.1 20.72 9.6
6g0p B 9 PGXGVXSPG Transcription factor E2F1 - 0 - 5.96
2ll7 B 17 KKTFKEVANAVKISASL Nitric oxide synthase, endothelial 1834.16 0.06 1.14 10

FIGURE 3 | (A) Structure of clustered peptides, (B) sequence alignment of clustered peptides, and (c) structure of filtered peptide–protein complexes.
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procyanidins in CE were shown to contribute to the INS-1
pancreatic β-cell protection (Sun et al., 2016).

Compared with degree, the measure “betweenness” reflected
the importance of proteins/protein–protein pairs in the interplays
between different pathways/diseases. Three of the top 10
betweenness proteins, including IRS1, INS, and INSR, were
validated to be regulated by CA. Six of the 10 betweenness edges
contained at least one validated CA target. It was found that the two
nodes forming the edge IRS1-IGF1Rwere CA targets; however, IRS1
was upregulated, while IGF1R was downregulated, indicating there
may exist complex interactions between CA targets.

A total of 67 protein–peptide complexes containing these top
proteins as receptors were selected, and the peptides in these were
then aligned and clustered. In total, 13 peptides were grouped in
the CA-related cluster, their characters are listed in Table 3, and
the structures are shown in Figure 3A,B. In total, 17
peptide–protein complexes were then filtered (see Figure 3C
for the complexes’ structures), see Figure 4A for the relationships
between these peptides and proteins.

Four of the raw candidate biomarkers (AKT1, AKT2, E2F1, and
ENOS) were receptors of the abovementioned 17 peptide–protein
complexes. qRT-PCR was performed on the four genes (see
Supplementary Table S2 for details).

The candidate biomarkers were divided into three groups
according to their expression changing pattern in the qRT-PCR
results as follows: see Figure 4B for details 1) The genes differentially
expressed between Group A (Control + vehicle) and Group B
(Control + CA) were named as CA-indicating biomarkers since
the two groups were under normal condition, while the only

difference between the two groups was the drug CA. 2) The genes
differentially expressed between Group A (Control + vehicle) and
Group C (T2D + vehicle) were named as T2D responsive biomarkers
since these genes were significantly differentially expressed between
T2DMand controls butwere not related to the drugCA. 3) The genes
differentially expressed betweenGroupC (T2D + vehicle) andGroup
D (T2D+CA)were named as CA treatment targets since the samples
of the two groups were all T2D, while the only difference between
themwas the treatment of CA. Of which, AKT2 was a CA-indicating
biomarker and AKT1 was a T2D responsive biomarker, while E2F1
and ENOS were CA treatment targets. E2F1 and ENOS were shown
to cooperate with each other in the treatment of hypertension (Li
et al., 2019). Combined with results from this study, the two genes
might also cooperate with each other in T2D and become the targets
of CA. Besides, the two genes were found to be targeted by SARS-
CoV-2–encoded miRNAs in recent research (Aydemir et al., 2021).
As a result, CA may be a potential candidate drug to help reduce or
prevent the complications since CVDswere one of themost common
complications in COVID-19 patients.

DISCUSSION

The analysis pipeline that was proposed in this studywas based on the
related genes of multiple diseases. In this study, these genes were
collected from OMIM and GWAS results; however, the updates of
the gene lists might only influence the results slightly since the
analyses were performed on pathway levels. The information
conversion from genes to pathways could capture most of the

FIGURE 4 | (A) Relationships between peptides and proteins, and (B) qRT-PCR results of AKT1, AKT2, E2F1, and ENOS.
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functional characters of the disease, which may not be changed by
adding or deleting a small number of genes. CA was shown to play
roles in a wide disease spectrum, which was the character of many
Chinese traditional medicines. Thus, the drug targets of these
diseases may share some similar characters reflected by
peptide clusters. The pipeline proposed in this study could be
applied to other diseases and drugs. Pathways were commonly
used in biological and medical analyses which could gain deep
understanding of diseases. However, other biological terms that
could be converted into networks could also be used in this
pipeline.

The portability of the pipeline was shown in all the three steps.
In step 1 (pathway filter), the similarity calculation methods
between different disease pairs could be replaced by any
suitable distance measures. The disease-related and drug-
related pathways could be selected using any suitable scores or
ways. Other functional resources and transcriptional information
such as GO terms, transcriptional factors–targets, or miRNA targets
could also be used. However, pathways were recommended as the
primary choice because the biological pathways were widely used in
biological andmedical analyses since they could reflect themolecular
connections in the form of graphs, which could be analyzed using
multiple computational methods. Besides, the correlations between
pathways and peptides were closer than those between other types of
functional resources. In step 2 (combined network construction), the
network structure similarities could be measured using one
alignment-free and one alignment-based algorithms. In step 3
(biomarker prediction and validation based on peptides), the
peptide clustering algorithms could be replaced by any other
suitable alignment method.

CONCLUSION

In this study, a new pipeline was proposed to discover drug targets
based on peptides. The network analyses based on machine learning
methods could quantify the effects of peptide–protein complexes
with similar structures as drug targets in multiple diseases.
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