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Liver hepatocellular carcinoma (LIHC) is a malignancy with a high mortality and
morbidity rate worldwide. However, the pathogenesis of LIHC has still not been
thoroughly studied. Transmembrane and coiled-coil domains 3 (TMCO3)
encodes a monovalent cation, a member of the proton transducer 2 (CPA2)
family of transporter proteins. In the present study, TMCO3 expression and its
relationship with cancer prognosis, as well as its immunological role in LIHC
were studied by bioinformatic analysis. We found the significant overexpression
of TMCO3 in LIHC in the TCGA, HCCDB, and GEO databases. In LIHC patients,
high TMCO3 expression was related to poorer overall survival (OS) and
TMCO3 had good predictive accuracy for prognosis. Moreover, TMCO3 was
linked to the infiltrates of certain immune cells in LIHC. The correlation of
TMCO3 with immune checkpoints was also revealed. Moreover, patients with
LIHC with low TMCO3 expression showed a better response to immune
checkpoint  blockade (ICB) than those with LIHC with high
TMCO3 expression. GO and KEGG enrichment analyses indicated that
TMCO3 was probably involved in the microtubule cytoskeleton organization
involved in mitosis, small GTPase mediated signal transduction, and TGF-p
pathway. In conclusion, TMCO3 may be a potential biomarker for LIHC
prognosis and immunotherapy.
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Introduction

Liver hepatocellular carcinoma (LIHC) is the most common subtype of primary liver
cancer, usually diagnosed at a late stage, and has become the second deadliest type of
cancer worldwide (Sung et al.,, 2021). It is estimated that around one million people die
from liver cancer each year (Villanueva, 2019; Llovet et al., 2021). The high rate of death
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from LIHC is due to its late diagnosis and high incidence of liver
dysfunction. For patients with advanced diagnosis, postoperative
metastasis and recurrence, the 5-years survival rate is poor, less
than 50% (Anwanwan et al., 2020). Currently, treatment options
for LTHC are limited, including surgery, interventional therapy,
chemotherapy and immunotherapy (Anwanwan et al., 2020).
Nevertheless, the 5-years survival rate of patients is not
significantly improved due to factors such as post-operative
recurrence, early metastasis, and the development of drug
resistance (Morise et al., 2014). There is a lack of effective
methods to predict patient prognosis and provide personalized
treatment. Therefore, there is an urgent need to find more
credible diagnostic biomarkers and to develop novel indicators
to forecast patient survival and thus deliver personalized
treatment therapies.

Transmembrane and coiled-coil domains 3 (TMCO3)
encodes proton antiporter 2 (CPA2) family of transporter
proteins, a member of the monovalent cation. This family
members usually combine the output of a monovalent cation
with the input of a proton that crosses the cell membrane. It
has been reported that this gene is mutated in patients with a
rare genetic visual defect: corneal drop cataract (Chen et al,,
2016). However, the role of this gene in LIHC or other human
cancers has not been studied.

Tumor microenvironment (TME) is a critical factor

influencing the progression and treatment of LIHC
(Kurebayashi et al., 2018). There is growing evidence that
tumor-infiltrating immune cells (TIICs) influence the

biological behavior of LIHC cells and eventually influence
patient prognosis (Zheng et al, 2017; Li et al, 2020).
Additionally, several recent studies and clinical trials have
shown that immunotherapy or combination immunotherapy
has the potential to improve the prognosis of patients with
advanced LIHC (Rizzo et al., 2021; Rizzo et al, 2022a). In
patients with unresectable untreated LIHC, disease-free
survival (DFS) and overall survival (OS) are significantly
longer with combination ICB, and there is greater hope that
patients will undergo subsequent surgery (Rizzo and Brandi,
2021; Rizzo et al, 2022b). Our previous study has identified
several biomarkers that predict the response to ICB treatment in
LIHC patients, including TUBA1B (Hu et al., 2022a), TUBA1C
(Hu et al., 2022b), and KIFC1 (Li et al., 2021). However, whether
TMCO3 promotes the progression of LIHC or influences the
immune infiltration of LIHC, or may be a predictor of ICB
treatment, has not been reported.

that
TMCO3 expression was upregulated in LIHC and was

In  our study, we firstly demonstrated
correlated with poor prognosis by analyzing the data from
the TCGA, GEO, HPA, and HCCDB database. Secondly,
through functional enrichment analysis, we found that
TMCO3 was related to multiple tumor-related signaling
pathways. with  LIHC  with  different

TMCO3 expression showed different outcomes to ICB

Patients
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that
TMCO3 could be used as a new prognostic biomarker and

treatment. In conclusion, our results suggest

a possible therapeutic target for LTIHC.

Methods

Data acquisition and TMCO3 expression
analysis

The data for TMCO3 expression analysis was obtained from
the TCGA (https://tcga.xenahubs.net) (accessed on 06 June
2022) and GEO (GES112790, including 183 LIHC samples
and 15 normal samples) (http://www.ncbi.nlm.nih.gov/geo/)
(accessed on 09 June 2022) databases. The “Wilcox.test”
method was used to assess the differential TMCO3 mRNA
expression in LIHC and normal tissues. We applied “Kruskal-
wallis test” to explore the expression TMCO3 in different stages
of LIHC. Boxplot was drawn using the “ggpubr” R package. The
TIMER  (https://cistrome.shinyapps.io/timer/) (accessed on
17 June 2022), HCCDB (http://lifeome.net/database/hccdb.
html) (accessed on 11 June 2022) and GEPIA (http://gepia.
2022)
databases were employed to explore the expression of
TMCO3 as we previously done (Hu et al., 2022a).
(IHC) of
in normal and LIHC tissues

cancer-pku.cn/index.html) (accessed on 20 June

the
were

Immunohistochemical
TMCO3 protein
downloaded to evaluate the differential TMCO3 protein
expression in the human protein atlas (HPA, https://www.

images

proteinatlas.org/) database (accessed on 18 June 2022). In
addition, the location of TMCO3 in U-2 OS, A-131, and
U251 MG cell lines were assessed in the HPA database.

Univariate and multivariate Cox regression
analyses

We used univariate and multivariate Cox regression
analyses (p < 0.05 as significant) to assess the effect of
TMCO3 expression and other clinical features (including:
age, sex, race, pINM-stage and grade) on OS. To screen
whether TMCO3 and these clinicopathologic factors could
be regarded as independent contributors for LIHC, we
developed a nomogram model. We performed univariate
and multivariate Cox hazard regression analyses on LIHC
samples from the TCGA database using the R package
“forestplot”. Furthermore, to predict potential OS in
patients with LIHC, we used the R ‘rms’ package and the
“survivor” package to build a validated nomogram model.
Once each element was divided into points, we summed the
points for each parameter to calculate the total number of
points. Lastly, we validated the nomogram using the
harmonic index (c-index) and calibration curves.
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Analysis of the association of TMCO3 with
survival of LIHC patients

The relevance of TMCO3 to the OS and DFS of LIHC was
explored in the GEPIA database. Additionally, the relationship of
TMCO3 with other human cancers was also assessed in this
database (accessed on 25 June 2022).

Immune infiltration analysis

We used the TIMER database (accessed on 30 June 2022) to
explore the correlation of TMCO3 expression with several
immune cells infiltration in LIHC. addition, the
CIBERSORT method which was developed to evaluate the
abundance of particular cells in hybrid cell populations using

In

gene expression datasets was also employed to evaluate the
correlation of TMCO3 expression with other immune cell
infiltrates as previously reported (Hu et al., 2021; Zhu et al,

» o«

2021). Through using R packages “ggplot2,” “ggpubr,” and
“ggExtra”, we assessed the correlation of TMCO3 with

immune filtration.

Immune checkpoints analysis

Subsequently, the expression of several immune checkpoints,
including CTLA4, PDCDI, SIGLECI5 HAVCR2, TIGIT,
CD274, LAG3, and PDCDI1LG2 was extracted in the high and
low TMCO3 expression group (median as the cut-off). The two-
gene correlation map was implemented by the R package
“ggstatsplot”. Spearman’s correlation analysis was performed
to characterize associations between quantitative variables that
were not normally distributed. The Tumor Immune Dysfunction
and Exclusion (TIDE) algorithm was applied to assess patients’
response to ICB treatment.

Analysis of differentially expressed genes

We divided the obtained expression data into low and high
expression groups based on median TMCO3 expression levels,
which were then further analyzed by unpaired Student’s t-test in
the ‘DESeq2’ R package. [log2 fold change (FC)|>1 and adjusted
P < 0.05 were taken as the thresholds for DEGs.

Functional enrichment

We selected the enriched KEGG signaling pathway analysis
to illustrate the main biological roles of the major potential
mRNAs. Gene ontology (GO) analysis was performed on
potential mRNAs We clustered the

targets. biological
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processes (BPs) of potential targets using the “ClusterProfiler”
package in R software. Additionally, the LinkedOmics (http://
www.linkedomics.org/) (accessed on 29 June 2022) was
employed to perform the GSEA analysis (including GO and
KEGG enrichment analyses) of TMCO3 in LIHC (Yu et al,

2022).

Protein Protein interaction (PPI) network

The TMCO3 PPI information were built from STRING
(https://cn.string-db.org/) (accessed on 1 July 2022) website to
further study the role of TMCO3 in LIHC.

Results
The expression of TMCO3 in LIHC

We obtained TMCO3 mRNA expression levels from the
TCGA database and investigated them to identify differential
expression patterns between tumor and normal tissues and found
that in several tumor tissues, the expression of TMCO3 was
higher than in the respective normal adjacent tissues, including
ESCA, COAD, GBM, HNSC, LIHC, and LUAD (Figure 1A). The
data in HCCDB also confirmed the elevated TMCO3 expression
in LIHC than in normal liver tissue (Figure 1B). The same results
were obtained for the TCGA-based data (Figures 1C,D).
Additionally, by analyzing the data downloaded from GEO,
we also found that TMCO3 was up-regulated in LIHC than
normal tissues (Figure 1E). We further assessed the expression of
TMCO3 in different stages of LIHC, and we observed that
TMCO3 expression was higher in stage II than in stage I but
lower than in stage III (Figure 2A).

Next, we investigated the TMCO3 protein expression in
LIHC and normal liver tissues in HPA database. The IHC
staining of TMCO3 was stronger in LIHC than in normal
tissues (Figure 2B). Moreover, in U-2 OS, A-131, and
U251 MGeell lines, the proteins of TMCO3 were mainly
localized in the cytoplasm (Figure 2C).

The prognostic value of TMCO3 in LIHC

The univariate and multivariate Cox regression analyses
revealed that TMCO3 expression may be an independent
prognostic factor in LIHC (p < 0.001) (Figures 3A,B). The
nomogram model demonstrated that TMCO3 can be an
independent factor associated with OS and has an accurate
predictive ability for 1-, 3-, and 5-years prognosis (Figures
3C,D). In GEPIA database, we observed that TMCO3 was
related to the OS and RES in several cancers, including BLCA
and KIRC (Figures 3EJF). In LIHC, the expression of
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TMCO3 Merge

The expression and location of TMCO3 protein (A) The TMCO3 protein IHC in LIHC and normal tissues from HPA database. (B) The association
with TMCO3 expression and tumor stages of LIHC. (C) The immunofluorescence staining of TMCO3 and microtubules in U-2 OS, A-131, and
U251 MG cell lines in HPA database. *p < 0.05, **p < 0.01, ****p < 0.0001, ns: no significant difference

TMCO3 correlated with poor OS than low
TMCO3 expression (p = 8.9e-05) (Figure 3G). However, the
TMCO3 expression was not correlated to DFS (p = 0.083)

(Figure 3H).

was

The correlation of TMCO3 with immune
cell infiltrates in LIHC

We used the TIMER database to examine the relevance of
TMCO3 to immune cell infiltration in LIHC, and we found that
TMCO3 expression was associated with the infiltration of B cells
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05

(Cor = 0.315, p = 2.26e—09), CD4" T cells (Cor = 0.428, p =
8.87e-17), CD8" T cells (Cor = 0.212, p = 7.93e—05), dendritic
cells (Cor = 0.375, p = 8.55e—13), neutrophil (Cor = 0.402, p =
8.55e-13), and macrophages (Cor = 0.435, p = 3.60e-17),
(Figure 4A). Additionally, we applied the CIBERSORT
algorithm to assess the relevance of TMCO3 to the infiltration
of other immune cells. We found that TMCQO3 was related to the
infiltration levels of Tregs (Cor = 0.164, p = 2.29¢-03)
(Figure 4B), activated NK cells (Cor = ¢0.113, p = 3.66e—02)
(Figure 4C), resting myeloid dendritic cells (Cor = 0.205, p =
1.29e-04) (Figure 4D), monocytes (Cor = -0.215, p = 1.87e-04)
(Figure 4E), gamma delta T cells (Cor = —0.2, p = 1.87e-04)
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FIGURE 3

The prognostic value of TMCO3 in LIHC (A) Univariate and (B) multifactorial Cox analysis of TMCO3 and other clinical factors in LIHC (C) The
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The association of TMCO3 with immune cell infiltrates (A) The association of TMCO3 with several immune-infiltrating cells in LIHC. The
correlation of TMCO3 with Tregs (B), activated NK cells (C), resting myeloid dendritic cells (D), monocytes (E), gamma delta T cells (F), and
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(Figure 4F), and macrophage M0 (Cor = 0.186, p = 5.14e—04)
(Figure 4G).

TMCO3 was associated with immune
checkpoints and LIHC patient response
to ICB

Subsequently, we investigated the immune checkpoints
expression in low and high TMCO3 expression group. The
expression of CD274 (p = 8.74e-04), CTLA4 (p = 1.23e-02),
HAVCR2 (p = 1.14e-08), PDCD1(p = 1.35¢-05), TIGIT (p =
5.22e-05), SIGLEC15 (p = 8.74e—04) was higher in TMCO3-high
group than in TMCO3-low group (Figures 5A,B). The
TMCO3 expression was associated with the expression of
PDCDI1 (Cor = 0.22), CD274 (Cor = 0.2), HAVCR2 (Cor =
0.31), TIGIT (Cor = 0.19), and CTLA4 (Cor = 0.19) (Figure 5C).
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Moreover, patients with LIHC with high TMCO3 expression had
higher TIDE scores than the group with low TMCO3 expression
(Figure 5D). These results suggest that TMCO3 can be applied as
a predictor for ICB efficacy in LIHC.

The potential functions of TMCO3 in LIHC

We established the PPI network of TMCO3 to assess the
potential proteins that interplay with TMCO3 by STRING. The
results indicated that TMCO3 may interplay with GART,
TEME117, NQO2, CPA2, TYSNDI, ATP6V1A, NQOI,
C200rf96, and CNEPIR1 (Figure 6A). The volcano plots of
differential  genes high  groups of
TMCO3 expression were shown in Figure 6B. The top

in low and

50 genes positively or negatively associated with TMOC3 was
shown in Figures 6C,D. The top ten genes that was positively
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associated TMCO3 included ATP11A, RAP2A, UGGT?2, GLS,
RASSF3, CUL4A, ZMIZ1, STK24, GORAB, and FAMS3G
(Figure 6C). The top ten genes that was negatively associated
with TMCO3 included C7orf55, DCXR, DNAJC30, APOC4,
CCS, SLC27A5, UFSP1, ADH6, ADII, and OCELI
(Figure 6D). The GSEA analysis based on GO analysis
that TMCO3 was in  microtubule

indicated involved
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cytoskeleton, peptidyl-threonine modification, regulation of
small GTPase mediated signal transduction, cytokinesis,
CENP-A containing chromatin organization, semaphoring-

plexin pathway, microvillus organization, mitochondrial
respiratory chain complex assembly, mitochondrial gene
endothelial growth factor receptor

pathway, peroxisome organization, translational initiation,

expression, vascular
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antibiotic metabolic process in LIHC (Figure 6E). The GSEA
analysis based on KEGG pathway analysis revealed that
TMCO3 was TGF-beta pathway,
phosphatidylinositol ErbB  pathway,

associated with the
signaling ~ system,
proteoglycans in cancer and cell cycle in LIHC (Figure 6F).

The KEGG pathway enrichment results of differentially

Frontiers in Genetics

upregulated genes (TMCO3-high vs. TMCO3-low group)
indicated that proteoglycans in cancer, PI3K-akt pathway, cell
cycle and focal adhesion were enriched in these up-regulated
genes (Figure 7A). GO analysis indicated that organelle fission,
nuclear division, mitotic spindle organization, extracellular
matrix organization, and extracellular structure organization
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The enrichment analyses of differential genes. KEGG pathway analysis (A) and GO analysis (B) of the up-regulated genes. KEGG pathway analysis

(C) and GO analysis (D) of the down-regulated genes.

were related to these genes (Figure 7B). The KEGG pathway
enrichment results of differentially down-regulated genes
(TMCO3-high vs. TMCO3-low group) demonstrated that
drug metabolism-cytochrome P450,
P450, and
cholesterol metabolism were enriched in these down-regulated

retinol metabolism,

metabolism of xenobiotics by cytochrome
genes (Figure 7C). GO analysis revealed that xenobiotic
metabolic process, fatty acid metabolic process, steroid
metabolic process, and alcohol metabolic process were
enriched in these down-regulated genes (Figure 7D).

Discussion

LIHC has a high morbidity and mortality rate and is the third
leading cause of tumor-related deaths worldwide. The overall 5-
years survival rate for patients with LIHC is less than 20%
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(Villanueva, 2019; Nault and Villanueva, 2021). In spite of
many efforts in early diagnosis and new treatments, the
outcome of patients with LIHC is still unsatisfactory owing to
the specific TME and the tumor heterogeneity (Gao et al., 2015;
2019).  Studies
heterogeneity and drug resistance have drawn attention and

Bruix et al, on hepatocarcinogenesis,
efforts to TME. Tumors rely on TME to maintain their
proliferation, metastasis and invasion (Quail and Joyce, 2013).
Briefly, the TME comprises resident stromal cells, recruited
immune cells, and non-cellular components capable of
interacting with cancer cells. In addition, TIICs may be
related to immune disruption as the tumor grows (Quail and
Joyce, 2013). Many studies have elucidated immune targets,
particularly ICBs (El Dika et al, 2019; Liu et al, 2019).
However, ICBs can lead to complexity and heterogeneity of
TME in LIHC and do not have the desired therapeutic effect
on LIHC patients (El Dika et al, 2019; Zeng et al., 2020).
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Nevertheless, ICBs remain a new therapeutic advancement for
patients with LIHC, particularly for those with advanced LIHC
(Zeng et al.,, 2020). Multiple studies have demonstrated that
a hallmark of TME and
heterogeneity, responds better to ICB. The presence of genetic

immune infiltration, tumor
indicators of T helper cells and CD8 T cells contributes to a better
outcome according to previous studies on several malignancies
(Chen and Han, 2015). Our previous studies have revealed
several biomarker that may be served as predictors for LIHC
and predict the therapeutic insensitivity to ICB, including
TUBAIC (Hu et al,, 2022b), KIFC1 (Li et al, 2021), TUBA1B
(Hu et al., 2022a). Herein, a novel biomarker has been revealed
that may be regarded to be a diagnostic and immunological
predictor.

In our research, we identified that the protein and mRNA
expression of TMCO3 was significantly higher in LIHC tissues
than in normal liver tissues. Subsequently, we investigated the
relevance of TMCO3 to the prognosis of LIHC and found that
the OS of LIHC was poorer in the TMCO3 high expression
group, suggesting that elevated TMCO3 expression predicted
poor LIHC prognosis. In addition, the association of
TMCO3 with the clinicopathology of LIHC was also
confirmed. We found that TUBA1B was significantly higher
in stage I1I than in stage I of LIHC. In addition, univariate and
multifactorial Cox analyses showed that TMCO3 was an
LIHC. Next,
constructed a nomogram to predict 1-, 3-, and 5-years OS

independent prognostic factor for we
in patients with LIHC. In conclusion, TMCO3 is a potential
prognostic biomarker for LIHC.

Tumor immune cell infiltration is correlated with tumor
progression and response to immunotherapy (Binnewies et al.,
2018; Zhu et al., 2020; Zhu et al., 2022). In our study, we observed
a strong positive association between TMCO3 expression and
infiltration of several immune cell types, suggesting a higher
degree of tumor immune cell infiltration in LIHC patients with
high TMCO3 expression. The top four immune cell types that
showed a significant positive correlation with RPS3A expression
were neutrophils, CD4 T cells, DCs and macrophages. Therefore,
it is expected to increase tumor immune cell infiltration by
targeting  TMCO3. Furthermore, TMCO3 expression was
positively related to the expression of most of the immune
checkpoint molecules we observed in public database samples,
suggesting that this gene may promote the synthesis or
of

unknown mechanisms. More importantly, TIDE scores were

expression immunosuppressive  molecules  through
elevated in the TMCO3 high expression group than in the
low expression group, indicating that LIHC patients with
lower TMCO3 expression has increased therapeutic
insensitivity to ICB in LIHC. Therefore, TMCO3 can be a
biomarker to predict the responsiveness of LIHC to ICB
treatment.

Ultimately, we investigated the genes and pathways related

to TMOCS3 to explore the potential role of TMCO3. The
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results indicated that TMCO3 may interplay with GART,
TEME117, NQO2, CPA2, TYSNDI, ATP6V1A, NQOI,
C200rf96, and CNEPIRI1. The top ten genes that was
positively associated TMCO3 included ATP11A, RAP2A,
UGGT2, GLS, RASSF3, CUL4A, ZMIZ1, STK24, GORAB,
and FAMS83G. The top ten genes that was negatively
associated with TMCO3 included C7orf55, DCXR,
DNAJC30, APOC4, CCS, SLC27A5, UFSP1, ADH6, ADI1,
and OCELL. These proteins may interplay with TMCO3 to
exert tumorigenic effects. The GO analysis indicated that
TMCO3
peptidyl-threonine

was involved in microtubule cytoskeleton,

of
GTPase mediated signal transduction, cytokinesis, CENP-A

modification, regulation small
containing chromatin organization,
endothelial

organization,

semaphoring-plexin

pathway, vascular growth factor receptor

pathway, microvillus mitochondrial
respiratory chain complex assembly, mitochondrial gene
expression, peroxisome organization, translational
initiation, antibiotic metabolic process in LIHC. The KEGG
pathway analysis revealed that TMCO3 was related to the
TGF-beta pathway, phosphatidylinositol signaling system,
ErbB pathway, proteoglycans in cancer and cell cycle in
LIHC. These results may indicate the potential role of
TMCO3 in LIHC.

There are also several limitations in this work. Due to the lack
of validation experiments in this study, in the future
investigation, we will further verify the more accurate
mechanism of action of TMCO3 in LIHC by in vitro in vivo
experiments. In addition, the heterogeneity of tumors, the health
status of patients, and changes in the immune microenvironment
may cause immune checkpoint non-response and poor
therapeutic effects. This is an important reason for the poor
efficacy of many immunotherapies at present. Moreover, this
work was conducted only based on the mRNA and protein
expression profile. As the development of single-cell sequence
technology, more and more novel advanced methods (such as
Single-cell Multi-omics Gene co-Regulatory algorithm (Song
et al,, 2022), graph-based convolutional networks (Song and
Su, 2021), BIOMEX (Taverna et al, 2020), and single-cell
Graph Convolutional Network (Song et al, 2021)) are
important in discovering potential targets, pathogenesis, and
specific cells in tumors. Applying them to future research and
data analysis to gain a deeper understanding of tumorigenesis
and development is necessary.

Conclusion

Taken together, we found for the first time that
TMCO3 has a poor prognosis in hepatocellular carcinoma
and explored its possible mechanisms in LIHC. We
confirmed the correlation of TMCO3 with LIHC immune
infiltration and suggested that TMCO3 may serve as a new
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immunotherapeutic biomarker. Patients with LIHC with
high TMCO3 expression may be more sensitive to ICB
therapy. Thus, our findings will help to further provide
precise immunotherapy for LIHC patients.
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