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Background: Hepatocellular carcinoma (HCC) is a malignant tumor with a

highly aggressive and metastatic nature. Ultrasound remains a routine

monitoring tool for screening, treatment and post-treatment recheck of

HCC. Therefore, it is of great significance to explore the role of ultrasound

therapy and related genes in prognosis prediction and clinical diagnosis and

treatment of HCC.

Methods: Gene co-expression networks were developed utilizing the R package

WGCNA as per the expression profiles and clinical features of TCGA HCC samples,

key modules were identified by the correlation coefficients between clinical

features and modules, and hub genes of modules were determined as per the

GS and MM values. Ultrasound treatment differential expression genes were

identified using R package limma, and univariate Cox analysis was conducted on

the intersection genes of ultrasound differential expression genes and hub genes of

key HCC modules to screen the signatures linked with HCC prognosis and

construct a risk model. The median risk score was used as the threshold point

to classify tumor samples into high- and low-risk groups, and the R package IOBR

was used to assess the proportion of immune cells in high- and low-risk groups, R

packagemaftools to assess the genomicmutation differences in high- and low-risk

groups, R package GSVA’s ssgsea algorithm to assess the HALLMARK pathway

enrichment analysis, and R package pRRophetic to analyze drug sensitivity in

patients with HCC.

Results: WGCNA analysis based on the expression profiles and clinical data

of the TCGA LIHC cohort identified three key modules with two major

clinical features associated with HCC. The intersection of ultrasound-

related differential genes and module hub genes was selected for

univariate Cox analysis to identify prognostic factors significantly

associated with HCC, and a risk score model consisting of six signatures

was finally developed to analyze the prognosis of individuals with HCC. The

risk model showed strength in the training set, overall set, and external

validation set. The percentage of immune cell infiltration, genomic

mutations, pathway enrichment scores, and chemotherapy drug

resistance were significantly different between high- and low-risk groups
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according to the risk scores. Expression of model genes correlated with

tumor immune microenvironment and clinical tumor characteristics while

generally differentially expressed in pan-cancer tumor and healthy samples.

In the immunotherapy dataset, patients in the high-risk group had a worse

prognosis with immunotherapy, indicating that subjects in the low-risk

group are more responsive to immunotherapy.

Conclusion: The 6-gene signature constructed by ultrasound treatment of

HCC combined with WGCNA analysis can be used for prognosis prediction

of HCC patients and may become a marker for immune response.
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Introduction

Liver cancer is among the leading causes of fatalities resulting

from malignancies around the globe, and hepatocellular

carcinoma (HCC) is the most prevalent kind of primary HCC,

covering 90% of all primary liver cancer (Jafri and Kamran, 2019).

In China, the incidence and mortality of HCC rank fourth and

third, respectively, among malignant tumors, with a very high

degree of malignancy (Chen et al., 2016). Individuals with HCC

have a poor prognosis, with a 5-year survival rate of fewer than

18% (Forner et al., 2018; Siegel et al., 2020). Currently, systemic

chemotherapy is an important treatment for patients with

advanced HCC who have not undergone surgical resection,

local radiofrequency ablation, or selective arterial

chemoembolization. However, chemotherapeutic drugs are

often associated with greater drug resistance and serious

systemic toxic adverse effects. Therefore, developing a safe and

effective drug delivery system is crucial.

Ultrasound is a routine monitoring tool for screening and

post-treatment re-examination of HCC (Chen et al., 2019).

With the advancement of ultrasound molecular imaging

technology and its application in the clinic, people are now

able to use this technology to diagnose and treat patients more

accurately, which is expected to break through the treatment

failure caused by chemotherapy resistance. Studies have

shown that ultrasound microbubbles can not only enhance

imaging but also serve as a novel drug delivery vehicle to

achieve local targeted drug delivery by breaking microbubbles

through local ultrasound irradiation, resulting in increased

local drug concentrations and reducing systemic toxic adverse

effects of drugs (Jang et al., 2020; Omata et al., 2020; Tian

et al., 2021). The cavitation and acoustic pore effects

generated during the breakdown of microbubbles by

ultrasound irradiation can directly affect tumor tissues and

destroy tumor blood vessels, leading to apoptosis of tumor

cells and inhibiting tumor growth (Fan et al., 2016; Jing et al.,

2016; Chowdhury et al., 2020). Therefore, exploring the

rationale and biological significance of ultrasound

technology in HCC to affect prognostic survival can

further exploit the role of this technology in tumor treatment.

In this study, we obtained a collection of co-expressed

ultrasound differential genes that correlate clinical features

and survival in HCC by collecting expression data from HCC

samples in TCGA and GEO datasets, facilitating WGCNA

analysis and differential expression analysis. The association

between this gene collection’s expression perturbation and

the prognosis for HCC prognosis was investigated at multiple

levels. Subsequently, a risk score model for evaluating the

prognosis of HCC was developed, and the stable efficacy of

the model for prognostic assessment was confirmed.

Materials and methods

Dataset source and preprocessing

Expression profile data (FPKM values) and clinical data of Liver

Hepatocellular Carcinoma (LIHC) from The Cancer Genome Atlas

database (TCGA) were downloaded using the R package

TCGAbiolinks. The FPKM values underwent log2 transformation,

while a uniform unit of survival time: “days”, was used to process the

survival information.

We downloaded the expression profile and ultrasound

grouping information of GSE178573, expression data, as well

as clinical information of GSE14520, GSE76427 and LIRI-JP

from GEO (https://www.ncbi.nlm.nih.gov/geo/) database and

subsequently, proceeded with the following steps: 1) Removed

the samples with no data on clinical follow-up; 2) removed the

samples with unknown survival time, less than 0 days, or no

survival status, and unified the survival time unit as days; 3)

converted the probes to Gene Symbol; 4) removed one probe

corresponding to multiple genes; 5) took the median value for

expression cases with multiple Gene Symbols. Expression

profiles and survival and response information for the

IMvigor210 immunotherapy cohort (bladder cancer) were

downloaded using the R package IMvigor210CoreBiologies.
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The immunotherapy dataset for clear cell carcinoma was

downloaded from published literature (Braun et al., 2020).

WGCNA analysis

Weighted gene co-expression network analysis (WGCNA)

separates the gene co-expression network of complex biological

processes into highly linked signature modules, which represent

various sets of highly synergistic gene sets. This technique enables

the association of modules with particular clinical characteristics

for finding genes that have important roles, assisting in the

identification of potential mechanisms underlying certain

specific biological processes as well as exploring candidate

biomarkers. Gene co-expression networks were developed

with the help of the R package WGCNA as per the expression

profiles and clinical features of TCGA HCC samples, and key

modules were identified by the correlation coefficients between

clinical features and modules. The hub genes of the modules were

then identified based on GS and MM values, after which the co-

expression network maps of the hub genes were constructed

using cytoscape software.

Differential expression analysis

Using the R package limma, differential expression analysis

was carried out. The Benjamini–Hochberg (FDR) corrected

p-value adj. p value<0.05 and |log2FC|> 0.585 were used as

thresholds to identify differentially expressed genes.

FIGURE 1
The plot of the results of weighted gene co-expression network analysis. (A,B) Clustering tree of samples before and after outlier subjects
removal; (C) Soft threshold distribution scatter plot, Soft Threshold (power) indicates the weight, vertical coordinate indicates the correlation of
connectivity k with p(k) and average connectivity; (D) Soft Threshold test plot; (E) Clustering tree of genes within modules, the top half of the plot is
the clustering tree of genes, the bottom half is the modules clustered according to similarity; (F) Eigenvector gene clustering tree and module
correlation thermographic; (G) Module trait correlation thermographic; (H–K) Scatter plots of GS and MM value distribution within modules, rows
represent modules, columns are traits, and values are correlation coefficients.
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Prognostic risk modeling and survival
difference analysis

The intersection of ultrasound differentially expressed

genes and hub genes of key modules of HCC was subjected

to univariate cox analysis to screen (p < 0.05) signatures

associated with HCC prognosis. Meanwhile, LIHC samples

were split into groups with high and low expressions of

signature expressions using the median expression of each

signature as the cutoff point. Survival curves for prognostic

analysis were then generated using the Kaplan-Meier method,

and the significance of differences was assessed utilizing the

log-rank test. In order to build a prognostic model, the main

prognosis-related genes were then further evaluated using the

LASSO regression method of the R package glmnet. The

tumor samples were categorized into high and low-risk

groups by means of the median risk score as the cutoff

point. Kaplan-Meier survival curves were then created for

prognostic analysis, and the significance of the differences was

observed using the log-rank test. The receiver operating

characteristic (ROC) curves were then plotted using the R

package timeROC for evaluating the prediction of scoring by

the perturbation scoring model; the R package ggplot2 was

employed for creating the scatter plot of survival time versus

survival status, and the scatter plot of sample scores; the R

package pheatmap was utilized for plotting the expression

thermographic of model genes, where the risk value of the

model is the summation of individual candidate gene

expression value multiplied by the weight, with the

following equation.

RiskScore � ∑
n

i�0
coef(i) pExp(i)

Immune infiltrating cell proportion
estimation and immune scoring

Four algorithms from the R package IOBR, TIMER,

ESTIMATE, xCell, and CIBERSORT, were used to determine

the proportion of immune infiltrating cells based on the

expression patterns of the TCGA LIHC dataset. The

CIBERSORT algorithm (Newman et al., 2015) is a method to

describe the cell composition of complex tissues according to

their gene expression patterns. The identification of 22 immune

cell types, including myeloid subpopulations, natural killer (NK)

cells, plasma cells, naïve and memory B cells, and seven different

types of T cells, was done using the leukocyte signature gene

matrix LM22, which consists of 547 genes. CIBERSORT

combined with the LM22 signature matrix was used for

estimation of the proportion of the 22 kinds of cell

phenotypes in the samples, with the sum of all immune cell

types’ proportions in individual samples being equal to 1.

FIGURE 2
Hub gene co-expression network and hub gene enrichment analysis. (A,C) Co-expression network of hub genes for key traits grade and
family_history, respectively, and the nodes of both FromNode and ToNode are selected for hub genes; (B,D) Functional enrichment analysis and
KEGG pathway enrichment for key traits Grade and family_history, respectively. The dot’s size demonstrates the number of enriched hub genes and
the color demonstrates the significance of enrichment.
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The ESTIMATE algorithm was employed to determine the

immune score, tumor purity, matrix score and ESTIMATE score

for tumors. xCell conducts cell type enrichment analysis using data

on the 64 immune and stromal cell types’ gene expression. In order

to minimize the correlation between closely linked cell types, xCell

employs machine learning based on gene signatures from

thousands of different cell types. By validating extensive

computer simulations of signature and cellular

immunophenotyping, xCell is able to reliably map the cellular

heterogeneity of tissue expression profileslandscape. TIMER uses

an inverse convolution approach for estimating the proportion of

six immune cell types in 32 cancers (neutrophils, CD4+ T cells,

CD8+ T cells, B cells, dendritic cells, and macrophages). Online

gene searches were also used to investigate the relationship

between the expression of model genes (TPM) and the

proportion of immune infiltrating cells, as well as the

differences between the expression of model genes in pan-

cancerous tumors and normal tissue.

Genomic mutation analysis

Waterfall plots were drawn using the R package maftools

combined with clinical grouping information to demonstrate the

distribution of mutations in genes with high somatic mutation

frequencies in HCC samples, and waterfall plots were also drawn

with model grouping information to classify the samples.

HALLMARK pathway enrichment analysis

The ssgsea algorithm of R package GSVA was utilized for

calculating 50 HALLMARK pathway enrichment scores for each

sample on the basis of gene expression of HCC samples. The

correlation between the riskscore and the enrichment score was

measured using the cor function and visualized with the R package

corrplot. Enrichment score differences between model subgroups

were then calculated using statistical tests, and enrichment score

FIGURE 3
Results of differential expression analysis and functional enrichment analysis of GSE178573 dataset. (A) volcanic plot of differentially expressed
genes in ultrasound and non-ultrasound groups; (B) thermographic of differentially expressed genes, red highlights high expression, blue highlights
low expression; (C–F) Enrichment of differentially expressed genes for KEGG, BP (biological process), CC (cellular component), MF (molecular
function) Pathway bubble plots, where the dot’s size demonstrates the number of enriched differentially expressed genes, and the color
demonstrates the significance of the enrichment results.
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thermographics were plotted by the R package pheatmap along

with the clinical characteristics of the samples. Drug sensitivity

analysis was done utilizing the R package pRRophetic, combined

with expression data of model genes, for predicting the sensitivity

(IC50 values) of 138 drugs in the GDSC database and the

sensitivity of HCC patients to drug treatment was assessed by

IC50 values. The differences in IC50 values between the risk

groups were compared by the Wilcoxon test, and drugs with

major variations in the two groups were screened.

Statistical tests

For significance labeling, the Wilcoxon test was employed

for comparison of variations between two groups of samples,

while Kruskal–Wallis was employed for comparison of the

variations between multiple groups of samples. Where ns

denotes p > 0.05, * denotes p <= 0.05, ** denotes p <= 0.01,

*** denotes p <= 0.001, and **** denotes p <= 0.0001. Among

which p < 0.05 shows a significant difference.

Results

WGCNA identification of key traits and
modules in HCC

The genes with the top 5,000 variants in the expression

profile of the TCGA LIHC cohort were selected for WGCNA

analysis. Initially, 363 HCC samples were clustered, and the

FIGURE 4
Results of TCGA training set cox analysis and Lasso regression analysis. (A) KM curves of prognostic signatures obtained from COX analysis; (B)
Trajectories of the independent variables of LASSO regression, the horizontal coordinates indicate the logarithm of the independent variable
Lambda, and the vertical coordinates indicate the coefficients of the independent variables; (C) LASSO regression under each Lambda confidence
interval; (D) LASSO regression coefficients of key prognostic genes.
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results are shown in Figure 1A. Afterward, the cutHeight was set

to 28,000 to eliminate the outlier samples, and finally,

247 samples were obtained for subsequent analysis, and the

clustering tree after eliminating the outlier samples is shown

in Figure 1B.When the correlation coefficient is >0.8, the optimal

soft threshold is set as 7 (Figure 1C). Furthermore, the memory

network was checked to see if it approximates scale free with the

chosen β value. From Figure 1D, we can see that k is negatively

linked with p (k) (correlation coefficient = 0.84), suggesting that

the chosen β value is capable of establishing a gene-free scale

network. Then the minimum gene number within the module

was set to 30, and the maximum module distance was 0.25.

Subsequently, the Pearson correlation method was used to

calculate the co-expression correlation and the module trait

correlation and construct the co-expression network. From the

module clustering tree, we can see that yellow and blue are

important modules (Figure 1E). Then the eigenvector gene

clustering tree and thermographic were plotted, and the

results showed modules with correlation coefficients >0.8
(dissimilarity coefficient <0.2) (Figure 1F), which were merged

in the subsequent analysis. The module-trait correlation

thermographic is shown in Figure 1G, which shows the key

traits (grade and family history) and the key modules (yellow,

turquoise, and blue). Scatter plots are then drawn to show the

linear relationship between GS and MM within modules, and the

results are shown in Figures 1H–K: the correlation coefficients

are 0.68, 0.54, 0.5, and 0.6.

Co-expression network and enrichment
analysis of hub genes in key modules

In accordance with the distribution of GS and MM values of

genes in the modules, a threshold value of GS > 0.2 and MM >
0.6 was set to identify hub genes for key modules of each key trait

Moreover, the three key modules of grade trait and the blue module

of family history were screened to obtain 467 hub genes and 200 hub

genes, respectively. Then the hub genes were screened based on the

edge and node files obtained from the exportNetworkToCytoscape

function in WGCNA and imported into Cytoscape to construct the

module hub gene co-expression network maps for the key traits; the

outcomes are illustrated in Figure 2A and Figure 2C. Then the GO

function enrichment analysis and KEGG enrichment analysis were

performed for the two hub gene sets, respectively, and the TOP

FIGURE 5
TCGA training set for the validation of the model’s prognostic efficacy. (A) KM curve of TCGA training set; (B) ROC curve; (C–E) Risk triple-plot,
including scatter plot of risk score, scatter plot of survival time and thermographic of model gene expression in risk score grouping, red highlights
high-risk group and blue highlights the low-risk group.
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10 entries of the enrichment outcomes were chosen to draw bubble

plots that are illustrated in Figure 2B and Figure 2D.

Ultrasound-associated prognostic
signature construction and validation

Screening of ultrasound-associated hub genes
for HCC

Differential expression analysis was performed on ultrasound and

non-ultrasound samples from the GSE178573 dataset to screen

ultrasound-related differentially expressed genes. Subsequently,

340 significantly differentially expressed genes were obtained,

including 229 up-regulated genes and 111 down-regulated genes,

and volcanic plots and thermographics were drawn to demonstrate

the expression distribution of differentially expressed genes among

subtypes; the outcomes are illustrated in Figure 3A, B. Subsequently,

KEGG enrichment analysis and GO functional enrichment analysis

were performed on the identified differentially expressed genes, and

the outcomes are demonstrated in Figure 3C–F: the TOP 10 entries

with significant enrichment outcomes were chosen to draw bubble

plots, and the size of the dots demonstrate the number of enriched

differentially expressed genes, and the color highlights the significance

of enrichment. Then the hub genes of key modules of HCC obtained

from WGCNA analysis were intersected with the ultrasound

differentially expressed genes, and a total of 14 intersected genes

were obtained, called the Module DEGs.

Module DEGs prognosis signature construction
Subsequently, 2/3 of the overall TCGA_LIHC set (n = 363)

was selected as the training set (n = 242) by random sampling,

and 14 Module DEGs were screened in training set by means of

univariate Cox analysis. p < 0.05 was set as the threshold to finally

obtain ten genes associated with prognosis, and then the median

expression of each gene was taken as the cutoff value for high and

low grouping and to plot Kaplan-Meier survival curves, as

FIGURE 6
Prognostic efficacy of TCGA holistic set validation model. (A) KM curves of TCGA holistic set; (B) ROC curves of TCGA holistic set at 1, 3 and
5 years; (C–E) risk triple-plot plots with risk score scatter plot, survival time scatter plot and heat plot ofmodel gene expression in risk score grouping,
red highlights the high-risk group and blue highlights the low-risk group, respectively.
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illustrated in Figure 4A: major variations were observed in KM

curves for 7 of these genes. Based on these ten prognosis-related

signatures, set seed = 212,110, and using LASSO linear

regression, redundant genes were removed, and a risk model

was constructed; the results are shown in Figures 4B–D:

6 prognosis-related signatures were finally screened. The

outcomes of Cox and Lasso analyses.

Internal validation set to check the strength of
the risk model

To further determine the impact of the model scores

constructed from the six signatures on the overall survival of

the training set. Initially, the median of RiskScore was used as

the threshold value, the samples were sorted into high and

low-risk groups, and KM curves were plotted, and the results

showed that there was a major variation in prognosis between

the high- and low-risk groups with a worse prognosis in the

samples of high-risk group (Figure 5A). According to the

constructed risk model, the ROC curves of prognostic

signature were plotted, and the respective AUC values at

1, 3, and 5 years were 0.768, 0.686 and 0.751, indicating the

good predictive accuracy of the model scores (Figure 5B).

Moreover, scatter plots of survival time and status

(Figure 5C) and scatter plots of sample risk scores

(Figure 5D) were plotted, and the relationship between

survival and RiskScore could be observed by combining

these two scatter plots. Subsequently, the expression

thermographic of model genes shows that model genes are

highly expressed in the high-risk group of the training set

(Figure 5E).

Subsequently, the overall set of TCGA_LIHC was used to

test the predictive ability of RiskScore for overall survival.

Based on the same method as the TCGA training set, the

overall set samples were sorted into high and low-risk

groups, with a worse prognosis observed in the high-risk

group, and the prognosis of both groups varied substantially

(Figure 6A). In the overall dataset of TCGA_LIHC, its

respective AUCs at 1, 3, and 5 years were 0.742, 0.688 and

0.662 (Figure 6B). The scatter plots of the sample risk scores

and the scatter plots of survival time and status for the two

FIGURE 7
Prognostic efficacy of the validation model for the GEO dataset. (A,B) KM curves and ROC curves for validation set GSE76427; (C–E) Risk triple-
plot for validation set GSE76427; (F,G) KM curves and ROC curves for validation set GSE14502; (H–J) risk triple-plot for the validation set GSE14502;
(K, L) risk triple-plot for the validation set KM curves and ROC curves of LIRI-JP; (M–O) risk triple-plot diagrams of the validation set LIRI-JP.
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datasets are shown in Figures 6C, D, which highlight the risk

score distribution among the samples. The expression

thermographic of model genes in the corresponding dataset is

shown in Figure 6E; therefore, it is clear that the distribution of

gene expression in the samples of the dataset is consistent with the

trend of expression in the validation set. The validation results of

the overall TCGA set indicate that the model score has good and

stable efficacy for survival prediction.

External validation sets to verify model
prognostic efficacy

For further validation of the model score’s strength in predicting

the overall survival of individuals with HCC, three GEO external

datasets were selected to proceed with the same analytical validation

in this study. For the validation set GSE76427, the KM curve results

showed major variations in prognosis between the two risk groups,

with a worse prognosis in the high-risk group (Figure 7A). The ROC

curve results showed the respective AUCs of 0.636, 0.595, and

0.733 at 1, 2, and 3 years (Figure 7B). The scatter plots of the

sample risk scores, and the scatter plots of survival time and status

are shown in Figures 7C,D. The thermographic of model gene

expression in the validation set GSE76427 is illustrated in Figure 7E.

For the validation set GSE14502, the KM curve outcomes

highlighted major variations in prognosis between both risk

groups, with a worse prognosis in the high-risk group

(Figure 7F). The ROC curve results highlighted the respective

AUCs of 0.602, 0.595 and 0.613 at 1, 2 and 3 years (Figure 7G).

The scatter plots of the sample risk scores and the scatter plots of

survival time, and survival status are shown in Figures 7H,I. The

expression thermographic of model genes in the validation set

GSE14502 is shown in Figure 7J. For the validation set LIRI-JP,

the KM curve results showed significant differences in prognosis

between the two risk groups, with a worse prognosis in the high-risk

group (Figure 7K). The ROC curve results showed the respective

FIGURE 8
Clinical characteristics correlated with model scores. (A–E) show the distributions of Riskscore in the clinical characteristics grouping,
corresponding to age, gender, stage, grade and family history, respectively. (F–M) show the subgroups of Age, Gender, Grade and Stage
characteristics, respectively. In the KM curves of the dataset, red highlights the high-risk group and blue highlights the low-risk group.
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AUCs of 0.622, 0.587 and 0.636 at 1, 2 and 3 years (Figure 7L). The

scatter plots of the sample risk scores, and the scatter plots of survival

time and survival status are shown in Figures 7M,N. The

thermographic of model gene expression in the validation set

LIRI-JP is shown in Figure 7O. The prognostic efficacy of the

model performed well in the three GEO external validation sets,

and the expression trends of the model genes were identical to those

of the TCGA dataset.

Prognostic risk model correlated with
multiple characteristics of HCC

Clinical characteristics linked with risk scores
Based on the clinical characteristics the TCGA_LIHC

dataset, we explored the differences in Riskscore

distribution among different subgroups of clinical

characteristics; the outcomes highlighted that Riskscore

was considerably varied in the subgroups of age, stage,

grade, and family history (Figures 8A–E). In addition,

based on the grouping information of age, gender, stage,

and grade, the TCGA dataset was divided into two sub-

datasets, and the KM curves of the sub-datasets were

plotted separately according to the grouping of median

Riskscore; the results showed that the KM curves of each

sub-dataset were significantly different, with a worse

prognosis in the high-risk group (Figures 8F–M).

RiskScore as an independent prognostic factor
The constructed risk model showed good prognostic efficacy

in the TCGA dataset and the GEO external validation set. The

complex thermographic of Figure 9A shows major variations in

the distribution of clinical features of stage, grade, family history,

and OS of the samples in the two risk groups, indicating that

FIGURE 9
Independence ofmodel scores in clinical characteristics. (A) Thermographic of clinical characteristics distribution in LIHC sample, the p-value is
the significance of the difference between characteristics grouping compared to riskgroup grouping; (B) Forest plot of single-multivariate cox
analysis of clinical factors in TCGA cohort; (C) Nomogram of the predictive model, the square plus line segment represents the size of the
contribution of the clinical factor to the outcome event. Total Points represents the total score of all variables taken after the corresponding
individual scores are added together, and the bottom three lines represent the probability of survival at 1, 3, and 5 years corresponding to each taken
point; (D) Calibration curve, the horizontal coordinate is the predicted probability, the vertical coordinate is the actual probability, the closer to the
middle gray line represents themore accurate predicted risk probability, below the gray line represents the underestimated risk, above The lower part
of the gray line represents an underestimation of risk and the upper part represents an overestimation of risk. (E) Decision Curve Analysis for
nomogram and other variables.
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these clinical factors are correlated with the model groupings. In

addition, to verify whether RiskScore has the ability to act as an

independent prognostic factor, a single-multivariate cox

regression analysis was performed combining age, gender,

clinicopathological stage, clinical grade, and family genetic

history of liver disease in LIHC. In the single-multivariate cox

regression, both prognostic model grouping and clinical staging

were significantly different relative to the reference,

demonstrating that they were independent prognostic factors

(Figure 9B). In addition, a nomogram based on survival time and

survival status, along with clinical indicators, showed stage and

riskscore as contributing clinical factors (Figure 9C). Further

calibration curve plots were drawn to assess the accuracy of the

nomograms, and the outcomes revealed that the predictive

accuracy of the model was high at 1 and 3 years (Figure 9D).

Furthermore, DCA decision curve plots for different categorical

features were used to assess the prediction accuracy of multiple

clinical features; the outcomes are illustrated in Figure 9E.

Correlation of model grouping with the
proportion of immune cell infiltration

In the tumor microenvironment, immune cells and matrix

cells are the two main types of non-tumor components and have

been shown to be valuable in the diagnostic and prognostic

assessment of tumors. In this study, we calculated the immune,

matrix, and ESTIMATE scores along with tumor purity; the

outcomes highlighted that the matrix score was considerably

reduced in the high-risk group in comparison with the low-risk

group (Figure 10A). We also calculated the difference in immune

cell infiltration ratio in the two risk groups using TIMER and xCell

algorithms, respectively; the results are shown in Figures 10B,C.

Figure 10B demonstrates the results of the TIMER algorithm for

immune infiltration, in which there are five major cell types with

significant differences in the percentage of immune infiltration in both

risk groups and the percentage of infiltration in the high-risk groupwas

high. The proportion of HSC cell infiltration in the high-risk group was

considerably lower in comparison with that in the low-risk group.

Expression of model genes correlates with the
proportion of immune cell infiltration

The grouping information of the risk model is closely linked

with the expression of model genes, and we can explore how the

expression of genes affects the prognosis of cancer by investigating

the linkage between the expression of model genes and the

immune microenvironment. The results of the immune cell

infiltration ratio were calculated according to the cibersort

algorithm, and the significance of gene expression in clinical

immunology was represented by calculating the correlation

FIGURE 10
Variations in the proportion of immune infiltrating cells betweenmodel subgroups. (A) Box line plots of matrix score, immune score, ESTIMATE
score and tumor purity for high and low-risk groups, respectively, red for high-risk group and blue for the low-risk group; (B) Box line plots of the
proportion of immune infiltrating cells for high and low-risk groups in TIMER algorithm, red for high-risk group and blue for the low-risk group; (C)
Thermographic of the variation in the abundance of immune infiltrating high and low-risk groups in the xCell algorithm.
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coefficient between the expression of model genes and each

immune cell infiltration ratio in LIHC samples. Six model

genes and 23 immune cell infiltration ratio correlation

coefficient plots are shown in Figure 11A. Moreover, we

assessed the link of gene expression (TPM) with six immune

cell infiltration ratios and tumor purity in TCGA data through the

TIMER website, and we selected two of the model genes for

presentation (Figures 11B,C); other results are shown in the

Appendix.

Expression and clinical significance of model
genes

To confirm the correlation between model genes and cancer,

we analyzed and visualized the expression differences of each

model gene in pan-cancer samples through the TIMER website.

The box plot of CCT3 gene expression in pan-cancer is shown in

Figure 12A, which is commonly up-regulated in tumor samples,

and the analysis graphs of other genes are shown in the

Appendix. Immune checkpoints are a series of molecules

FIGURE 11
Correlation between the expression of model genes and the proportion of immune cell infiltration. (A) Bar graph of the correlation between
model gene expression and the proportion of immune cell infiltration, the length of the bars demonstrate the size of the correlation, and the color
represents the significant p-value of the correlation; (B,C) Scatter plots of correlation coefficients between the expression values of model genes
B4GALT3 and MCM6 (TPM) and the proportion of immune cell infiltration obtained from TIMER online website analysis.
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FIGURE 12
Expression and clinical significance of model genes. (A) Box line plot of model gene expression in pan-cancer, if Normal samples are present in
the TCGA cohort for that cancer, they are also plotted simultaneously and expressed in blue; (B) Thermographic of the correlation coefficient
betweenmodel gene and immune checkpoint expression, the color of the dot represents high correlation and * represents significance; (C) Box line
plot of model gene expression difference in Age grouping, where blue is Age<60 and yellow is Age>=60; (D) Box line plot of expression
differences of model genes in Grade grouping, where blue is G1/2 and yellow is G3/4.

FIGURE 13
Genomic mutation differences betweenmodel subgroups. (A). SNV waterfall plot of TOP20 (mutation frequency) genes in the high-risk group;
(B). SNV waterfall plot of TOP20 (mutation frequency) genes in the low-risk group.
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FIGURE 14
Enrichment analysis results of the HALLMARKER pathway. (A) Thermographic of correlation between Riskscore and HALLMARK pathway
enrichment analysis, red highlights positive correlation, blue highlights negative correlation, shade represents high correlation, * sign represents
significance; (B) thermographic of enrichment score of HALLMARK pathway, * sign represents the enrichment score of this pathway in high and low-
risk groups. Enrichment score difference significance.

FIGURE 15
Differences in drug sensitivity betweenmodel subgroups. (A) Thermographic of IC50 values between high and low-risk subgroups in the TCGA
LIHC cohort, red highlights high drug sensitivity and blue highlights low sensitivity; (B) KM curves in the immunotherapy cohort; (C) Box plot of risk
score distribution between immunotherapy response subgroups in the immunotherapy cohort, red highlights non-response group and blue
highlights response group; (D) Thermographic of the expression distribution of model genes in the immunotherapy cohort.
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expressed in immune cells that control the degree of immune

activation, and they are crucially involved in the development of

human autoimmune effects. In this analysis, we selected

22 immune checkpoints expressed in this dataset for analysis

and calculated the correlation coefficients between model genes

and their expression; the results of the thermographic display are

shown in Figure 12B. Subsequently, we observed the link between

the expression of model genes and clinical properties by plotting

box line plots of model gene expression in different groupings

based on clinical characteristics and the expression differences of

6 model genes in the age group and grade group shown in Figures

12C,D. The outcomes highlighted major variations in the

expression of 5 model genes in the age group, and all model

genes in the grade group were highly expressed in the G3/

4 group.

Genomic mutational differences
Genetic mutations can stimulate cancer progression or

malignant growth, and studying them at the molecular level is

crucial for developing tumor-targeted drugs and novel

therapies to treat cancer. To demonstrate the distribution

of somatic variants between both risk groups across samples

and to demonstrate the distribution of gene mutations

between samples with different clinical characteristics, the

20 genes with the highest mutation frequencies in the two risk

groups were selected to draw a waterfall plot, and the results

highlighted that the TP53 gene had a considerably enhanced

mutation frequency in the high-risk group when compared

with the low-risk group (Figures 13A,B).

Correlation between model scores and
HALLMARKER pathway enrichment

The results of HALLMARKER pathway enrichment scores were

measured as per the expression profiles of HCC samples. Combined

with the model score information, the correlation between Riskscore

and enrichment score and the variation in pathway enrichment

between the two risk groups are discovered, which is helpful in

investigating the link between cancer characteristic pathways and

prognosis. The outcomes revealed that Riskscore was considerably

positively linked with five HALLMARK pathways, and six

HALLMARK pathways were significantly negatively correlated

(Figure 14A). Thirty pathway enrichment scores in B-plot had

significant differences between model subgroups (Figure 14B).

Model scores to predict patients’ treatment
efficacy

In accordance with the expression profile data of

TCGA_LIHC, the sensitivity IC50 values of 138 drugs in the

GDSC database were predicted. Among them, 117 drugs had

major variations in IC50 values between the two risk groups

(Figure 15A). In addition, to investigate whether the model

genes could be used as markers of immunotherapy response,

the NIHMS1611472 dataset was used to categorize the dataset

into high and low-risk groups in accordance with the model risk

score and plot KM curves to compare the survival differences

(Figure 15B). Grouping by response information after receiving

immunotherapy and comparing differences in model scores

between immunotherapy response subgroups suggested that the

risk scores were higher in the immunotherapy non-response group

(PD) than in the response group, but the differences were not

significant (Figure 15C). The thermographic of model gene

expression in the immunotherapy cohort is demonstrated in

Figure 15D, which indicates that the model genes are expressed

increasingly in the high-risk group.

Discussion

Surgery is currently the first choice for the treatment of

primary HCC. Although surgery can remove diseased tissues, it

is more invasive to operate on liver tissues adjacent to the main

blood vessels, which can easily damage the important surrounding

tissues and blood vessels. Moreover, most people are diagnosed in

the middle or advanced stage of cancer when the surgery is most

effective. Ultrasound helps significantly in the early diagnosis of

individuals with HCC, and in recent years, with the promotion of

minimally invasive surgery, the application of percutaneous

ultrasound-guided radiofrequency ablation in the local HCC

therapy has improved with time (Parizadeh et al., 2019; Selby

et al., 2020). Improved microwave ablation guided by ultrasound

can locate the ablation area with the assistance of ultrasound and

more accurately block the arterial blood supply of tumors, thus

shrinking tumors and killing tumor cells quickly (Peng et al.,

2022). With less trauma, fewer complications and high

reproducibility, it helps greatly in the treatment of early-stage

HCC andmid- to late-stageHCCpatients. In addition, recently the

ultrasound medicine has broken through the limitations of

traditional ultrasound imaging and has entered the

“nanometer” era. For example, sonodynamic therapy (SDT) is

an ultrasound-targeted activation of reactive oxygen species

produced by acoustic sensitizers to kill tumors and produce

immunocidal effects simultaneously (Song et al., 2018).

Ultrasound-targeted microbubble destruction (UTMD),

mediated by microbubbles, enables targeted delivery and tumor

suppression (Tay and Xu, 2017), providing more possibilities for

the treatment of HCC. Therefore, exploring the possible

prognostic markers and risk models of HCC during ultrasound

therapy is important for prognosis prediction and treatment of

individuals with HCC.

In this study, we first performed WGCNA analysis according

to the expression profile and clinical data of the TCGA LIHC

cohort to identify three key modules with two major clinical

features associated with HCC. The ultrasound-associated

differentially expressed genes and module hub gene intersection

were selected for univariate Cox analysis to identify prognostic

factors significantly associated with HCC, and finally, a 6-gene
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signature model consisting of SYNCRIP, B4GALT3, MCM6,

CCT3, SNRPG, and HNRNPC was constructed to assess HCC

patient prognosis. Synaptic binding protein-binding cytoplasmic

RNA interaction protein (SYNCRIP) is an RNA-binding protein

that is involved in regulating biological processes such as

translation regulation, mRNA stabilization, pri-miRNAs

processing, variable splicing, and miRNAs

compartmentalization (Mourelatos et al., 2001; Weidensdorfer

et al., 2009; Geuens et al., 2016; Chen et al., 2020). Studies have

shown that SYNCRIP expression can indicate a poor prognosis of

HCC (Uhlen et al., 2017), and SYNCRIP can stimulate the

progression of HCC by controlling the epithelial-mesenchymal

transition of HCC (Riccioni et al., 2022). β-1,4-
galactosyltransferase III (B4GALT3) belongs to the B4GALT

family, and B4GALTs are capable of transferring galactose

moieties from uridine diphosphate to oligosaccharides at the

N-terminal end of acetylamino-glucose, which in turn forms

acetylamino-lactose (Guo et al., 2001). Aberrant glycosylation is

associated with tumor characteristics, including differentiation,

adhesion, proliferation, transformation, metastasis, and tumor

immunosurveillance (Brockhausen, 1999). Research has

highlighted the involvement of B4GALT3 in the proliferation,

invasion and metastasis of cervical cancer (Sun et al., 2016),

neuroblastoma (Chang et al., 2013; Wu et al., 2020), and colon

cancer (Chen et al., 2014) cells. In contrast, in HCC, highly

metastatic HCC cells secrete exosomes that directly target

B4GALT3, resulting in the activation of β1-integrin-NF-κB
signaling in fibroblasts which in turn promotes HCC lung

metastasis (Fang et al., 2018). Micro-chromosome maintenance

protein 6 (MCM6) is an important factor that plays a role in

initiating the replication of DNA, and it can do so after forming

polymers with five other members of the MCM protein family,

thus participating in the proliferation of tumor cells, and higher

MCM6 expression suggests active proliferation (Zeng et al., 2021).

It has been demonstrated that MCM6 has cancer-promoting

effects in HCC (Liu et al., 2018a; Liu et al., 2018b). The TCPl-

containing chaperone protein subunit 3 (CCT3), an important

member of the chaperone protein family, is involved in protein

folding and refolding (Gruber et al., 2017). It has been

demonstrated that CCT3 expression is up-regulated in HCC,

which in turn affects tumor progression and prognosis (Qian

et al., 2016; Zhang et al., 2016; Liu et al., 2019). HNRNPC acts as an

RNAbinding protein and is involved in RNA splicing (Konig et al.,

2010; Zarnack et al., 2013), nonspecific RNA export (McCloskey

et al., 2012), RNA expression (Brunner et al., 2005), stability, and

translation (Shetty, 2005). HNRNPC is up-regulated in HCC

(Liang et al., 2005) and has cancer-promoting effects (Liu et al.,

2022). However, there are no studies on SNRPG in HCC.

Subsequently, we validated the efficacy of the model in the

TCGA training set, the overall set, and three GEO external

validation sets and confirmed the risk model as an

independent prognostic factor among multiple clinical

indicators of HCC by single multifactor cox analysis. As per

the risk score of each sample, we sorted them into high and

low-risk groups, and to explore the clinical application value of

the risk model, we further evaluated the percentage of immune

cell infiltration, genomic mutations, pathway enrichment

scores, and chemotherapeutic drug resistance differences

between both groups, and the outcomes highlighted that

there were major variations. For example, the frequency of

TP53 gene mutations was significantly higher in the high-

risk group in comparison with the low-risk group, and it has

been demonstrated that in most TP53 mutant tumors, other

tumor suppressor genes are similarly inactivated, and

oncogenes that allow cancer progression are amplified

(Donehower et al., 2019), resulting in poor prognosis,

which is consistent with the worse prognosis of patients

in our high-risk group. Furthermore, the poorer prognosis of

patients in the high-risk group in the immunotherapy cohort

suggests that immunotherapy is more effective in low-risk

patients.

Conclusion

The four key module hub genes of two major clinical features

associated with HCC were identified by WGCNA analysis and

intersected with ultrasound-associated differentially expressed

genes to construct a six-gene signature and a risk model that can

be used for prognosis prediction and immunotherapy response

marker in HCC patients.
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