
Prognostic necroptosis-related
gene signature aids
immunotherapy in lung
adenocarcinoma

Yuqi Song1†, Jinming Zhang2†, Linan Fang1* and Wei Liu1*
1Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, China, 2First Hospital of
Jilin University, Changchun, China

Background: Necroptosis is a phenomenon of cellular necrosis resulting from

cell membrane rupture by the corresponding activation of Receptor Interacting

Protein Kinase 3 (RIPK3) and Mixed Lineage Kinase domain-Like protein (MLKL)

under programmed regulation. It is reported that necroptosis is closely related

to the development of tumors, but the prognostic role and biological function

of necroptosis in lung adenocarcinoma (LUAD), the most important cause of

cancer-related deaths, is still obscure.

Methods: In this study, we constructed a prognostic Necroptosis-related gene

signature based on the RNA transcription data of LUAD patients from The

Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases

as well as the corresponding clinical information. Kaplan-Meier analysis,

receiver operating characteristic (ROC), and Cox regression were made to

validate and evaluate the model. We analyzed the immune landscape in

LUAD and the relationship between the signature and immunotherapy

regimens.

Results: Five genes (RIPK3, MLKL, TLR2, TNFRSF1A, and ALDH2) were used to

construct the prognostic signature, and patients were divided into high and

low-risk groups in linewith the risk score. Cox regression showed that risk score

was an independent prognostic factor. Nomogram was created for predicting

the survival rate of LUAD patients. Patients in high and low-risk groups have

different tumor purity, tumor immunogenicity, and different sensitivity to

common antitumor drugs.

Conclusion:Our results highlight the association of necroptosis with LUAD and

its potential use in guiding immunotherapy.
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Introduction

As the most important cause of cancer death, lung cancer has

been a major research topic for clinicians and researchers (Sung

et al., 2021). Non-small cell lung cancer (NSCLC), the most

important type of lung cancer, accounts for 85% of the total

incidence of the disease (Chen et al., 2014). Slow-growing,

insidious-developing lung adenocarcinoma (LUAD) is the

most common pathological type of NSCLC. It is prone to

hematogenous metastasis, so some patients are often

diagnosed at a late stage, which deprives them of the

opportunity for surgery and their clinical prognosis is poor

(Devarakonda et al., 2015). The advent of targeted therapies

and immunotherapy has brought better options for such patients,

but most of them have no mutation in the driver gene or do not

respond to a single immune checkpoint inhibitor (ICI) (Matter

et al., 2020; Santarpia et al., 2020). In recent years, with the

development of RNA sequencing, microarrays, and other

“Omics” technologies, a series of new potential markers

driving tumor cell formation have been identified and

progressively applied in the clinic. The average 5-year survival

rate of LUAD patients, although significantly improved, is still

less than optimal.

Necroptosis is a phenomenon of cellular necrosis resulting

from cell membrane rupture by the corresponding activation of

Receptor Interacting Protein Kinase 3 (RIPK3) and Mixed

Lineage Kinase domain-Like protein (MLKL) under

programmed regulation (Degterev et al., 2005). It has a proper

regulatory mechanism. With the advancement of basic research,

necroptosis has been found to be not only involved in the

inflammatory pathological mechanism of the body (Khoury

et al., 2020) but also closely related to the development of

tumors and drug resistance. Preliminary studies suggest that

necroptosis has a “double-edged sword” role in tumor pathology,

which can exert either tumor-suppressive or tumor-promoting

effects (Raposo et al., 2015; Liu et al., 2016; Hänggi et al., 2017).

On the one hand, inducing necroptosis can remove

chemotherapy-resistant tumor cells; on the other hand, it may

also kill normal cells and lead to inflammatory responses that

promote tumor progression and metastasis (Gong et al., 2019).

Immunotherapies, represented by ICIs such as various

antibodies against cytotoxic T lymphocyte-associated antigen

4 (CTLA-4), programmed cell death 1 (PD-1), and

programmed cell death ligand 1 (PD-L1), are designed to

stimulate the patient’s immune system to trigger an effective

anti-tumor immune response (Rosenberg, 2014). Despite its

emerging and encouraging results, increased immune

tolerance is frequently documented in many cancer types

(Bonavida and Chouaib, 2017). Furthermore, a large

proportion of studies have also highlighted the potentially

enormous impact of necroptosis-driven immunogenic features

in tumor immunology, for example, the induction of necroptosis

can act synergistically with ICIs to enhance their antitumor

activity in drug-resistant tumors (Tang et al., 2020). These

close and complex relationships suggest that necroptosis may

be an important target for tumor progression and may provide

new strategies for tumor immunotherapy and prognosis (Philipp

et al., 2016). However, to date, the mechanism of the role of

necroptosis in LUAD is unclear, and its relationship with

immunotherapy and prognosis has been little studied.

The aim of this study was to construct a robust prognostic

model of Necroptosis-Related Genes (NRGs) by bioinformatics

algorithms to predict the survival probability of LUAD patients at

different periods. We will also explore the functional pathways

and signaling pathways involved in key genes and their

relationship with immune cell infiltration, tumor mutation

burden, immunotherapy, and drug sensitivity, to assist in

individualized and precise treatment.

Materials and methods

Data acquisition

RNA transcriptome information and clinical information of

LUAD patients were obtained from The Cancer Genome Atlas

(TCGA) database and the GSE72094, GSE50081 datasets in Gene

Expression Omnibus (GEO) database, respectively. The RNA-

seq transcriptome data were converted to transcript volume per

million (TPM) values, and the R “limma” and “sav” packages

were applied for batch correction and normalization of RNA-seq

from both platforms. After excluding samples with incomplete

clinical information or gene expression data, 504 patients from

TCGA and 398 patients from the GSE72094 dataset with LUAD

were included in the downstream analysis, and 127 patients from

the GSE50081 dataset were used for external validation. 17 NRGs

(RIPK1, RIPK3, MLKL, TLR2, TLR3, TLR4, TNFRSF1A,

PGAM5, ZBP1, NR2C2, HMGB1, CXCL1, USP22, TRAF2,

ALDH2, EZH2, NDRG2) were obtained from literature

reviews of previous related studies (Petersen et al., 2015; Choi

et al., 2019; Lou et al., 2019; Malireddi et al., 2019; Wen et al.,

2020; Xia et al., 2020; Zhu et al., 2020; Cheng et al., 2021; Roedig

et al., 2021). The relative position of these genes to the

chromosomes was visualized using the R “RCircos” package.

The Human Protein Atlas database (https://www.proteinatlas.

org/) was used to display the expression of proteins encoded

by NRGs.

Construction and validation of a
necroptosis-related prognostic signature

Sample data from the TCGA and GSE72094 dataset was

combined, including expression data of NRGs and patients’

survival data. A univariate Cox regression analysis was

performed to obtain genes significantly associated with
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prognosis. After that, we randomly divided the patients into

Train and Test sets (632 in the Train set and 270 in the Test set).

The R “glmnet” package was used to perform LASSO regression

analysis on the prognostic data and to optimize the penalty

function using cross-validation. A prognostic signature

consisting of genes related to necroptosis was developed to

predict the prognosis of LUAD patients. The formulae are as

follows:

Risk Score � coefficients p expressing values ofAgene

+ coefficients p expressing values ofBgene

+ . . .

Using the “CatPredi” software package, an R package allows

the user to categorize a continuous predictor variable in a logistic

or a Cox proportional hazards regression setting by maximizing

the discriminative ability of the model, we determined the

optimal two cut-off values for the Train and Test sets

separately, splitting each set into a low-risk group and a high-

risk group. Kaplan-Meier analysis was used to plot the overall

survival (OS) curves for each set. In this study, OS was defined as

the duration from the date of diagnosis to death or last follow-up,

with no restriction on the cause of death. The R “timeROC”

package was used to generate subject operating characteristic

(ROC) curves, and the area under the curve (AUC) of the ROC

curves was measured to show the sensitivity and specificity of the

model.

In addition, we performed univariate and multivariate Cox

regression analyses of the validity of the risk score as an

independent prognostic indicator. The clinical characteristics

of high and low-risk patients were compared using the R

“pheatmap” package to explore the correlation between risk

scores and clinicopathological variables.

Nomogram construction and verification

We constructed a nomogram based on 902 samples from all

TCGA + GSE72094 datasets to predict the survival rate of

patients at 1, 2, and 3 years using pathological staging and

risk score information. We then plotted ROC curves and

calibration curves to test the validity and robustness of the

nomogram.

GeneOntology and Kyoto Encyclopedia of
Genes and Genomes analysis

Eleven prognosis-related NRGs were annotated and

functionally analyzed using the R “DOSE” package, including

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG), with a corrected p-value (q-value) < 0.05 as

the filter.

Correlation between risk score and
immune landscape

To reveal the correlation between risk scores and tumor-

infiltrating immune cells, we assessed the immune infiltration of

tumors using the CIBERSORT algorithm.We uploaded the full gene

expression data of all samples to the CIBERSORTx portal and later

ran the algorithm for 1,000 permutations based on the

LM22 signature. LUAD samples with output p-values <
0.05 were selected for further analysis to explore the relationship

between risk score and necroptosis-related prognostic gene

expression and immune cell infiltration. The “estimate” software

package was used to calculate the immune score and stromal score

for each sample to quantify the relative enrichment of immune and

stromal cells in each sample. Violin plots were applied to visualize

the differences in enrichment between high and low-risk groups.

Predicting patient response to
immunotherapy

We further explored the potential role of risk scores in the

prediction of immunotherapy using the immunophenoscore

(IPS). Based on relevant data from The Cancer Imaging

Archive (TCIA) database (https://www.cancerimagingarchive.

net), we evaluated the differences in four IPS scores between

high and low-risk groups. The scoring scheme integrates the four

major classes of genes that determine tumor immunogenicity

(effector cells, immunosuppressive cells, MHC molecules, and

immunomodulators) and the gene expression of these cell types

(e.g., activated CD4+ T cells, activated CD8+ T cells, effector

memory CD4+ T cells, Tregs, MDSCs) to derive specific scores

without bias using machine learning that is viewed as a new and

reliable predictor of response to immunotherapy regimens

(Givechian et al., 2018).

Tumor mutational burden (TMB) is broadly defined as the

number of somaticmutations permegabase of interrogated genomic

sequence. TMB reflects the total number of mutations carried by

tumor cells. It is now generally accepted that TMB is positively

correlated with the effect of immunotherapy and can be used as a

potential molecular diagnostic marker for tumor immune

checkpoint inhibitor therapy (Mayakonda et al., 2018). We

obtained TMB information for the corresponding TCGA-LUAD

cohort from the TCGA database. Spearman’s method was used for

correlation analysis.

Assessment of patients’ sensitivity to
chemotherapy

With the “pRRophetic” software package, we reliably

predicted the response to chemotherapy in each LUAD

sample. The package works by using gene expression and
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drug sensitivity data from a very large panel of cancer cell lines in

the Genomics of Drug Sensitivity in Cancer (GDSC) database

(www.cancerrxgene.org/) as training data for developing

statistical models (Yang et al., 2013). These models were then

applied to gene expression data from other tumor biopsies to

predict the clinical drug response of other samples to different

anticancer drugs, with the half maximal inhibitory concentration

(IC50) value of the target drug as the predicted outcome variable.

The robustness of the model has been extensively validated

(Geeleher et al., 2014a). After that, we reflected the difference

in chemotherapy sensitivity between high and low-risk groups by

box-line plots.

Statistical methods

The study was statistically analyzed using R programming

language (version 4.0.3). The Wilcoxon test was used to analyze

continuous variables. Categorical variables were analyzed using

Fisher’s exact test or Chi-square test. Survival differences were

analyzed using Kaplan-Meier curves and log-ranch tests.

p-values < 0.05 were considered statistically significant.

Results

The design and workflow of this study are shown in Figure 1.

Identification of necroptosis-related
genes in lung adenocarcinoma

We obtained 17 NRGs (RIPK1, RIPK3, MLKL, TLR2, TLR3,

TLR4, TNFRSF1A, PGAM5, ZBP1, NR2C2, HMGB1, CXCL1,

USP22, TRAF2, ALDH2, EZH2, NDRG2) from previous

literature reviews. The positions of these genes on the

chromosomes are shown in Figure 2A. Immunohistochemical

(IHC) staining results provided expression levels of 13 (RIPK1,

FIGURE 1
The framework and workflow of this study.
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FIGURE 2
Necroptosis regulators in LUAD and an NRG signature. (A) Location of NRGs on chromosomes. (B) Ten-fold cross-validation for tuning
parameter selection in the lasso regression. The vertical lines are plotted based on the optimal data according to theminimumcriteria and 1-standard
error criterion. The left vertical line represents the five genes finally identified. (C) LASSO coefficient profiles of 11 candidate genes and an optimal
model derived from them. (D) 5 NRGs and their coefficients in the prognostic signature.
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TLR3, TLR4, TNFRSF1A, PGAM5, ZBP1, NR2C2, HMGB1,

USP22, TRAF2, ALDH2, EZH2, NDRG2) of the

17 necroptotic proteins between LUAD and normal lung

tissues (Supplementary Figure S1). For some reason, the

remaining four genes could not be found in the HPA

database with evidence of corresponding IHC staining.

By univariate Cox regression analysis of RNA transcriptome

data, we identified 11 NRGs that were significantly associated

with OS in LUAD patients. These genes and their HR, and

p-values were listed in Table 1 and the clinical-pathological

characteristics of 902 LUAD patients in TCGA +

GSE72094 dataset were shown in Table 2.

Identification and validation of
necroptosis-related gene prognostic
signature

We randomized 902 patients included in the study into the

Train and Test sets. Then LASSO regression analysis was

performed in the Train set samples to construct a prognostic

signature that included five NRGs (Figures 2B,C). These five

genes and their correlation coefficients in the signature were

shown in Figure 2D. Risk scores were calculated based on the

expression profile data for all patients according to the formula

provided by the model.

We divided each set into low-risk and high-risk groups

bounded by the optimal cut-off values calculated by

“CatPredi” package and then we plotted Kaplan-Meier

survival curves and ROC curves separately for the Train set,

Test set, and GSE50081 to verify the robustness of the model.

The K-M curves showed that the OS of the high-risk group is

much lower than that of the low-risk group in both the Train and

Test sets, with p-values of < 0.001 (Figures 3A,B). The AUC

values for the Test set exceeded 0.7 in each of the first 3 years

(Figures 3D,E). To further test the reliability of our model, we

selected GSE50081 as external data for validation, and both

results also showed that the label performed well in assessing

prognosis (Figures 3C,F), with a survival curve of p = 0.015 and

an AUC > 0.69 at year 3, demonstrating the good performance of

the signature in assessing prognosis.

Risk score has independent prognostic
significance

Figures 4A,B demonstrated the relationship between risk

score, patient survival, and gene expression of necroptosis

regulators in the Train set and Test set, respectively. The heat

map showed that RIPK3, TLR2, and ALDH2 were lowly

expressed in the high-risk group, which corresponds to their

correlation coefficients in the predictive signature (Figure 2D).

We performed Cox analyses to test whether the 5-gene

signature was an independent predictor of OS in patients with

LUAD. Univariate Cox regression analysis (Figures 4C,D)

showed a significant association between risk score and OS.

[Train set: HR 2.089, 95% confidence interval (CI)

1.657–2.633, p < 0.001; Test set: HR 6.481, 95% CI

3.095–13.572, p < 0.001]. After adjusting for other

confounding variables, the five-gene signature remained an

independent indicator of OS in multivariate Cox regression

studies (Figures 4E,F) (Train set: HR 1.883, 95% CI

1.464–2.421, p < 0.001; Test set: HR 5.725, 95% CI

2.527–12.973, p < 0.001).

Construction of a nomogram to
quantitatively predict patient prognosis

To quantitatively predict the prognosis of LUAD patients, we

developed a risk score-based nomogram (Figure 5A) that

included tumor stages. The AUCs of curves at years 1, 2, and

3 were 0.724, 0.729, and 0.737, respectively (Figure 5B).

Combined with the calibration curves of the nomogram

shown in Figure 5C, the results show that the nomogram

model has very good predictive performance for prognosis.

Gene Ontology analysis and Kyoto
Encyclopedia of Genes and Genomes
analysis

To explore the preliminary function of the 11 prognosis-

related NRGs, we did GO functional analysis and KEGG pathway

enrichment analysis using the “ClusterProfiler” R package

(adjusted p < 0.05, |logFC| > 1). GO analysis showed

significant enrichment of genes in programmed necrotic cell

death, necrotic cell death, I-kappaB kinase/NF-kappaB signaling,

regulation of DNA-binding transcription factor activity, and

TABLE 1 Univariate Cox analysis of prognostic NRGs.

ID HR HR.95L HR.95H p-value

RIPK3 0.775939 0.655868 0.917991 0.003101

MLKL 1.22469 1.01345 1.479959 0.035881

TLR2 0.786491 0.707495 0.874307 8.70E-06

TLR4 0.838561 0.736965 0.954162 0.007539

TNFRSF1A 1.534057 1.218781 1.930888 0.000267

PGAM5 1.513917 1.248294 1.836062 2.52E-05

NR2C2 0.794317 0.646461 0.97599 0.028436

TRAF2 1.313365 1.08852 1.584655 0.004437

ALDH2 0.74703 0.654351 0.852836 1.59E-05

EZH2 1.198274 1.0576 1.35766 0.004527

NDRG2 0.790279 0.696952 0.896103 0.000242
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other functions (Figure 6A). In KEGG pathway analysis, we

learned that these genes are mainly concentrated in Necroptosis,

Salmonella infection, and TNF signaling pathway (Figure 6B).

Immune landscape and immunotherapy-
related analysis

Figure 7 suggested that a variety of immune cells such as

cytotoxic CD8+ T cells, Natural killer T cells, regulatory T cells,

and macrophages are highly correlated with the risk score as well

as key genes in the process of necroptosis and may play an

important role in this prognostic signature.

We then performed the ESTIMATE analysis (Figure 8A), and

the immune score and ESTIMATE score were significantly lower

in the high-risk group. Considering that patients in high and low-

risk groups may respond differently to immunotherapy, we

further investigated the response to ICI therapy represented

by CTLA4/PD-1 inhibitors in both groups by

ImmunoPhenoScore (IPS). Regardless of whether the

CTLA4 and PD-1 status was positive or negative, patients in

the low-risk group had higher IPS than those in the low-risk

group, and the difference was statistically significant (Figure 8B).

Furthermore, we performed a TMB correlation analysis,

Figures 8C,D, showing that the Tumor Mutation Burden

differed significantly between the two groups of high and low

risk according to the risk score. The risk score and TMB were

positively correlated, r = 0.3.

High-risk groups are more sensitive to
chemotherapy

Finally, we tested the sensitivity of patients in high and low-

risk groups to familiar drugs based on a database of the GDSC.

The R package “pRRophetic” (Geeleher et al., 2014a; Geeleher

et al., 2014b) allows us to calculate IC50 for common

chemotherapeutic agents in the cohort, including cisplatin,

paclitaxel, and doxorubicin, rapamycin, etc. The lower the

IC50 value, the higher the drug sensitivity. So, patients with

LUAD in the high-risk group were significantly more sensitive to

TABLE 2 The clinical characteristics of LUAD patients in the TCGA and
GSE72094 datasets.

Clinical characteristics Total %

TCGA 504 100

Survival status Alive 321 63.69

Dead 183 36.31

Age ≥60 years old 358 71.03

<60 years old 136 26.98

Unknown 10 1.98

Gender Male 234 46.43

Female 270 53.57

Stage I 270 53.57

II 119 23.61

III 81 16.07

IV 26 5.16

Unknown 8 1.59

T classification T1 168 33.33

T2 269 53.37

T3 45 8.93

T4 19 3.77

Tx 3 0.60

N classification N0 325 64.48

N1 94 18.65

N2 71 14.09

N3 2 0.40

Nx 12 2.38

M classification M0 335 66.47

M1 25 4.96

Mx 144 28.57

Pharmaceutical therapy YES 61 12.10

NO 68 13.49

Unknown 375 74.41

Radiation therapy YES 61 12.10

NO 71 14.09

Unknown 372 73.81

Locoregional surgery YES 9 1.78

NO 96 19.05

Unknown 399 79.17

Metastatic surgery YES 20 3.97

NO 78 15.48

Unknown 406 80.55

GSE72094 398 100

Survival status Alive 285 71.61

Dead 113 28.39

Age ≥60 years old 340 85.43

<60 years old 58 14.57

Gender Male 176 44.22

Female 222 55.78

Race White 377 94.72

Others 21 5.28

(Continued in next column)

TABLE 2 (Continued) The clinical characteristics of LUAD patients in the
TCGA and GSE72094 datasets.

Clinical characteristics Total %

Stage I 254 63.82

II 67 16.83

III 57 14.32

IV 15 3.77

Unknown 5 1.26
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common chemotherapeutic agents such as cisplatin, paclitaxel,

docetaxel, and doxorubicin (Figures 9A–D). Additionally, for the

targeted drug of lung cancer, Gefitinib had a favorable response

in the low-risk group (Figure 9E) and so did AKT inhibitor VIII

(Figure 9F), suggesting that targeted therapy may provide benefit

to these patients.

Discussion

Necroptosis, as a form of programmed cell death, is a

regulated form of necrosis. It has biological changes like that

of cell necrosis, such as a dramatic increase in intracellular

peroxides, highly phosphorylated mitochondrial membranes,

and cell swelling, but the mechanisms of their initiation are

not the same. Necrosis is defined as a non-programmed form of

cell death characterized by cellular rupture. This allows the

leakage of biomolecules such as damage-associated molecular

patterns (DAMP), which are recognized by immune cells and

trigger an inflammatory response. In contrast, necroptosis is

controlled by a unique signaling pathway, which requires RIPK3-

dependent MLKL phosphorylation. This phosphorylation event

causes MLKL to produce a pore complex at the plasma

membrane, which leads to DAMP secretion, cell swelling, and

membrane rupture.

In this study, we constructed a prognostic signature

associated with NRGs and demonstrated its good and accurate

prognostic prediction ability using a combination of internal

validation (Test set) and external validation (GSE50081). Cox

regression analysis showed that our risk score could be used as a

strong predictor of prognosis for LUAD patients. Interestingly,

the fact that smoking was not an independent prognostic factor

for patients was also confirmed in our study. According to Jemal

et al. (2018), an increasing proportion of patients diagnosed with

lung cancer are non-smokers, especially among those diagnosed

with LUAD, despite that smoking has long been recognized as

one of the important risk factors for lung cancer (Gould et al.,

2013).

A total of five NRGs were included in the prognostic

prediction model, which were RIPK3, MLKL, TLR2,

TNFRSF1A, and ALDH2. Several studies have been

conducted to explore the function of these genes, especially

the relationship between these genes and cancer. RIPK3 is

thought to be a key molecular switch for the initiation of

FIGURE 3
Validation of the prognostic signature. Kaplan–Meier curve presents differences in overall survival between the high-risk and low-risk groups in
the Train set (A), Test set (B), andGSE50081 (C). ROC curves of the NRG signature for predicting the 1/2/3-year survival in the Train set (D), Test set (E),
and GSE50081 (F). All results were statistically significant, demonstrating the good performance of the signature in assessing prognosis.
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FIGURE 4
Risk score has independent prognostic significance. The trends of risk scores, the distribution of survival status, and the expression of the five
genes included in the signature in Train set (A) and Test set (B). The prognostic ability and clinical characteristics of the signature were analyzed by
univariate Cox regression (C), multivariate Cox regression (E) in Train set and validated by univariate Cox regression (D), multivariate Cox regression
(F) in Test set. The five-gene signature and stage were statistically significant in the Cox regression analysis.
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necroptosis in cells. In the classical necroptotic pathway,

deubiquitinated RIPK1 interacts with RIPl3 via exposure of

the RIP homotypic interaction motif (RHIM) structural

domain and conformational changes to phosphorylate and

form amyloid signaling complex necrosomes together with

FADD/caspase8 (Anderton et al., 2019). Then, MLKL is

recruited and phosphorylated to mediate the execution of

necroptosis. When RIPK1 is deficient, DNA-dependent

activator of interferon regulatory factors (DAI),

lipopolysaccharide, and chemical inducers can directly

activate RIPK3 through a non-caspase-dependent

mechanism, and activated RIPK3 phosphorylates MLKL to

mediate necrosis signaling (Brault and Oberst, 2017). Multiple

cancers suppress necroptosis through epigenetic silencing of

RIPK3, which is consistent with our obtained finding that the

mRNA expression of RIPK3 in the model is negatively

correlated with the patient’s risk score.

Although activation of MLKL is the executor of the

necroptotic process, the expression of MLKL varies much

across cancers, which is related to its complex cytological

function. Recent studies have revealed that MLKL has an

important role in a variety of non-necroptotic processes such

as axonal repair, receptor internalization, extracellular vesicle

formation, ligand-receptor degradation, and even in the

inhibition of necroptosis (Martens et al., 2021). Unfortunately,

the exact role of MLKL in cancer progression and metastasis is

still unclear.

TLR2 induces TNF expression mainly through the Myeloid

differentiation factor 88 (MyD88)-dependent pathway, which

can indirectly trigger apoptosis or triggers the classical pathway

FIGURE 5
Nomogram was assembled by stage, and risk score for predicting the survival rate of LUAD patients (A). ROC curves of the nomogram for
predicting the 1/2/3-year survival (B). 1/2/3-year nomogram calibration curves (C). The results show that the nomogram model has very good
predictive performance for prognosis (***p < 0.001).

Frontiers in Genetics frontiersin.org10

Song et al. 10.3389/fgene.2022.1027741

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1027741


of necroptosis through RIP1-RIP3 activation (Kaiser et al., 2013).

Interestingly, TNF is generally recognized to inhibit or kill tumor

cells through multiple links, TNF receptors (TNFR), especially

TNFR1, have been found to be upregulated in a variety of tumors,

such as ovarian cancer (Le Page et al., 2006), renal clear cell

carcinoma (Diegmann et al., 2006) and acute myeloid leukemia

FIGURE 6
GO enrichment analysis (A) and KEGG enrichment analysis (B) of the 11 prognostic NRGs. The size of the circles in the graph indicates the
number of genes enriched in the mechanism or pathway, and the color of the circles indicates the q-value.

FIGURE 7
The correlation between infiltrating immune cells and NRGs in the signature. The change in the color of blocks implies the strength of the
correlation (*p < 0.05; **p < 0.01; ***p < 0.001).
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FIGURE 8
Application of risk score in predicting the immunotherapeutic effect. (A) Differential analysis of the tumor microenvironment for relative
enrichment of immune cells and stromal cells. The low-risk group had a higher degree of immune cell infiltration and lower tumor purity. (B) The
immunophenoscore (IPS) distributionwas compared between high and low-risk groups. (C,D) TumorMutation Burden correlation analysis showed a
positive correlation between risk score and TMB. (*p < 0.05; **p < 0.01; ***p < 0.001; pos means positive; neg means negative).
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(Brouwer et al., 2001). This may be related to the fact that

TNFR1, in addition to being involved in mediating apoptosis

and necroptosis, can also mediate cell activation signals and

proliferation signals that drive the expression of pro-survival

genes (Dondelinger et al., 2016). TNFRSF1A, the gene encoding

the TNFR1 protein, was similarly found to be highly expressed in

the high-risk group of LUAD patients in our present study.

ALDH2 belongs to the acetaldehyde dehydrogenase family, and

its reduction not only induces proliferation and stem cell

properties of LUAD cells but also may induce DNA damage,

which will promote tumor recurrence, drug resistance, and

metastasis, leading to poor prognosis of LUAD (Li et al., 2019).

Many studies have shown that cancer cells undergoing

necroptosis mediate immune responses by promoting

interactions between dying cancer cells and immune cells

through the release of damage-associated molecular patterns

(DAMPs), chemokines, cytokines, and/or cancer antigens

(Krieser and White, 2002; Park et al., 2009; McCracken et al.,

FIGURE 9
Potential drug sensitivity of common drugs in high and low-risk groups. The high-risk group had a higher sensitivity to chemotherapeutic
agents such as cisplatin (A), paclitaxel (B), docetaxel (C), and doxorubicin (D) compared to the low-risk group. However, the low-risk groupwasmore
sensitive to targeted therapeutic agents gefitinib (E) and AKT inhibitor VIII (F).
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2015; Sprooten et al., 2020). In terms of tumor suppression,

DAMPs can eliminate cancer cells by stimulating the initial

sensors of infection or damage (e.g., pattern recognition

receptors on myeloid cells) and activating adaptive immune

cells such as antigen-specific cytotoxic CD8+ T cells (Yatim

et al., 2015). A significant positive correlation of MLKL with

cytotoxic CD8+ T cells was also demonstrated in our study. In

addition to this, RIPK3 can induce the production of cytokines to

activate natural killer T cells, which also help to kill cancer cells

(Sprooten et al., 2020). However, regarding tumor promotion,

necroptotic cancer cells can also attract myeloid or lymphocytes,

triggering tumor-associated immunosuppression (Cohen et al.,

2010; Vandenberk et al., 2016; Wauters et al., 2021). For example,

in Figure 7, RIPK3 exhibited a significant positive correlation

with regulatory T cell and Macrophages M2. Besides, cytokines

released from necrotic apoptotic cancer cells can promote

angiogenesis, reactive oxygen species release, and genomic

instability, thus promoting tumor progression (Singh et al.,

2017).

Furthermore, in addition to these biological insights, our study

plays an important role in guiding the use of immunotherapy in

patients with LUAD. The background features of the

immunobiology of necroptosis, combined with a more complex

tumor immune landscape, can produce highly unpredictable

outcomes for immunotherapy of tumors. ICIs do greatly improve

the prognosis of cancer patients, but a minority still does not

respond adequately to these immunotherapies, as treatment

efficacy is largely influenced by immune cell abundance, tumor

mutation burden, and other biomolecules (He et al., 2015; Sharma

et al., 2017; Herbst et al., 2018). Combined results, our study has

important implications for the use of single ICIs as well as combined

ICIs in patients with LUAD. Therefore, it will be interesting to

systematically decipher whether ICI-based immunotherapy can

synergize with necroptosis and produce unknown benefits. More

importantly, we predicted the sensitivity of chemotherapeutic

agents, which helps physicians choose the right combination of

chemotherapy and immunotherapy to improve the survival rate of

LUAD patients. This is because the efficacy of ICIs can be greatly

improved when co-administered with cytotoxic therapy (Judd and

Borghaei, 2020).

Of course, our study has many drawbacks. Firstly,

necroptosis is a new and rapidly developing field, and more

and more NRGs will be discovered and fully studied over time.

Our findings will be fleshed out then. Secondly, all data

samples in this study were obtained from public open-

source databases. Due to the relatively small number of

LUAD patients in public databases and the duplication of

transcriptome data in different databases, the sample size

covered in the randomized grouping of this study was

relatively insufficient, resulting in the low significance of

some results. On the other hand, some important clinical

details were not available in the open-source dataset,

including chemotherapy regimens, drug information, and

tumor TNM grading. And the lack of these data limits

more in-depth analysis of the dataset. In addition, some of

the prognostic NRG-associated immunohistochemical slides

in the HPA database were not available, which also left us with

a regret for our study. Finally, the role of some NRGs in non-

small cell lung cancer is unclear and still needs to be revealed

by further in vivo or in vitro experiments.

In conclusion, we constructed a robust NRG-related

prognostic signature that could be used to predict the

prognosis of LUAD patients. We also analyzed the sensitivity

of different immunotherapy and chemotherapy regimens, which

could provide a reference to improve patient prognosis and

achieve personalized medicine. Meanwhile, we believe that

this study provides insight into the potential role of

necroptosis in lung adenocarcinoma.
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Immunohistochemical (IHC) staining results of expression levels of the
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