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The natural ends of the linear eukaryotic chromosomes are protected by

telomeres, which also play an important role in aging and cancer

development. Telomere length varies between species, but it is strictly

controlled in all organisms. The process of Telomere Length Maintenance

(TLM) involves many pathways, protein complexes and interactions that were

first discovered in budding and fission yeast model organisms (Saccharomyces

cerevisiae, Schizosaccharomyces pombe). In particular, large-scale systematic

genetic screens in budding yeast uncovered a network of ≈500 genes that,

when mutated, cause telomeres to lengthen or to shorten. In contrast, the TLM

network in fission yeast remains largely unknown and systematic data is still

lacking. In this work we try to close this gap and develop a unified interpretable

machine learning framework for TLM gene discovery and phenotype prediction

in both species. We demonstrate the utility of our framework in pinpointing the

pathways by which TLM homeostasis is maintained and predicting novel TLM

genes in fission yeast. The results of this study could be used for better

understanding of telomere biology and serve as a step towards the

adaptation of computational methods based on telomeric data for human

prognosis.
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1 Introduction

In most eukaryotes, the chromosomal ends are protected by telomeres, composed of

short G-rich repeats and a special set of proteins (Blackburn, 1991). Telomeres play a

pivotal role in chromosomal duplication, stability, and dynamics (Zakian, 1995).

Telomeres shrink with replicative age due to the inability of DNA polymerases to

synthesize lagging-strand DNA after the removal of RNA primers at the extreme ends of

the chromosome (Hayflick, 1965; Harley et al., 1994). This condition, referred to as the

“end replication problem”, is solved by the ribonucleoprotein telomerase, which uses its

RNA subunit to reverse transcribe telomeric DNA (Greider and Blackburn, 1989).
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Telomerase is expressed in stem cells, but is barely detected in

somatic cells. Continuously growing microorganisms, such as

yeasts, constitutively express telomerase and are excellent models

to investigate the mechanisms that regulate telomere biology and

have uncovered a complex network of factors required to

maintain telomere length homeostasis (Wellinger and Zakian,

2012; Harari and Kupiec, 2014; Kupiec, 2014). In budding yeast

(S. cerevisiae), telomerase recruitment and activity is mediated by

several factors that are required for the elongation of the shortest

telomeres in some of the cell cycles (Teixeira et al., 2004).

Large-scale systematic genetic screens in S. cerevisiae, which

scored collections of gene-knockouts and hypomorphic alleles,

discovered a network of genes that participate in controlling

telomere length (Askree et al., 2004; Gatbonton et al., 2006;

Ungar et al., 2009; Puddu et al., 2019). These Telomere Length

Maintenance (TLM) gene products have a variety of biochemical

roles, some of which were not previously identified to be

connected with the regulation of telomere size. Whereas

mutations in some of these genes lead to shorter telomeres,

others cause telomeres to elongate. Thus, each and every one of

the ≈500 genes identified controls in a positive or negative way

the length of telomeres.

So far, to the extent that we know, no attention has been paid

to computationally modeling the TLM network in S. pombe.

Thus, the aim of this study is to close this gap and to create a

machine learning framework for examining telomere

maintenance in fission and budding yeast. Our proposed

framework is first validated in S. cerevisiae for detecting

telomeric length phenotype. Next, we test it on curated S.

pombe TLM data, and pinpoint the most important pathways

and protein complexes that make up TLM homeostasis. We

follow by investigating the TLM phenotype within the yeast

orthologs and suggest the most likely S. pombe genes that are

currently unknown to be members of the TLM network in this

organism. Last, we perform gene ontology (GO) enrichment

analysis for these candidates and reveal that they are significantly

enriched for biological processes known to be highly linked with

telomere maintenance functions.

2 Materials and methods

2.1 Telomere length data

The data for the S. cerevisiae TLM genes along with their

corresponding telomere length category was obtained from Van

Leeuwen et al. (2016) and Puddu et al. (2019). For the binary

classification of telomere length, the categories were reduced to

the following phenotypes: ‘short’ and ‘long’. YIR016W was

observed as both normal and ‘very long’, hence we assigned it

as ‘long’. The data also included the Decreased Abundance by

mRNA Perturbation (DAmP) collection and we treated the two

telomere length labels of ‘DAmP Short’ and ‘DAmP Long’ as

‘short’ and ‘long’, respectively.

The S. pombe TLM genes were curated from the Fission Yeast

Phenotype Ontology (FYPO) v2011-01-18 (Harris et al., 2013).

The following FYPO terms were labeled as having ‘short’ (’FYPO:

0002239′, ’FYPO:0006511′, ’FYPO:0003106′, ’FYPO:0003107′)
and ‘long’ (’FYPO:0002019′) telomere length phenotypes.

Finally, we merged these genes with a list of genes that were

found to regulate the homeostasis of telomeres (Liu et al., 2010).

Overall, we obtained 483 and 224 unique TLM genes with

corresponding binary telomere length phenotypes for S.

cerevisiae and S. pombe, respectively (Supplementary Table S1).

2.2 Genetic interaction data

For each S. cerevisiae TLM gene, raw Genetic Interaction (GI)

scores were taken from the pairwise interaction format of the

TheCellMap.org repository (Usaj et al., 2017). They were

produced by systematic Synthetic Genetic Array (SGA)

experiments and scored by comparing the fitness of the

double mutant to the corresponding single mutants (Costanzo

et al., 2016). We only considered the authors’ lenient threshold,

i.e., GIs with p − value < 0.05. In the case of multiple

measurements per interaction, the GI score with the lowest

p − value was used. The outcome was a score matrix of the

TLM genes and 5850 genes sharing at least one GI with one of the

TLM genes.

The S. pombe GI data was downloaded from BioGRID

v4.4.207 (Oughtred et al., 2021). Unlike the S. cerevisiae data,

the interactions only contain a verbal description and not a

numerical score, which we mapped into a score of 1 when there

was an interaction and 0 otherwise. We used all the data that are

marked ‘genetic’ in their ‘Experimental System Type’ field.

2.3 Pathway data

To construct the pathway features, the Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway database release 99.0

(Ogata et al., 1999) was parsed via the BioServices v1.10.1

(Cokelaer et al., 2013) API. Only non-global and non-

overview maps were considered (i.e., utilizing pathways that

only contain genes and not ones that contain other pathways).

2.4 Protein complex data

For S. cerevisiae, the CYC2008 catalog was used. It contains

408 manually curated heteromeric protein complexes that were

confirmed by small-scale experiments from the literature (Pu

et al., 2009).
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S. pombe complex information was downloaded from

PomBase (Harris et al., 2022). It is based on the GO database,

for terms that are classified under “macromolecular complex”

(GO:0032991) and have fission yeast genes annotated, such that

the most specific complex is retained.

2.5 Orthology data

A manually curated ortholog list of fission to budding

yeast was retrieved from PomBase (Wood et al., 2012). For

cases where there was more than one ortholog per gene, the

gene with the maximum score from the Smith-Waterman

alignment algorithm (Smith and Waterman, 1981) was

selected. This was achieved using the Biopython v1.79

(Cock et al., 2009) pairwise2.align.localds function with

the same parameters as in the web BLAST NCBI interface

(http://blast.ncbi.nlm.nih.gov), i.e., BLOSUM62 scoring

matrix, a gap cost of 11 and an extension cost of 1. The

final set contained 3953 orthologous pairs (Supplementary

Table S2).

2.6 GO data

In order to process the GO consortium database

(Ashburner et al., 2000; Consortium, 2021) the Python

package GOATOOLS v1.2.3 (Klopfenstein et al., 2018)

was used. For the feature engineering, GO terms from

Biological Process (BP) and Cellular Component (CC)

categories were filtered to include only genes for which we

have prior data (i.e., genes that appear in the S. cerevisiae GI

dataset). Broad terms that contain more than 30 genes were

excluded from further analysis, as well as terms with less

than 3 genes.

2.7 GO enrichment analysis

For the GO enrichment analysis, we used the PANTHER

web API (http://pantherdb.org/services/openAPISpec.jsp)

with annotation files from March 2022 (GO Ontology

database DOI:10.5281/zenodo.6399963 released on 2022-03-

22). We employed the ‘Enrichment (Overrepresentation)’ test

which computes a p − value using Fisher’s exact test, and the

False Discovery Rate (FDR) method was used for multiple

hypothesis correction. We limit the enrichment testing to only

include biological process terms. In order to avoid broad

terms, we restricted the analysis to terms that contain at

most 250 genes. The test cutoff was set to an FDR q −

value < 0.05.

2.8 Feature generation

We designed four sets of features that span a variety of

molecular functions including genetic interactions, pathway

maps, biological processes, and protein complexes. We refer

to a feature based on the main dataset it was derived from,

namely, KEGG, GO BP, CYC2008, and GOCC. A summary of all

the feature sets we evaluated for telomere length classification is

presented in Table 1.

In order to extract the KEGG andGOBP features, we considered

for each gene its proportion from the group that has a non-zero GI

score with it. For KEGG and GO BP, respectively, this group consists

of the genes that make up a pathway and GO term direct gene

members, more details are provided in the Supplementary Material.

TheCYC2008 andGOCC features indicate for each protein complex

a gene’s membership in it. When combining a pair of feature sets, it

was done bymerging on the intersection of genes that are in both sets.

For classifying TLM genes and predicting S. pombe

candidates, we defined another feature, namely, propagation

to anchor genes. These are genes that act as an endpoint for

TLM-related processes as described for S. cerevisiae (Shachar

et al., 2008) and that we adapted for S. pombe (Supplementary

Table S3). Producing this feature employs a random walk with a

restart propagation process as described in (Cowen et al., 2017).

Specifically, the following steps were taken:

1) We used the whole genome with Protein-Protein Interaction

(PPI) binary scores from BioGRID v4.4.207 as the adjacency

matrix (interactions labeled ‘physical’ in their ‘Experimental

System Type’ field). We normalized this matrix byW = AD−1,

where A is the adjacency matrix and D is the diagonal degree

matrix.

2) The starting vector p0 was set to 1
|G| for each anchor gene and

zero for all other genes, where |G| is the number of anchor

genes.

3) The resulting feature vector was produced by a computation

until convergence of the vector pk = 0.2p0 + 0.8Wpk−1

2.9 Machine learning models

To evaluate classification performance, we used five standard

machine learning models from the Python package SciKit-Learn

(version 1.0.2), that have been proposed for obtaining good

prediction accuracy in the bioinformatics domain (Olson

et al., 2018). We retained the recommended hyperparameters

that were set prior to all experimentations as summarized in

Table 2.

This list of models was tweaked to include the Extreme

Gradient Boosting Classifier (XGB) from the XGBoost

package (v0.9) instead of the Gradient Boosting Classifier and
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the Logistic Regression was replaced by the Logistic Regression

Cross Validation (LRCV) model. In addition, the Linear Support

Vector Classifier (LSVC) model was added to have more than

one linear model assessed, resulting in six models overall.

2.10 Evaluation setting

Our dataset is imbalanced among the telomere length classes.

This leads to models that are overly conservative when predicting

the minority classes. To address this issue we performed

5 repeated stratified 10-fold Cross-Validation (CV)

experiments. This procedure is followed for each held-out test

in a 10-fold CV and the whole process is repeated 5 times,

producing different splits and held-out test sets in each

repetition, but maintaining the percentage of samples for each

class. For all the setups, the models were assessed in each run for

the relevant evaluation metrics on the held-out test dataset and

the median score (unless stated otherwise) across all experiments

is reported.

The evaluation metrics included Matthew’s Correlation

Coefficient (MCC) and Area Under the receiver-operating

characteristic Curve (AUC) as they are more robust to

imbalanced label distribution (He and Garcia, 2009; Chicco

and Jurman, 2020). The MCC is calculated as follows:

MCC � TP × TN − FP × FN
�������������������������������������
TP + FN( ) TP + FP( ) TN + FP( ) TN + FN( )√ (1)

where TP represents the True Positive; TN, the True Negative;

FP, the False Positive; FN, the False Negative. It is the Pearson

correlation coefficient between the predicted and true labels. The

Receiver-Operating Characteristic curve depicts the true positive

rate as a function of the false positive rate. The AUC is a metric

for assessing a classifier’s overall performance. The better the

classifier is, the closer to one the AUC is.

In order to keep the number of features not greater than

the number of samples (Ressom et al., 2008), feature sets

that exceeded this threshold were reduced to match the size

of the samples in all of the experiments. To this end, a

Bernoulli Naive Bayes Classifier was applied during the

training phase to determine the importance of each

feature based on the observed log probability of features

given a class. The top ranking features, up to the number of

samples, were selected to be used for testing via SciKit-

Learn’s SelectFromModel.

TABLE 1 Overview of the feature sets used to evaluate S. cerevisiae telomere length classification pipelines.

Number of samples Number of features

Feature name Short TLM Long TLM Total

GO BP 264 166 430 1559

KEGG 264 166 430 109

CYC2008 169 88 257 146

GO CC 166 78 244 200

GO BP/KEGG 264 166 430 1668

GO BP/CYC2008 152 82 234 1705

GO BP/GO CC 166 78 244 1759

KEGG/CYC2008 152 82 234 255

KEGG/GO CC 166 78 244 309

CYC2008/GO CC 129 58 187 346

TABLE 2 Machine learning models used, and their parameters.
Parameters that are not in the table were set to the default values
of the SciKit-Learn (version 1.0.2) package.

Model name Parameters

XGBClassifier (XGB) n_estimators = 500

max_depth = 3

max_features = ’log2′
eval_metric = ’logloss’

learning_rate = 0.1

RandomForestClassifier (RF) n_estimators = 500

criterion = ’entropy’

max_features = 0.25

ExtraTreesClassifier (ET) n_estimators = 1000

max_features = ’log2′
criterion = ’entropy’

SVC (PSVC) C = 0.01

gamma = 0.1

degree = 3

coef0 = 10

kernel = ’poly’

LinearSVC (LSVC) max_iter = 100000

LogisticRegressionCV (LRCV) max_iter = 10000
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3 Results

3.1 Prediction of telomere length changes
following gene knockout

We compiled a comprehensive collection of feature sets for

telomere length prediction following gene knockout. First, we

focused on the task of predicting shorter-than-normal vs. longer-

than-normal length. We assessed each one of the feature sets

individually after applying standardization scaling using the

StandardScaler functionality from SciKit-Learn.

A heatmap of the metrics’ median results across all test runs

for each Machine Learning (ML) model and feature sets is

presented (Figure 1A). The results are ordered by the overall

median score of a model, across all features. The Random Forest

Classifier (RF) achieved the greatest performance across all

features in the MCC metric with an overall median score of

0.3 and LRCV had the highest overall median AUC score of 0.69.

A comparison of the type of features used reveals that protein

complex-based features (CYC2008 and GO CC) significantly

outperform other features across all classificationmetrics andML

models in this context (Figure 1B). Comparing the two in each

metric shows that CYC2008 has a significantly higher MCC score

(0.49 vs. 0.39, p < 0.0001), but achieves similar AUC scores

(0.75 vs. 0.74). Therefore, ML models using a single set of protein

complex-based features, and in particular, CYC2008, will lead to

a better classification of telomere length samples than pathway

features.

Next, we moved to examine a mixture of feature sets. We

limited the search to pairwise feature space combinations,

selecting the top features in the same manner as described

above. The results are ordered by the median score per

feature combination, across all models (Figure 2A). In both

AUC and MCC measures, the highest-performing features

across all models are made of the combination of protein

complex features (CYC2008) and pathway features (KEGG).

FIGURE 1
Comparative assessment of feature set performance in classifying short and long phenotypes. (A)Median model performance for each feature
set. (B) Performance distribution of the features with aMann-Whitney U test with continuity correction comparing the top feature set with all the rest
with the significant comparisons indicated. **** indicates p < 0.0001.
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The highest overall performing model and feature set were the

LRCV with CYC2008 and KEGG features, with a median AUC

score of 0.834 and median MCC score of 0.513 across all

experiments (Figure 2B). In addition, the top two performing

models in both metrics used the CYC2008 and KEGG feature

combination, both exceeding the median AUC > 0.8 and MCC

FIGURE 2
Optimal classification of short and long telomere lengths is obtainedwith pathway and complex-based features using a linearmodel. (A)Median
model performance for each pairwise feature set. (B) Overall best performing model across features. The top two are marked by a frame and
enlarged. (C) Showing the phenotype distribution of the 1170 samples analyzed for various lengths in S. cerevisiae using our system, and the
probability estimates for each label across all experiments.
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> 0.5 scores, attesting to the utility of these features. Therefore,

our subsequent analysis utilized only CYC2008 and KEGG

feature sets with the LRCV model pipeline.

Finally, we performed a meta-analysis of the predictions.

Instead of the binary categorization to ‘short’ and ‘long’

phenotypes, we checked to see if the classifier’s estimated

probabilities for those predictions were higher in more

extreme phenotypes. To this end, we looked at the original

phenotypes, namely, ‘very short’, ‘short’, ‘slightly short’,

‘slightly long’, ‘long’, and ‘very long’. They were originally

(Askree et al., 2004) deemed as such by comparing them to a

baseline of wild-type telomere length, measuring in bulk

Southern blot. For example, strains of 385–420 telomeric

nucleotides were considered ‘long’ when compared to the

350±35 nucleotides of the wild-type, whereas those with

longer telomeres were designated ‘very long’. We compared

the estimated probabilities that were produced by the model

for each such subtype (Figure 2C). When focusing on the larger

fraction (about 67%) of phenotypes that were reduced to ‘short’,

we observed that severe phenotypes were assigned with higher

confidence (median probability of ’very short’ 0.88 vs. ’short’

0.84, p < 0.0005, and ’short’ vs. ’slightly short’ 0.77, p < 0.0005).

This was not the case for the ‘long’ phenotypic length (no

significant differences were found between ‘slightly long’,

‘long’, and ‘very long’). One plausible explanation is the

relatively small number of samples that were available during

training and testing (for example, less than 1% is labeled ‘very

long’).

3.2 Application to Schizosaccharomyces
pombe

After establishing our classifier’s performance, we wished to

generalize it to data from S. pombe, a fungal species whose

ancestors separated from S. cerevisiae ≈400 million years ago

(thus these species are different from each other as either is from

animals). To this end, we first mapped cerevisiae features to

pombe features. KEGG pathways contain a consistent naming

convention, allowing for these features to be mapped seamlessly.

For the complex-based features, we retained the ones in

CYC2008 that have a unique GO identifier and intersected

that set with the S. pombe corresponding set (with the same

GO ID). Overall, we could reproduce 127 features for

198 samples (‘long’ - 158, ‘short’ - 40). As before, we trained

a ‘short’/‘long’ classifier and evaluated its performance in cross-

validation. The median AUC score for classifying short and long

telomere length was 0.81, mean AUC result of 0.79 with a

standard deviation of 0.16 (Figure 3A) and a median MCC

of 0.49.

Next, we turned to analyze the feature importance that led to

these results (Figure 3B). To accomplish this, we took the fifteen

coefficients with the highest mean absolute value that the LRCV

model learned across all runs. Using the held-out set in each run,

allowed us to detect which characteristics contribute the most to

the examined model’s generalization capability by applying the

SciKit-Learn’s permutation_importance with n_repeats = 5. The

difference between the baseline scoring metric that is used by

FIGURE 3
Short and long telomere length prediction in
Schizosaccharomyces pombe. (A) Receiver operating
characteristic (ROC) plot. (B) The top fifteen features with the
greatest contribution to the classification according to
coefficients learned by the linear model and their permutation
importance.
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LRCV (the default accuracy measure, in our case) and the one

from permuting the feature column is defined as the permutation

importance. To summarize, after running all the experiments, we

were left with the top-15 highest mean absolute coefficients that

participated in all the runs and their respective mean

permutation importance. Having our data scaled in the

preprocessing step, allowed us to then look at the odds ratio

for each feature in conjunction with its permutation importance

score with regards to rest. This way, we could assess the highest

influencing features in our system as-is, disregarding interacting

terms. Among the features with a relative high permutation

score, we find the telomerase, Mre11-Rad50-Xrs2 (MRX) and

the HIstone Regulator (HIR) complexes and DNA damage

response pathways, aligning with the findings of the S.

cerevisiae TLM mechanisms (Askree et al., 2004; Rubinstein

et al., 2014). Despite the difference between the data sets of

the two organisms where in cerevisiae the majority group is the

‘short’ one, while in pombe the opposite is true, the performance

generalized well to the pombe setting.

3.3 Prediction of S. pombe TLM genes
from orthologs

Orthologs are the result of speciation events and are likely

to be functionally related. In our context, previous research

has demonstrated that gene dispensability is conserved for the

majority of ortholog genes in budding and fission yeast (Kim

et al., 2010). Based on this result, we set to assess if the same

holds for TLM genes. According to data we have, out of

3953 orthologs, only 51 genes (1.29%) are TLM genes in

both species. However, when focusing on the subset of

TLM genes in either species, 9.94% of the genes (51/513)

are TLM genes in both yeasts. A closer look into the telomere

length phenotype within this subset of shared TLM orthologs

demonstrates more robust conservation than the one that has

been detailed so far. 60.78% (31/51) of shared TLM genes

preserve the phenotype (p < 0.1). Overall, 29.4% (15/51) and

31.37% (16/51) of these orthologous pairs retain the TLM

‘short’ and ‘long’ phenotypes, respectively.

We postulate that there could be more S. pombe TLM genes

within the orthologous pairs that are currently unknown to have

this role. In order to predict TLM candidates, our prediction

system was evaluated against the task of classifying between TLM

and non-TLM genes. To this end, the LRCV model remained the

same, apart from the additional setting of its class_weight

parameter to ’balanced’. The KEGG and CYC2008 feature sets

were built in the same manner, but this time with respect to the

entire ortholog gene set. In total, we explored five methods for

TLM prediction (as also summarized in Table 3):

• Method (1): Predicting a role (TLM/non-TLM) for an S.

pombe gene based on its S. cerevisiae ortholog.

• Method (2): Training a predictor on S. cerevisiae data and

applying it to S. pombe data.

• Method (3): Training and testing on S. pombe data.

• Method (4): Similar to (3), but utilizing also the S. cerevisiae

features of the gene’s ortholog.

• Method (5): Similar to (3), but with the addition of a feature

quantifying the proximity of the gene to anchor TLM genes.

The performance of the five predictors is summarized in

Table 4. Method (5) performed best; out of the other four

methods, method (3) – applying our framework as-is to this

new task – dominated the rest in terms of AUC.

Next, we aimed to predict new TLM candidates in S. pombe

usingmethod (5). To this end, we executed themodel in a leave-one-

out setting so that we could use the entire dataset for training and

make a prediction with respect to each gene in turn. The resulting

top-30 predictions that are not known to be TLM genes, along with

their S. cerevisiae orthologs, were subjected to GO enrichment

analysis (Supplementary Tables S4–S6). The top-10 is presented

in their ranked order (Table 5). Homing in on some of the genes

shows that they are associated with the Target of Rapamycin (TOR)

TABLE 3 Overview of datasets used in different methods for classifying TLM and non TLM genes.

Method Species TLM Non TLM Total Method Feature sets Number of features

S. pombe 158 2445 2603 1 Ortholog 1

1–4 S. cerevisiae 254 2068 2322 2–3 KEGG, CYC2008 259

4 518

5 S. pombe 134 1884 2018 5 KEGG, CYC2008, Anchor genes 260

TABLE 4 Evaluation of methods used in classifying TLM and non TLM
genes. Rows are sorted in ascending order by AUC performance.
The highest scores in each metric are marked in bold.

Method AUC Recall Precision

1 0.601 0.297 0.169

2 0.628 0.151 0.137

4 0.686 0.387 0.202

3 0.71 0.387 0.186

5 0.771 0.461 0.236
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signaling network (Ungar et al., 2011; Rallis et al., 2017; Lie et al.,

2018) a known participant in the regulation of subtelomeric and

telomeric regions (Schonbrun et al., 2009; Cohen et al., 2018).

Further inspection reveals that 10% of the S. pombe predicted

genes are orthologous to known TLM genes in S. cerevisiae. This

is reassuring as it is consistent with the prior experimental

knowledge that was discussed above. Overall, our candidate TLM

genes were significantly enriched (p < 0.001) for core DNA

maintenance processes (DNA damage response, DNA repair, and

DNA replication), DNA assembly or remodeling functions

(chromatin organization, chromosome segregation), and mitotic

and meiotic cell cycles (regulation of cell cycle process, regulation

of mitotic cell cycle and meiotic cell cycle). Taken together, these

enriched terms suggest that there is an association between our

candidate genes and telomere maintenance homeostasis.

4 Conclusion

This study set out to create a general machine learning

pipeline for telomere length maintenance analysis in fission

and budding yeast. We have identified a set of features along

with a simple linear model that can predict the telomere length

phenotype under various settings. The framework can also

pinpoint explanatory variables leading to its output while

utilizing a broad range of data sources, including genetic

interaction data, that is being used for the first time in this

context, to the best of our knowledge.

The generalizability of these results is subject to certain limitations.

For instance, the datasets used to derive the features are incomplete

and so is our interpretation of the predictions. Furthermore, the small

and imbalanced data, in some of the tasks we investigated, makes it

hard to learn the underlying structure of the data.

Although this study focuses on yeast datasets, the suggested

system may well have a bearing on human data, such as the UK

Biobank (Bycroft et al., 2018) as telomere length is a promising

biomarker for age-associated diseases and cancer. Considerably

more work will need to be done in order to have high quality data

of the S. pombe TLM network, and our predictions are a

promising starting point for this investigation.

Data availability statement

The genetic interaction data used for S. cerevisiae contains no

version control and was downloaded from https://thecellmap.

TABLE 5 The top-10 S. pombe TLM predicted genes and their S. cerevisiae orthologs. The rows are sorted in descending order by the model’s
estimated probability of the prediction.

Systematic
name S. pombe

Gene name
S. pombe

Product description Systematic name of
S. cerevisiae ortholog

Gene name of
S. cerevisiae
ortholog

SPCC 1919.03c amk2 serine/threonine protein kinase AMPK (beta) regulatory subunit Amk2 YGL208W SIP2

SPCC31H12.08c ccr4 CCR4-Not complex YAL021C CCR4

3′-5′-exoribonuclease
subunit 6

SPCC1259.13 chk1 Chk1 protein kinase YBR274W CHK1

SPBC947.08c hip4 histone H3.3-H4 YBR215W HPC2

chaperone, HIR complex

subunit Hip4

SPBC725.16 res1 MBF transcription factor YER111C SWI4

complex subunit Res1

SPAC25A8.01c fft3 SMARCAD1 family YAL019W FUN30

ATPase Fft3

SPCC18B5.11c cds1 DNA replication YPL153C RAD53 (*)

checkpoint kinase Cds1

SPAC4G8.13c prz1 DNA-binding transcription YNL027W CRZ1

factor, calcineurin

responsive Prz1

SPAC607.09c btn1 battenin CLN3 YJL059W YHC3

family protein

SPAC1687.15 gsk3 serine/threonine YMR139W RIM11

protein kinase Gsk3

(*) indicates a known budding yeast TLM gene. Product description data was taken from PomBase (Harris et al., 2022).
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org/costanzo2016/ on March 2022. For the rest of this work,

publicly accessible datasets were examined, and the publication

makes note of the relevant versions. All of the data and code used

for this study are available at: https://github.com/Iftahp/

yeastTLM.
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