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HK3 and its association with
Immune infiltration in
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Xi'an, China, ?Department of Radiation Oncology, Ankang Central Hospital, Ankang, China, *Clinical
Research Center for Shaanxi Provincial Radiotherapy, Department of Radiation Oncology, Shaanxi
Provincial Cancer Hospital, Xi'an, China

Background: Hexokinase 3 (HK3) is one of the key enzymes involved in glucose
phosphorylation (the first step in most glucose metabolic pathways). Many
studies have demonstrated the vital role of dysregulation of HK3 in several
tumors. However, there is a need for in-depth characterization of the role of
HK3 in glioblastoma multiforme (GBM).

Methods: All data were sourced from The Cancer Genome Atlas (TCGA) and
Chinese Glioma Genome Atlas (CGGA). Kaplan-Meier analysis and univariate
regression were applied for survival analysis. Gene set enrichment analysis
(GSEA) was used for enrichment analysis. Tumor Immune Single Cell Hub
(TISCH) database was applied for single-cell analysis. Tumor Immune
Dysfunction and Exclusion (TIDE) analysis was applied to evaluate the
immune response.

Results: HK3 expression was upregulated in GBM and correlated with poor
prognosis. The high HK3 expression group was primarily enriched in adaptive
immune response, chemokine signaling pathway, and cytokine-cytokine
receptor interaction. The high HK3 expression group showed significantly
greater enrichment of the majority of immune cells and immune-related
pathways. HK3 showed significant correlation with most immune cells,
especially macrophages (p < .001, R = .81). TISCH analysis showed that
HK3 was predominantly expressed in macrophages in most cancers.
HK3 showed significant correlation with most immune-related genes, such

Abbreviations: AML, Acute myeloid leukemia; AUCs, Area under the ROC curves; Brain LGG, lower
grade glioma; BRCA, Breast invasive carcinoma; CRC, Carcinoma of colon and rectum; CESC; ES,
Cervical squamous cell carcinoma and endocervical adenocarcinoma; CGGA, Chinese Glioma
Genome Atlas; CLL, Chronic lymphocytic leukemia; GTEx, Genotype-Tissue Expression; GBM,
Glioblastoma multiforme; HPA, Human Protein Atlas; ICls, immune checkpoint inhibitors; KICH,
Kidney chromophobe; HNSC, Head and Neck squamous cell carcinoma; KIRC, Kidney renal clear
cell carcinoma, LIHC, Liver hepatocellular carcinoma; OV, Ovarian serous cystadenocarcinoma; OS,
overall survival; PAAD, Pancreatic adenocarcinoma; ROC, Receiver operating characteristic; SKCM,
Skin cutaneous melanoma; TGCT, Testicular germ cell tumors; TCGA, The Cancer Genome Atlas;
THYM, thymoma; TIDE, Tumor Immune Dysfunction, and Exclusion; TISCH, Tumor Immune
Single-cell Hub; UVM, Uveal melanoma.
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as PD-1(p <.001, R = .41), PDL-1 (p < .001, R = .27), and CTLA-4 (p < .001, R =
.29). TIDE analysis revealed that the low HK3 expression group has a lower TIDE
score and may benefit from immunotherapy. Drug sensitivity analysis showed
that patients with high HK3 expression frequently showed drug resistance.

Conclusion: HK3 was associated with poor prognosis and may serve as a
biomarker of macrophages in GBM. HK3 was also associated with immune
response and drug resistance. Our findings may provide novel insights for GBM

immunotherapy.
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Introduction

Glioblastoma multiforme (GBM) is considered as the most
frequent primary tumor of the nervous system (Ostrom et al.,
2019). Patients with GBM have poor prognoses (median overall
survival [OS]: 15 months; 5-year survival rate: <5%) (Tan et al.,
2020). Several novel therapies, such as immune checkpoint
inhibitors, anti-angiogenesis, tumor vaccines, and Tumor
(TTFields), tried in GBM
(Rodriguez-Camacho et al, 2022); however, most of these

Treating Fields have been
therapies are ineffective (Mun et al, 2018). Therefore,
understanding the molecular mechanisms and exploring more
effective targets for GBM are key research imperatives (Uddin
et al.,, 2022).

Metabolic reprogramming is a core feature of tumors
characterized by upregulation of glycolysis (Biswas, 2015;
Pavlova and Thompson, 2016). Metabolic reprogramming
plays an essential role in tumors (Pavlova and Thompson,
2016). Acyl-CoA-binding protein was found to drive GBM
tumorigenesis by sustaining fatty acid oxidation (Duman
et al,, 2019). Isocitrate dehydrogenases (IDH)1/2 was found to
drive GBM progression by producing an oncometabolite (Chang
et al, 2019). Metabolic programming was shown to help
maintain the proliferation of stem cell-like tumor cells in
GBM (Suva et al., 2014). Metabolic reprogramming has also
been shown to be involved in the immune activity (Xia et al,
2021). Tumor depletion of glucose limits the metabolism of
T cells, resulting in their diminished mTOR activity, glycolytic
capacity, and interferon (IFN)-y production (Chang et al., 2015).

Hexokinases are the key enzymes in metabolism (Cavalcante
etal, 2016), including HK1, HK2, and HK3 (Wilson, 2003). High
expression of HK1 has been shown to be associated with poor
prognosis in the context of various tumors, such as colorectal and
ovarian cancer (Graziano et al., 2017; Li T. et al., 2020; Jiang et al.,
2021). A study demonstrated downregulation of HK1 in GBM
(Wolf et al,, 2011a). HK2 was shown to promote the motility and
proliferation of human ovarian cancer cells by activating Aktl/
p-Aktl (Tian et al., 2022). Moreover, HK2 was shown to promote
GBM progression by glycolysis (Wolf et al., 2011b). HK3 was
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found to be up-regulated in GBM; however, its role has not been
extensively investigated.

In this study, we performed a comprehensive analysis of the
role of HK3 in GBM using The Cancer Genome Atlas (TCGA),
Chinese Glioma Genome Atlas (CGGA), Tumor Immune Single
Cell Hub (TISCH), and Human Protein Atlas (HPA) databases.
In particular, we performed HK3 gene expression analysis,
survival analysis, immune infiltration analysis, single-cell RNA
sequencing analysis, and functional enrichment analysis to
investigate the prognostic and immunological significance of
HK3 in GBM.

Materials and methods
Datasets collection and pre-processing

RNA-sequencing data and associated clinical information of
33 types of cancers were sourced from the UCSC Xena (http://
xena.ucsc.edu/). The CGGA-325 dataset was sourced from the
CGGA (http://www.cgga.org.cn/) (Zhao et al., 2021). Samples
with incomplete clinical information were excluded.

Genotype-tissue expression (GTEx) was available from the
UCSC Xena. GTEx RNA-sequencing data of
207 cerebral cortex samples. After merging the TCGA-GBM
and GTEx, the “normalizeBetweenArrays” function of the

includes

“limma” package was applied to eliminate the batch effect
(Wu et al, 2022). All RNA-sequencing data were normalized
(Fragments Per Kilobase Million, FPKM) and log2®"*M+V
transformed.

Survival analysis

Univariate cox regression analysis was used to determine the
prognostic value of HK3. Kaplan-Meier survival curves were
plotted using the “surv” and “survminer” R packages, and
between-group differences in survival were assessed using the
log-rank test.
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Immune-related analysis

The enrichment scores of 16 immune cells and 13 immune-
related pathways were computed using the “GSVA” and
“GSEABase” The
expression and immune cells was assessed using the TIMER

R packages. correlation  between gene
2.0 web application (http://timer.cistrome.org/) (Li Y. et al,
2020). The correlation between HK3 and immune-related genes
was determined using Spearman’s correlation analysis (Zhu et al,,
2021). Tumor Immune Dysfunction and Exclusion (TIDE) analysis
includes MSI Expr Sig, Dysfunction, Exclusion, and TIDE scores,
which were computed by uploading gene expression data through
the web application (http://tideere.dfci.harvard.edu). Patients with
low TIDE scores may benefit from immunotherapy (Fu et al., 2020).

HK3 expression in immune cells

The “RNA immune cell” is a part of the Human Protein Atlas
(HPA) which was applied to explore the gene expression in
immune cells (https://www.proteinatlas.org/) (Karlsson et al.,
2021). In this part, the Monaco dataset includes 29 immune
cells, and the Schmiedel dataset includes 15 immune cells in
peripheral blood (Schmiedel et al., 2018; Monaco et al., 2019).
The TISCH is a convenient web application for single-cell
analysis (http://tisch.comp-genomics.org/home/),  which

includes 190 single-cell datasets (Sun et al., 2021).

Drug sensitivity analysis

The “OncoPredict” R package based on Genomics of Drug
Sensitivity in Cancer (www.cancerrxgene.org/) was used to
calculate the half-maximal inhibitory concentration (IC50) of
drugs (Maeser et al., 2021).

Cell lines and culture

The human glioblastoma cell lines (U87, A172, and U373) and
normal human astrocytes (NHA) cell line SVGp12 employed in the
study were purchased from American Type Culture Collection. Cells
were cultured in Dulbecco’s modified Eagle’s medium (DMEM;
HyClone, Logan, United States) with 10% fetal bovine serum
(FBS; Gibco, NY, United States) and 1% penicillin-streptomycin
(HyClone, Logan, United States) in 37°C incubators with 5% CO.,.

RNA isolation and RT-PCR

Total RNA was extracted using the RNAfast200 kit (Fastagen,
China) according to the manufacturer’s instructions, and RNA

concentration ~was  quantified using NanoDrop 3,000
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(ThermoFisher, United States). Then, 1.0 pg of total RNA in a
20 pL reaction system was reverse transcribed into cDNAs using
Evo M-MLV RT Kit with gDNA Clean for qPCR (Accurate
Biotechnology, China). qRT-PCR was carried out using 2 x
RealStar Green Fast Mixture (GeneStar Technology, China). -
tubulin expression was used as the internal reference. The 274"
method was applied to calculate the relative expression of HK3. The
primer sequences were as follows:

HK3 5'-AGGGTATGGTCGAAGGTGGTCAG-3'(forward)
and 5-GTGGCAGTGCTGGACGAAGAC-3'(reverse);  B-
tubulin  5'-ACCTGATGTATGCCAAGCGT-3'(forward)
5/-AGCTGAAATTCTGGGAGCATGA-3'(reverse).

and

Statistical analysis

All statistical analyses were performed using R software (version
42.1). Spearman’s test was used for correlation analysis. p
values <.05 were considered indicative of statistical significance.

Results
Expression of HK3 in cancers

HK3 expression was explored at the pan-cancer level using
TIMER2.0. The results showed dysregulation of HK3 expression in
14 types of human cancers (Figure 1A). HK3 mRNA expression in
GBM samples was significantly higher than that in normal samples
(Figures 1B, C). qRT-PCR showed that HK3 mRNA expression was
significantly higher in A172 and U373 cells than in NHA cells, but
not elevated in U87 cells (Figure 1D). The protein encoded by
HK3 was also upregulated in GBM (Figure 1E).

Prognostic value of HK3 in cancers

The prognostic value of HK3 is tumor-specific. Univariate
Cox regression analysis showed that the expression of HK3 was
associated with poor OS in GBM, kidney renal clear cell
(KIRC), grade glioma (LGQG),
thymoma (THYM), uveal melanoma (UVM), kidney
chromophobe (KICH), acute myeloid leukemia (LAML),
testicular germ cell tumors (TGCT), and liver hepatocellular

carcinoma brain lower

carcinoma (LIHC), but associated with favorable OS in skin
cutaneous melanoma (SKCM) (Figure 2A). Kaplan-Meier
analysis showed that high expression of HK3 was associated
with poor OS in GBM, LGG, KIRC, LAML, and UVM, but
associated with favorable OS in SKCM (Figure 2B). The
HK3 expression was also associated with poor OS of GBM in
the CGGA-325 dataset (p < .05, Supplementary Figure S1). The
results for progression-free survival (PES) are illustrated in
Figures 3A, B. These results suggested the prognostic value of
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FIGURE 1

HK3 expression in cancers. (A) HK3 expression between tumor and normal samples at the pan-cancer level by the TIMER2.0; (B) HK3 expression

| samples (GTEx). (D)

HK3 mRNA expression between NHA cells and U87, A172, and U373 cells; (E) Protein encoded by HK3 between GBM and normal tissue in the HPA

between GBM and normal samples in the TCGA-GBM; (C) HK3 expression between GBM samples (TCGA-GBM) and norma
(*p < .05; **p < .01; ***p < .001).
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FIGURE 2

HK3 expression in 33 different types of tumors in the TCGA database and OS. (A) Forest plots of univariate Cox regression analysis; (B) Kaplan-

Meier survival analysis.

HK3 in different tumors, and high expression of HK3 was usually
associated with poor survival.

Function enrichment analysis in GBM

To elucidate the biological function and pathways with
HK3 involvement, we performed enrichment analysis in the
TCGA-GBM. The top five gene ontology (GO) items enriched
in the high HK3 expression group were activation of the immune
response, acute inflammatory response, adaptive immune response,
adaptive immune response based on somatic recombination of
immune receptors built from immunoglobulin superfamily
domains, and alpha-beta T cell activation (Figure 4A). In
comparison, the top five GO items enriched in the low
expression HK3 group were chromosome segregation, nuclear
chromosome segregation, condensed chromosome, chromosome
centromeric region, and kinetochore (Figure 4B). The top five
KEGG items enriched in the high HK3 expression group were
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the chemokine signaling pathway, cytokine-cytokine receptor
interaction, hematopoietic cell lineage, lysosome, and nod like
receptor signaling pathway (Figure 4C). The top five KEGG
items enriched in the low HK3 expression group were cell cycle,
ribosome terpenoid backbone, biosynthesis, notch signaling
pathway, and spliceosome (Figure 4D).

Relationship between HK3 and immune
characteristics in GBM

We next performed GSEA analysis to investigate the
immunological significance of HK3. In the TCGA and CGGA
cohorts, the high HK3 expression group showed significantly
greater enrichment of the majority of immune cells and
immune-related pathways compared to the low HK3 expression
group (Figures 5A, B). HK3 expression showed a significant
correlation with immune cell infiltration in both cohorts (Figures
5C, D) (Supplementary Table S1). Interestingly, among all genes of
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FIGURE 3

HK3 expression in 33 different types of cancers in the TCGA database and PFS. (A) Forest plots of univariate Cox regression analysis; (B) Kaplan-

Meier survival analysis.

GBM, HK3 showed the strongest correlation with macrophages (p <
001, R = .81) (Supplementary Table S2). Furthermore, increased
macrophage infiltration was associated with poor OS in GBM in the
TCGA and CGGA cohorts (Supplementary Figure S2). Analysis of
TIMER 2.0 database showed that HK3 expression was associated
with M2 macrophages, but not M1 (Supplementary Figure S3).
HK3 showed a significant association with macrophage
M2 polarization-related genes, such as CD163, VSIG4, MS4A4A,
ITGAM, MRC1, and ITGAX (Supplementary Figure S3).

Association of HK3 with macrophages

Since the expression of HK3 showed a significant association with
.81), we further explored whether
HK3 expression in macrophages was specific. We investigated the
HK3 expression in immune cells in plasma through the HPA. In the

macrophages (p < .001, R =

Monaco dataset, HK3 was predominantly expressed in basophils,
neutrophils, and monocytes/macrophages (Figure 6A). In the
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Schmiedel HK3  was
monocytes/macrophages (Figure 6B). We further explored the
expression of HK3 at the single cell level through the TISCH.
HK3 was found to be predominantly expressed in macrophages in

dataset, predominantly expressed in

GBM (Figure 6C). HK3 was also predominantly expressed in
macrophages in ovarian serous cystadenocarcinoma (OV),
pancreatic adenocarcinoma (PAAD), SKCM, LIHC, non-small cell
lung cancer (NSCLC), head and neck squamous cell carcinoma
(HNSC), KIRC, carcinoma of colon and rectum (CRC), breast
invasive carcinoma (BRCA), chronic lymphocytic leukemia (CLL),
and cell carcinoma and endocervical

cervical  squamous

adenocarcinoma (CESC) (Supplementary Figures S4-S7).

Co-expression of HK3 with immune-
related genes

We next assessed the co-expression of HK3 with immune-related
genes. The results showed a positive correlation of HK3 with most
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Function enrichment analysis in GBM. (A,B) The top five GO items enriched in the high- and low HK3 expression groups. (C,D) The top five KEGG
items enriched in the high- and low HK3 expression groups.
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major histocompatibility complex (MHC), immunosuppressive,
immune activation, chemokine, and chemokine receptor genes in
the TCGA and CGGA cohorts (Figures 7A, B), such as PD-1 (p <
001, R = 41), PDL-1 (p < .001, R = .27), and CTLA-4 (p <.001,R =
.29) (Supplementary Table S3).

Association of HK3 with immune response
and drug sensitivity

We applied the TIDE analysis to explore the association
between HK3 expression and the immune response. In the

Frontiers in Genetics

TCGA cohort, the Exclusion-score and the MSI Expr Sig-
score in the low HK3 expression group were higher than that
in high HK3 expression group, while Dysfunction-score and
TIDE-score were lower in the low HK3 expression group
(Figures 8A-D). HK3 showed a significant association with
the TIDE score (p < .001, R = .48) (Figure 8E), and its
correlation value ranked in the top 5% of all genes in
GBM (Supplementary Table S4). Drug sensitivity analysis
showed that the high HK3 expression group was frequently
associated with resistance to drugs, such as axitinib,
dactinomycin, and

carmustine,  cyclophosphamide,

nelarabine (Figure 9).
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Discussion

GBM is a highly aggressive malignancy and the current
treatments do not lead to satisfactory outcomes. Therefore,
identification of new therapeutic targets in the context of
GBM is a key imperative (Koh et al, 2022). Metabolic
reprogramming is crucial for cancer and has emerged as a
promising therapeutic target (Martinez-Reyes and Chandel,
2021). HK3
metabolism, but few studies have focused on its role in GBM.

is one of the key enzymes involved in
In the present study, we performed a comprehensive analysis of
the prognostic and immunological significance of HK3 in GBM.
Our findings may provide a basis for future studies.

We first explored HK3 expression and its prognostic value at
the pan-cancer level using the TCGA database. Our results
demonstrated dysregulation of HK3 in several tumors and its
frequent correlation with poor prognosis. In previous studies,
HK3 was shown to promote colorectal cell proliferation through
epithelial mesenchymal transition (Xu et al., 2021). HK3 was also
shown to promote metastasis of colorectal cancer via the nuclear
factor kB/Snail/Hexokinase-3 signaling axis (Wu et al., 2021).
Moreover, HK3 was found to prevent apoptosis in colorectal
cancer and melanoma cells (Kudryavtseva et al, 2016).
Downregulation of HK3 expression impaired neutrophil
differentiation and increased sensitivity to anthracyclines in
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acute promyelocytic leukemia (Federzoni et al, 2012). High
expression of HK3 was associated with poor OS in kidney
cancer (Zhang Y. et al,, 2021).

We applied enrichment analysis to investigate the potential
involvement of HK3 in the biological functions and pathways in
GBM. Intriguingly, the top five GO and KEGG items enriched in
the high HK3 expression group were all related to immune
activity, such as immune response, adaptive immune response,
chemokine signaling pathway (Ortiz Zacarfas et al., 2021), and
cytokine-cytokine receptor interaction (Zheng et al., 2022). Thus,
we explored the relationship between HK3 and immune activity.
We observed consistently greater enrichment of most immune
cells and immune-related pathways in the high HK3 expression
group. These results suggest the potential involvement of HK3 in
shaping the GBM tumor microenvironment.

Tumor-associated macrophages (TAMs) account for half of
all non-tumor cells in GBM (Charles et al.,, 2012). TAMs are
heterogeneous cellular populations composed of microglia,
blood-derived infiltrating macrophages, and monocytes that
cross the compromised blood-brain barrier (Zhang H. et al,
2021). Infiltration of TAMs has been shown to be associated with
poor OS in the context of most tumors, such as PDAC (Zhang X.
et al,, 2020), GBM (Huang et al., 2020), and BLCA (Wu et al,
2020). Studies have demonstrated a crucial role of TAMs in

GBM. SLIT2/ROBO  signaling in TAM drives GBM
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FIGURE 9

Drug sensitivity analysis. Comparison of the IC50 value of drugs between the high and low HK3 expression groups in the TCGA cohort. (A)
Axitinib, (B) Carmustine, (C) Cyclophosphamide, (D) Dactinomycin, (E) Nelarabine, (F) Niraparib, (G) Olaparib, (H) Rapamycin, (I) Sorafenib.

immunosuppression and vascular dysmorphia (Geraldo et al.,
2021). Pleiotrophin secreted by TAMs was shown to promote
PTPRZ1 signaling in GBM stem cells leading to tumor growth
(Shi et al., 2017). Colony-stimulating factor 1 receptor (CSE-1R)
was found to inhibit macrophage polarization and block glioma
progression (Pyonteck et al, 2013). Macrophage-associated
pgkl phosphorylation promoted GBM aerobic glycolysis and
tumorigenesis (Zhang et al., 2018). In the present study, we
observed a significant correlation of HK3 with macrophages in
the GBM (p <.001, R > .8); in addition, HK3 was predominantly
expressed in macrophages in most types of cancers at the single-
cell level. Thus, HK3 may serve as a biomarker for macrophages.
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In previous studies, HK3 expression was found to be 100-fold
higher in macrophages and granulocytes compared to other
immune cells (Seiler et al., 2022). HK3 was also identified as a
biomarker of macrophages in clear cell renal cell carcinoma (Xu
et al, 2021). HK3 showed an association
with M2 macrophages and T cell dysfunction in GBM (Ji
et al.,, 2022).

Immune

Moreover,

checkpoint inhibitors represent a  great

breakthrough in cancer treatment, but these drugs are not
effective against GBM (Chokshi et al., 2021). Although anti-
PD-1 treatment was shown to increase T cell activity in GBM,
TAMs for half of cells, and their

account immune
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immunosuppressive effects resulted in treatment failure (de
Groot et al., 2020; Lee et al, 2021). Several preclinical and
clinical studies have identified TAM as a promising target for
cancer immunotherapy (Zhang S. Y. et al.,, 2020). Differentiation
of CD34 progenitor cells into macrophages using macrophage
colony stimulating factor (M-CSF) was shown to induce a 6-fold
increase in HK3 expression (Seiler et al., 2022). The generation of
central nervous system macrophages relies on the transcription
factor PU.1 (Goldmann et al., 2016), and HK3 was considered as
transcriptional target of PU.1 (Federzoni et al., 2012). Thus,
HK3 may be involved in macrophage differentiation and could
be a potential target for anti-TAMs; however, further studies are
required to verify this hypothesis. In our study, patients with low
HK3 expression had lower macrophage infiltration and TIDE
scores, indicating that these patients may potentially benefit from
immunotherapies.

Our study demonstrated increased expression of
HK3 expression in GBM tissues and high expression of
HK3 was associated with poor prognosis. HK3 showed a
significant association with macrophage infiltration and
may serve as a biomarker of macrophages. HK3 was also
associated with immune response and drug-resistance. In
conclusion, this study provides a comprehensive
understanding of the role of HK3 in GBM, which may help
provide novel insights for developing GBM immunotherapy.
Our study has some limitations. The underlying mechanism of
the relationship of HK3 with macrophage differentiation and
immunotherapy is unclear. Further studies are required to
explore this aspect.

Conclusion

HK3 was associated with poor prognosis of GBM and may
serve as a biomarker of macrophages in GBM. HK3 was also
associated with immune response and drug resistance. Our
findings provide novel insights for development of GBM
immunotherapy.
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