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Vegetable crops are known as protective foods due to their potential role in a

balanced human diet, especially for vegetarians as they are a rich source of

vitamins and minerals along with dietary fibers. Many biotic and abiotic stresses

threaten the crop growth, yield and quality of these crops. These crops are

annual, biennial and perennial in breeding behavior. Traditional breeding

strategies pose many challenges in improving economic crop traits. As in

most of the cases the large number of backcrosses and stringent selection

pressure is required for the introgression of the useful traits into the germplasm,

which is time and labour-intensive process. Plant scientists have improved

economic traits like yield, quality, biotic stress resistance, abiotic stress

tolerance, and improved nutritional quality of crops more precisely and

accurately through the use of the revolutionary breeding method known as

clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-

associated protein-9 (Cas9). The high mutation efficiency, less off-target

consequences and simplicity of this technique has made it possible to attain

novel germplasm resources through gene-directed mutation. It facilitates

mutagenic response even in complicated genomes which are difficult to

breed using traditional approaches. The revelation of functions of important

genes with the advancement of whole-genome sequencing has facilitated the

CRISPR-Cas9 editing to mutate the desired target genes. This technology

speeds up the creation of new germplasm resources having better agro-

economical traits. This review entails a detailed description of CRISPR-Cas9

gene editing technology along with its potential applications in olericulture,

challenges faced and future prospects.

KEYWORDS

genome-editing technology, CRISPR-cas application, vegetable crops, advanced,
cutting-edge

Introduction

The world population is estimated to increase by 10 billion in the next three decades,

thereby the demand for food crops is likely to increase by 25–70% (Hunter et al., 2017).

Contemporary agriculture will eventually face enormous challenges to produce crops having

high yield and better quality which require few inputs (Tilman et al., 2011). Vegetable crops act

as protective foods that provide essential nutrients in the human diet due to their richness in
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vitamins, minerals, dietary fiber and phytochemicals (Dias, 2012).

More than 400 g of fruits and vegetables should be consumed daily

per person to reduce the risk of cardiovascular diseases. (Bazzano

et al., 2002). or cancer (Aune et al., 2017). Like any other food crop,

vegetable crops too are prone to many biotic and abiotic stresses

(Jaganathan et al., 2018; Boscaiu and Fita 2020) thereby necessitating

the development of next-generation architectured crops which are

able to sustain adverse environmental stresses (Karkute et al., 2017).

Till now conventional breeding techniques have been extensively

used to improve the yield and agronomic performance which is a

complex, time-consuming and labor-intensive process (Zhang et al.,

2018). It is a selection of improved individuals utilizing genetic

variation in the population (Breseghello and Coelho, 2013). It also

recombines the desired gene pools resulting in new genotypes or

cultivars (Holme et al., 2019). However, when the desirable genetic

variation is not available in the gene pool, then it can be generated and

used for selection by inducing mutations using various mutagenic

agents like non-ionizing radiation i.e. UV rays or ionizing radiation i.e.

X and gamma rays, alpha and beta rays, fast and slow neutrons. Some

chemicals can also be used as mutagenic agents like ethyl methane

sulphonate (EMS), methyl methane sulphonate (MMS), hydrogen

fluoride (HF), sodium azide, N-methyl-N-nitrosourea (MNU) and

hydroxylamine) (Parry et al., 2009). Mutation breeding has not been

extensively utilized in vegetable crop improvement except for a few

exceptions being low in its efficiency. Over the last few decades, there

have been a large number of significant developments in themolecular

biology approaches to improve crop yield and quality. Recently,

tremendous progress has been made in genome editing tools like

site-directed nucleases (SDNs) which are able to edit the crops at high

speed and possess great potential in shaping up the novel genetic

makeupof vegetable crops (Tian et al., 2021). Genome editing tools can

precisely engineer the genes by either deleting, replacing or inserting

specific sequences at the specific targeted location in the target genome

to generate novel traits (Corte et al., 2019). Zinc-finger nucleases

(ZFNs), transcription activator-like effector nucleases (TALENs),

and clustered regularly interspaced short palindromic repeats

(CRISPR)/CRISPR-associated enzymes are the tools for genome

editing used to modify plants (Miller et al., 2007). Site-specific

double-stranded breaks (DSBs) are enabled by Crispr/Cas which

further activate the cellular DNA repair systems (Zhu et al., 2020;

Gaj et al., 2013). These DSBs can either be corrected by the non-

homologous end joining (NHEJ) pathway or through the homology-

directed repair (HDR) pathway (O’Driscoll and Jeggo, 2006; Wang T.

et al., 2019a). The use of first-generation technologies like ZFNs and

TALENshas been limited due to their adversemutagenic outcome, low

editing efficiency, time-consuming process and labor-intensive

selection and screening process (Gaj et al., 2013; Jaganathan et al.,

2018). The second-generation genome editing technology i. e. CRISPR/

Cas9 is easier to design, and execute andmore cost-effective. The use of

CRISPR/Cas9 in vegetable crops has substantially expanded gene

editing technology and made it possible to create novel genotypes

with desired phenotypic features and altered genomic functions at the

base pair level (Abdallah et al., 2015; Nunez de Caceres Gonzalez and

De la Mora Franco, 2020). We will first go over CRISPR/Cas9 history

and development before summarising how it is currently used to

modify vegetable crops. Finally, we will talk about the real-world

challenges in enhancing vegetable crops with the desired traits.

Clustered regularly interspaced short
palindromic repeats-CRISPR-associated
protein-9

CRISPR-Cas9 is an advanced genome editing technique that

enables scientists to change, add, or remove specific DNA

sequences to modify specific regions of the genome. In

general, there are three main types (I-III) of CRISPR-Cas

systems utilized for target interference (Rouillon et al., 2013).

Type II uses its two distinctive nuclease domains, RuvC and

HNH, to achieve interference with only a basic effector-module

design (Gasiunas et al., 2012). Type II Cas9 from Streptococcus

pyogenes (SpCas9) is the most popular CRISPR nuclease

employed in CRISPR-Cas technology (Doudna and

Charpentier, 2014). The protospacer adjacent motif (PAM) is

recognized by the sgRNA-Cas complex, and Cas9 cleaves the

target DNA to create a double-strand break (DSB), activating

cellular DNA repair processes (Figure 1).

How does it work

The two essential parts of the CRISPR-Cas9 system that

modify DNA are Cas 9 enzyme and guiding RNA (gRNA). The

“genetic scissors” known as Cas9 (enzyme), cut the two DNA

strands at an exact place in the genome to allow for the addition

or deletion of DNA fragments and the guiding RNA (gRNA) is

made up of two parts: Crispr RNA (crRNA), a 17–20 nucleotide

sequence complementary to the target DNA, and a

transactivating Crispr RNA (tracr RNA), which serves as a

binding platform for the Cas9 nuclease (Mei et al., 2016)

(Figure 1). Each crRNA hybridizes with tracr RNA, and these

two RNAs jointly make a complex with the Cas9 nuclease

(Deltcheva et al., 2011). The goal of the guide RNA is to find

and bind to a target DNA sequence that is complementary to its

RNA bases. Double strand breaks, or DSBs, are created when the

Cas9 enzyme cuts across both DNA strands at the same location

in the DNA sequence as the guide RNA (Jinek et al., 2012; Jiang

et al., 2013). The DSBs inflicted by Cas-9 protein are repaired by

two mechanisms i.e., non-homologous end-joining (NHEJ) and

homology-directed repair (HDR) (Liu et al., 2019) (Figure 2).

NHEJ needs enzymes in the repair mechanism in which different

DNA segments are joined by excluding a homologous DNA

template (Shuman and Glickman, 2007). It is an extraordinarily

effective cell repair mechanism that is most often exploited but is

prone to errors that can cause minor, spontaneous insertions or

deletions. (Yang et al., 2020). The HDR however is quite precise
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in gene insertion or replacement of DNA segments at the

predicted DSB site but requires a large amount of homologous

DNA template (Liu et al., 2019; Yang et al., 2020).

Modifications in clustered regularly
interspaced short palindromic repeats
genome editing system

Several new CRISPR systems have been developed to

overcome the limitations of CRISPR/Cas 9 and improve its

specificity for more effective genome editing. These cutting-

edge technologies are detailed below and could be crucial

resources for molecular crop breeding.

Cas protein Cpf1 (also known as Cas12a) is with RNA-

guided system being widely used in genome editing (Kim et al.,

2017; Moon et al., 2018; Chen et al., 2019). It uses a T-rich

PAM sequence to identify the target site, extending the editing

sites beyond the G-rich PAM sequences preferred by Cas9.

The target site of Cpf1 is located at the distal position and

downward the PAM sequence. Cpf1’s guide RNA has 43 base

pairs and is shorter than the sgRNA of Cas9 (about 100 bp)

(Kim et al., 2017; Chen et al., 2019). Cpf1 generates staggered-

ended double-strand breaks, which offers more advantages

than Cas9 and improves the effectiveness of the NHEJ-based

gene insertion. (Kim et al., 2017; Moon et al., 2018). Cpf1-

based genome editing has been reported in rice and soybean

(Kim et al., 2017; Xu et al., 2017). Additional research is

required to analyze the specificity of Cpf1 in other crops and

to enhance the current Cas12a-based applications Schindele

and Puchta (2020).

Cas12b prefers T-rich PAM, produces staggered double-

strand breaks, and needs both a crRNA and a trans-activating

crRNA. Cas12b protein is smaller than Cas9 and Cas12a. Cas12b/

C2c1 has been effectively used to carry out multiplex genome

editing, induce mutations, and cause deletions at many loci in

Arabidopsis (Wu et al., 2020). However, Cas12b shows its

optimum activity at higher temperature (Teng et al., 2018), it

needs to be altered for making it more useful in crop applications.

Cas13 is a recently identified CRISPR effector which targets

specific RNAs in plant cells. This system has high RNA target

specificity and efficiency. Cas13 protein belongs to class 2 type VI

and contains unique higher eukaryotes and prokaryotes nucleotide-

binding domains that are exclusively associated with RNase activity

(Wolter and Puchta 2018). Till now, three different Cas13 protein

classes, such as Cas13a, Cas13b, and Cas13d, have been used for

RNA editing in plants (Schindele et al., 2019), mainly to target RNA

for cleavage, for combating RNA viruses (Aman et al., 2018; Wolter

and Puchta 2018). It has been demonstrated that CRISPR/

LshCas13a system is used to create potyvirus resistance in plants,

which suggests that this system can be employed for agricultural and

biotechnological applications (Aman et al., 2018).

Cas14a is a highly compact protein, which can be used as anRNA-

guided DNA nuclease for target-specific single-stranded DNA

(ssDNA) cleavage (Harrington et al., 2018; Khan M. Z. et al.,

2019b). Due to its sequence-independent and unrestricted cleavage,

it has evolved into an excellent tool for building resistance to

economically significant plant ssDNA viruses (Harrington et al.,

2018; Khan M. S. S. et al., 2019). Cas14a is only one-third the size

of Cas9 and is the smallest working CRISPR system to date.

FIGURE 1
Basic structure of CRISPR/Cas9 system.

FIGURE 2
Schematic diagram of CRISPR/Cas9 mechanism. Double-
strand breaks (DSBs) are induced when Cas9 enzyme and gRNA
bind with targeted double-stranded DNA. These DSBs are repaired
by Homology-directed repair (HDR) and Non-homologous
end-joining (NHEJ) mechanisms.
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(Harrington et al., 2018). It has the potential to generate resistance

against ssDNA viruses that belong to the Geminiviridae and

Nanoviridae families (Khan M. S. S. et al., 2019a).

Besides these systems, base editing provides effective, concise,

and well-recognized strategies for specific base replacement at the

target site without the need for DSBs or donor DNA and

independent of homology-directed repair (HDR) (Chen et al.,

2019). They are helpful when there is a requirement for desired

protein-coding genes to create variations with enhanced

economic traits (Li H. et al., 2020c). At present, there are two

types of base editors: Cytosine base editors (CBE) (which

converts C-G pair to T-A pair) and adenine base editors

(ABE) (converts A-T base pair to G-C base pairs (Komor

et al., 2016; Gaudelli et al., 2017) Figures 3A,B. Both these

editors largely depend upon the availability of PAM sequence

as they use DNA binding proteins to induce point mutations at

the targeted site (Jin et al., 2019). The major limitation of base

editors is their inability to generate precise base edits in point

mutations. Research is ongoing to improve the efficiency and role

of base editing in random and targeted mutagenesis (Li H. et al.,

2020c).

Prime editing, a recent genome-editing tool that induced

all kinds of mutations and base substitutions (insertion/

deletion) without donor DNA or double-strand breaks.

Prime editing uses proteins fused to Cas 9 nickase and

prime edited guide RNA with reverse transcriptase to

induce mutations. The pegRNA contains not only

complimentary sequence as the target sites that directs

nCas9 to its target sequence, but also an additional

sequence creating desired sequence changes. The

Cas9 nicked the PAM containing DNA strand which act as

a primer for reverse transcriptase to create extensions in the

nicked strand using pegRNA as template and ultimately

modifying the target site (Anzalone et al., 2020). PE has

been successfully applied in rice and wheat to generate

stable edited lines with price gene edits (Butt et al., 2020; Li

H. et al., 2020c). It is advantageous over other genome editing

tools in crop science with respect to reduced off-target

mutations and less requirement of PAM sequences due to

RNA template and high-efficiency rates but still experiments

are need to be conducted regarding its specificity and potential.

The various tools and Databases used for CRISPR/Cas9

mediated genome editing in plant systems are being

presented in Tables 1, 2.

Applications of clustered regularly
interspaced short palindromic
repeats/CRISPR-associated protein-
9 in vegetable crops

As vegetables are susceptible to various abiotic and biotic

stresses which reduce optimum production, which highlights

the significance of developing resistant/tolerant cultivars.

Additionally, in vegetable crops, various quality traits

including flavor and nutritional profile, plant architecture,

and shelf life can be improved. Various gene editing systems

have good potential to improve the quality and yield of

vegetables among which CRISPR/Cas is very popular. The

major applications of CRISPR/Cas9 in vegetable crops is being

discussed below under different sections and the list of various

traits modified by CRISPR/Cas is being presented in Table 3.

Albino phenotype

Some plants lack chlorophyll pigmentation as a result of

phytoene desaturase (PDS) gene disruption, which affects the

formation of carotenoids and chlorophyll, leading to albino plant

phenotypes. There is little information on the albino plant

phenotypes in vegetables except for a few publications where

albinism has been used to standardize the gene-editing method

utilizing CRISPR-Cas. Fully albino plants (pds mutants) were

generated in various vegetable crops like tomato, watermelon,

melon, cabbage and carrot via editing phytoene desaturase gene

through Agrobacterium tumefaciens-mediated transformation

(Pan et al., 2016; Tian et al., 2017; Xu J. et al., 2019;

Hooghvorst et al., 2019; Ma et al., 2019).

Abiotic stress

Vegetable crops face many abiotic stresses caused due to

temperature, drought, salinity and heat which adversely affect

crop productivity. Although traditional breeding techniques are

able to combat stresses to certain extent, new innovative

technologies like CRISPR-Cas 9 offers the possibility to

generate more resilient germplasm in dealing with these

stresses (Haque et al., 2018). High temperature is a major

stress factor that inhibits the growth and productivity of

vegetable crops. It leads to the overproduction of reactive

oxygen species (ROS) which causes oxidative damage,

ultimately impairing the normal function of plant cells. Highly

conserved protein kinases called mitogen-activated protein

kinases (MAPKs) are involved in the response to heat stress

of vegetable crops (Sharma et al., 2020). Knockout of

BRASSINAZOLE RESISTANT 1 (BZR1) impaired the

induction of RESPIRATORY BURST OXIDASE HOMOLOG1

(RBOH1) and induced production of H2O2 and heat tolerance in

tomato. This exogenous H2O2 recovered the heat tolerance in

bzr1 tomato mutant plants (Yin et al., 2018). In addition to this,

mutations induced through CRISPR-Cas9 in slmapk3 imparts

higher heat stress tolerance in tomato. Slmapk3 mutant also

showed less wilting, mild membrane damage, low production of

reactive oxygen species and improved antioxidant enzymatic

activity under heat stress as reported by Yu et al. (2019).
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TABLE 1 List of available tools used for CRISPR/Cas9 genome editing.

S.No. Tool name Purpose Access link References

1) GuideMaker To identify target genes and design sgRNA
sequences

https://academic.oup.com/gigascience/article/doi/10.
1093/gigascience/giac007/6562533

Poudel et al. (2022)

2) CROPSR For complex (polyploid) genome wide CRISPR
gRNA design

https://bmcbioinformatics.biomedcentral.com/articles/
10.1186/s12859-022-04593-2

Paul et al. (2022)

3) BE target To design sgRNA for base editing in plants https://www.sciencedirect.com/science/article/pii/
S2001037022003269

Xie et al. (2022)

4) BE-Designer and BE-
Analyzer

To design target sites and assess mutation ratios https://europepmc.org/article/med/33180295 Hwang and Bae (2021)

5) PnB Designer A web application to design prime and base editor
guide RNAs for animals and plants

https://bmcbioinformatics.biomedcentral.com/counter/
pdf/10.1186/s12859-021-04034-6.pdf

Siegner et al. (2021)

6) crisprRdesign To design sgRNAs https://www.jgenomics.com/v08p0062.htm Beeber and Chain,
(2020)

7) CRISPR-Local Designing sgRNAs https://academic.oup.com/bioinformatics/article/35/14/
2501/5221013

Sun et al. (2019)

8) CRISPR-P 2.0 For computer-aided sgRNA designing to minimize
off-targets

https://www.cell.com/molecular-plant/pdf/S1674-
2052(17)30004-7.pdf

Liu et al. (2017)

9) GuideScan Designing CRISPR guide RNA libraries https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5607865/

Perez et al. (2017)

10) Breaking-Cas To facilitate sgRNA design http://bioinfogp.cnb.csic.es/tools/breakingcas Oliveros et al. (2016)

11) CHOPCHOP v2 To increase target range and specificity https://academic.oup.com/nar/article/44/W1/W272/
2499370

Labun et al. (2016)

12) CRISPOR Helps to design and evaluate guide sequences http://crispor.tefor.net/ Haeussler et al. (2016)

13) CRISPRscan Find gRNAs on genes, gRNA generation and
scoring of gRNAs

https://pubmed.ncbi.nlm.nih.gov/26322839/ Moreno-Mateos et al.
(2015)

14) CRISPR Multitargeter To find common and Unique sgRNA https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4351176/

Prykhozhij et al. (2015)

15) Off-Spotter To design optimum sgRNA https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4326336/

Pliatsika and Rigoutsos
(2015)

16) Wu-CRISPR To design sgRNA https://genomebiology.biomedcentral.com/articles/10.
1186/s13059-015-0784-0

Wong et al. (2015)

17) SgRNA designer
(CRISPRPick)

For effective selection of SgRNA https://portals.broadinstitute.org/gpp/public/analysis-
tools/sgrna-design

Doench et al. (2014)

18) E-CRISP To identify target site http://www.e-crisp.org/E-CRISP/aboutpage.html Heigwer et al. (2014)

19) CRISPRseek To find potential gRNA https://bioconductor.org/packages/release/bioc/html/
CRISPRseek.html

Zhu et al. (2014)

20) Cas-OFFinder For identifying off-target sites http://www.rgenome.net/cas-offinder/ Bae et al. (2014)

21) CRISPRdirect For selecting targets based on input sequence https://pubmed.ncbi.nlm.nih.gov/25414360/ Naito et al. (2014)

TABLE 2 List of available databases for CRISPR/Cas9 for plants.

Database name Purpose Access link References

1) CRISPR Plant v2 For highly specific sgRNAs https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC6330547/

Minkenberg et al. (2019)

2) PGED (Plant Genome Editing Database) Stores information about mutants http://plantcrispr.org/cgi-bin/crispr/index.cgi Zheng et al. (2019)

3) CRISPRlnc Manual database of sgRNAs https://www.crisprlnc.org/ Chen et al. (2019)

4) Cpf1- Database Design tool for Cpf1 http://www.rgenome.net/cpf1-database/ Park and Bae (2017)

5) Cas-Database Design tool for Cas9 nucleases http://www.rgenome.net/cas-database/ Park et al. (2016)

6) CrisprGE CRISPR/Cas-Central repository http://crdd.osdd.net/servers/crisprge/ Kaur et al. (2015)
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Similarly, in lettuce by using CRISPR/Cas9, LsNCED4 (9-cis-

EPOXYCAROTENOIDDIOXYGENASE4) gene, resulting in

thermo-inhibition of seed germination was knocked out,

which significantly resulted in high-temperature germination

in both cultivars (Salinas and Cobham Green), capable of

germinating more than 70% at 37°C (Bertier et al., 2018).

One of the most harmful environment factors causing

damage to vegetable crops is drought stress. Important

signalling molecules that react to drought stress include

mitogen-activated protein kinases (MAPKs). In 2017, Wang

and his co-workers utilized CRISPR/Cas9) mediated

mutagenesis to generate slmapk3 mutants in tomato. In

comparison to wild type plants, the slmapk3 mutants had

more severe wilting symptoms, greater hydrogen peroxide

levels, low antioxidant enzyme activity, and experienced more

membrane damage. They concluded that slmapk3 is involved

in drought response in tomato by protecting from membrane

damage and stimulating transcription of some stress related

genes. Chilling stress is the primary obstacle that prevents the

growth of some vegetable crops, like tomato, brinjal, and chilli

as they are sensitive to severe chilling injury. The highly

conserved C-repeat binding factors (CBFs) are involved in

regulating cold tolerance. As in tomato, the slcbf mutants were

generated using the CRISPR-Cas9 system, but these mutants

exhibited severe chilling- injury symptoms as shown by the

down-regulation of CBF-related genes as compared to wild-

type (WT) plants (Li et al., 2018a). Additionally in both

abovementioned studies, the mutants exhibited lower

content of proline and protein and more amount of

hydrogen peroxide contents and antioxidants than WT

plants which further altered hormonal level of plants and

reduced the expression of genes. So, there is a need to study the

regulatory mechanism of CBF and mitogen-activated protein

kinases (MAPKs) genes in order to understand their

molecular mechanism.

In addition to this, the SlUVR8 gene was knocked out in

tomato to increase tolerance to high UV-B stress using

CRISPR-CAS9 gene editing approach by generating

sluvr8 mutant lines which confirmed that SlUVR8 plays a

significant function in tomato seedling growth and UV-B

stress resistance Liu et al. (2020). Excessive concentration

of salts within the plant tissues will reduce growth and

productivity, as they can affect several pivotal processes,

such as germination, photosynthesis, nutrient balance and

redox balance, among others (Parihar et al., 2015; Petretto

et al., 2019). Recently, the HKT1&2 allele was edited and

inserted into tomato Hongkwang cultivar via the CRISPR/

Cpf1-mediated homology-directed repair (HDR) mechanism

which showed stable inheritance for salt tolerance (Vu et al.,

2020). Furthermore, by precise deletion of one or more

SlHyPRP1’s functional motifs using CRISPR/Cas9-based

multiplexed editing, salt stress-tolerant events in cultivated

tomatoes were produced (Tran et al., 2021).

Biotic stresses

Globally, major losses in the production of vegetable

crops are caused by a diverse variety of diseases. A

sustainable strategy for supplying the world’s expanding

population with food is the development of disease-

resistant cultivars. (Thomazella et al., 2016). Traditional

plant breeding has been utilized for centuries to develop

new varieties, but modern technologies, like genome

editing, have the ability to produce improved varieties

more quickly, by accurately introducing favourable alleles

into locally adapted types (Nekrasov et al., 2017). In tomato,

SlDMR6-1 orthologue Solyc03g080190.2 is up-regulated when

infected due to Pseudomonas syringae pv. tomato and

Phytophthora capsici. The tomato homologue genes were

knocked out using CRISPR-Cas9 to cause mutations in

DMR6, which resulted in broad-spectrum resistance to

Pseudomonas, Phytophthora, and Xanthomonas

spp. (Thomazella et al., 2016). Wild-type MILDEW

RESISTANT LOCUS O (Mlo) alleles, encode a protein,

which provides fungal sensitivity causing powdery mildew

disease. In tomato, homozygous loss-of-function of SlMlo1

gene through CRISPR-mediated mutations resulted in

resistance to powdery mildew (Nekrasov et al., 2017).

Pseudomonas syringae pv. tomato (Pto) DC3000, a causative

agent of tomato bacterial speck disease releases coronatine

(COR) which stimulates stomatal opening and encourages the

bacterial colonization in the leaves. Ortigosa et al. (2019)

developed a tomato genotype resistant to bacterial speck by

editing the SlJAZ2 gene (a key co-receptor for coronatine in

stomatal guard cells) via the CRISPR/Cas9 system to produce

dominating Jasmonate-Zim Domain (JAZ2) repressors

(SlJAZ2jas), which prevents coronatine from reopening

stomata and provided resistance to PtoDC3000. Jeon et al.

(2020) identified biosynthetic gene clusters (ACET1a, ACET1b

and Solyc12g100270) in tomato plants required for the

production of falcarindiol in response to biotic stress.

Mutagenesis through CRISPR revealed the direct role of the

cluster in synthesis of falcarindiol which imparts resistance

against fungal and bacterial pathogens in tomato. In 2018,

through the use of the CRISPR/Cas9 system, tomato plants

were made resistant to the tomato yellow leaf curl virus by

focusing Through the use of the CRISPR/Cas9 system, tomato

plants were made resistant to the tomato yellow leaf curl virus by

focusing on the coat protein and replicase sites (Tashkandi et al.,

2018).

In order to speed up the breeding of potatoes for resistance

to late blight (Phytophthora infestans) and potato virus Y

(PVY), CRISPR/Cas has emerged as a substitute and

effective method. Targeting P3, CI, Nib, and CP viral genes,

Cas13a protein was used to give resistance to three PVY strains

(RNA viruses) (Zhan et al., 2019). Similarly, the functional

knockouts of StDND1, StCHL1, DMG400000582 (StDMR6-1)
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and caffeoyl-CoA-O-methyltransferase gene generated potato

plants with increased late blight resistance (Hedge et al., 2021;

Kieu et al., 2021). Knocking out of Clpsk1 gene, which encodes

the PSK precursor, in watermelon to provide increased

resistance to Fusarium oxysporum f.sp. niveum (Zhang et al.,

2020), whereas, in tomatoes, Solyc08g075770-knockout via

CRISPR-Cas9 resulted Fusarium wilt disease sensitivity in

the plants (Prihatna et al., 2018). Virus resistance can be

induced in cucumber plants by disrupting the function of

the recessive eIF4E (eukaryotic translation initiation factor

FIGURE 3
(A) Cytosine base editor and (B) Adenosine base editor.

FIGURE 4
Schematic diagram of modification by site directed nuclease (SDN- 1, SDN-2 and SDN-3) types. Double strand break (DSB) is repaired via non-
homologous end joining (NHEJ) or homologous recombination (HR). SDN1 results in random insertion/deletion, SDN2 induces addition of few
nucleotides and SDN3 inserts a DNA fragment.
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TABLE 3 List of traits modified by Crispr/Cas in vegetable crops.

Crop Target gene Trait modification References

Tomato

SlAMS Affects pollen viability Bao et al. (2022)

SlHyPRP1 Salt tolerance Tran et al. (2021)

SlPelo and SlMlo1 Tomato yellow leaf curl virus (TYLCV) and Powdery
mildew fungus

Pramanik et al. (2021)

CCD8 Host resistance to plants Bari et al. (2021)

K transporter HKT 1,2 Salt tolerance Vu et al. (2020)

SlMAPK3 Enhances heat stress tolerance Yu et al. (2019)

SlMAPK3 Drought stress response Wang et al. (2017)

BZR 1 Regulates heat stress tolerance Yin et al. (2018)

Coat protein, Replicase from Tomato yellow leaf curl virus Induced resistance to tomato yellow leaf curl virus Tashkandi et al. (2018)

SlMlo1 Resistance to powdery mildew Nekrasov et al. (2017)

Pectate lyase (PL), polygalacturonase 2a (PG2a and beta-galactanase
(TBG4)

Development of cell wall and modification of fruit color
and weight

Wang et al. (2018a)

APETALA2a (AP2a), NON-RIPENING (NOR) and FRUITFULL (FUL1/
TDR4 and FUL2/MBP7)

Development and ripening of fruit Wang et al. (2018b)

SlGAI Gibberellin responsive dwarf mutant Tomlison et al. (2019)

SBPase Induced Leaf senescence in SBPase mutants Ding et al. (2018)

Psy1 and CrtR-b2 Change in Carotenoid biosynthesis D’Ambrosio et al. (2018)

lncRNA1459 Alters fruit ripening, lycopene, ethylene and carotenoid
biosynthesis

Li et al. (2018a)

SGR1, Blc, LCY-E, LCY-B1, LCY-B2 Increased lycopene content Li et al. (2018b)

SlCBF The sharp decrease in chilling stress tolerance Li et al. (2018c)

PDS and GABA-TP1, GABA-TP2, GABA-TP3, CAT9 and SSADH Increased γ-aminobutyric acid content Li et al. (2018d)

SlNPR1 Reduced drought tolerance Li. et al. (2019)

SlMYB12 Pink fruit color Deng et al. (2018)

RIN Fruit ripening Jung et al. (2018)

SP, MUILT, FAS, CyCb, OVUTE and FW2.2 Fruit size and lycopene accumulation Zsogon et al. (2018)

SP, SP5, CLV3 and WUS, GGP1 Plant structure, Fruit ripening, Day-length response,
Vitamin-C and fruit size

Li et al. (2018e)

RIN and ethylene Fruit ripening Li et al. (2020a)

RIN Ethylene production and fruit ripening Ito et al. (2017)

SlORRM4 Fruit ripening Yang et al. (2017)

Alc Shelf life Yu et al. (2017)

CLAVATA-WUSICHEL Altered locule number Rodriguez-Leal et al.
(2017)

Solyc12g038510 Jointless mutant, abscission Roldan et al. (2017)

phytoene synthase (PSY) Fruit color Filler et al. (2017)

LEAFYCOTYLEDON1-LIKE4 Fruit metabolism Gago et al. (2017)

SlIAA9 Parthenocarpy Ueta et al. (2017)

SlAGL6 Parthenocarpic fruits Klap et al. (2017)

ANT1 Anthocyanin biosynthesis Cermak et al. (2015)

SlALS1 Enhanced herbicide resistance Danilo et al. (2019)

ALS Herbicide resistance Veillet et al. (2019)

Brinjal

SmelPPO4, SmelPPO5, and SmelPPO6 genes Reduced levels of flesh browning Maioli et al. (2020)

Potato

StDND1, StCHL1, and DMG400000582(StDMR6-1) Late blight resistance Kieu et al. (2021)

GBSS genes Starch biosynthesis Andersson et al. (2018)

GBSS1 Starch biosynthesis Kusano et al. (2018)

(Continued on following page)
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4E) gene using Cas9/subgenomic RNA (sgRNA) technology

(Chandrasekaran et al., 2016). Similarly in Brassica napus,

BnWRKY11 and BnWRKY70 were edited with CRISPR/

Cas9 vectors and mutations induced in

BnWRKY70 generated mutants with enhanced resistance to

Sclerotinia spp. (Sun et al., 2018).

Vegetable quality improvement

Fruit and vegetables (F&V) are highly perishable food

products that need advanced post-harvest technologies to

maintain their storage stability and extended shelf life

(Gallagher and Mahajan., 2011). In tomato, the homology-

directed repair (HDR) pathway was used to replace the allele

of ALC with the alc gene, resulting in T1 homozygous plants with

long shelf life. (Yu et al., 2017). Klap et al. (2017) used CRISPR/

Cas9 technology to delete tomato SlAGL6 (SlAGAMOUS-

LIKE6) which led to the development of parthenocarpy under

high-temperature stress conditions without compromising the

weight, fruit shape, or pollen vitality. Other vegetable crops, like

the in-demand seedless watermelon or less-seeded fruits, can also

use this approach to generate parthenocarpy.

Lycopene is an important plant nutrient with strong

antioxidant properties that helps to protect the cells from

damage. Lycopene accumulation in the fruit is facilitated by

the knockdown of a few genes linked to the carotenoid metabolic

pathway. The amount of lycopene was successfully increased to

about 5.1 times in genome-edited tomato fruits. These results

suggested that the CRISPR/Cas9 system has the potential to

greatly increase the amount of lycopene in tomato fruit due to its

high effectiveness, infrequent off-target mutations, and stable

heredity Li et al. (2018a). The non-proteinogenic amino acid

gamma-aminobutyric acid (GABA) has hypotensive properties.

Nonaka et al. (2017) To boost GABA accumulation by

7–15 times in tomato fruits, researchers employed CRISPR/

CRISPR-associated protein (Cas)9 technology to remove the

autoinhibitory domain of SlGAD2 and SlGAD3 and insert a

stop codon right before the autoinhibitory domain.

Potato starch quality is important in various food

applications. Improved starch quality with full knockout of

granule-bound starch synthase (GBSS), starch synthase gene

(SS6) and starch-branching enzymes (SBEs) genes SBE1, and

SBE2 was reported in potato using CRISPR mediated genome

editing (Andersson et al., 2017; Andersson et al., 2018; Kusano

et al., 2018; Johansen et al., 2019; Veillet et al., 2019; Sevestre

et al., 2020; Zhao et al., 2021). The enzyme polyphenol oxidase

(PPO) catalyzes the oxidation of phenolic compounds into highly

reactive quinones that cause postharvest browning of cut or

bruised fruit (Araji et al., 2014). In the tetraploid potato cultivar

Desiree, Gonzalez et al. (2020) investigated the use of the

CRISPR/Cas9 system to introduce mutations into the

StPPO2 gene. Mutations induced in the four alleles of the

StPPO2 gene led to lines with reduced PPO activity (69%) in

tubers. CRISPR/Cas has also been utilized in potato for

improving traits like carotenoid biosynthesis (Khromov et al.,

2018; Banfalvi et al., 2020; Butler et al., 2020) and glycoalkaloids

(Nakayasu et al., 2018). Reducing the amount of steroidal

glycoalkaloids (SGAs), such as α-solanine and α -chaconine,

in tubers is necessary for breeding excellent potatoes since

their presence may give potatoes a bitter flavor and have

other unfavorable effects on humans. Two SGA-free potato

TABLE 3 (Continued) List of traits modified by Crispr/Cas in vegetable crops.

Crop Target gene Trait modification References

GBSS Starch and tuber quality Andersson et al. (2017)

St16DOX Glycoalkaloids metabolism Nakayasu et al. (2018)

Coilin gene Biotic (PVY) and abiotic stress resistance Makhotenko et al. (2019)

Carrot

F3H Change in the anthocyanin biosynthesis pathway Klimek-Chodacka et al.
(2018)

DcMYB113-like Anthocyanin biosynthesis Xu et al. (2019b)

Watermelon

ALS Enhanced herbicide resistance Tian et al. (2018)

Pumpkin

GRF12, AHA1, and HAK5 Salt sensitivity Huang et al. (2019)

Lettuce

LsNCED4 Seed germination inhibition Bertier et al. (2018)

Chinese Cabbage

BraFLCs The early-flowering phenotype that did not depend on
vernalization

Jeong et al. (2019)
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lines were generated by selectively inhibiting a steroid 16-

hydroxylase (St16DOX) that is involved in the synthesis of

steroidal glycoalkaloids (SGA) in potato (Nakayasu et al., 2018).

Similarly, in brinjal, the three-polyphenol oxidase (PPO)

genes SmelPPO4, SmelPPO5, and SmelPPO6 in brinjal were

linked to enzymatic browning. To stop the browning of fruit

flesh, these three target PPO genes have been eliminated using

CRISPR-Cas9-based mutagenesis. (Maioli et al., 2020). It paves

the way for the creation of genotypes of eggplant with reduced

levels of flesh browning and higher levels of berry polyphenols as

this is the first time the CRISPR/Cas9 system has been applied to

eggplant for biotechnological uses.

Yield

Cucumber gynoecious inbred lines are very important because

of their better production yield and cheaper labour cost for

crossing. Hu et al. (2017) used CRISPR-Cas9 technique to

create Cswip1 mutants by targeting the WPP trp/pro/pro

domain Interacting Protein1 (CsWIP1) gene, which encodes a

zinc-finger transcription factor. Cswip1 T0 mutants had a

gynoecious phenotype with exclusively female flowers and these

gynoecious mutants will be beneficial in heterosis breeding to

produce high-yielding hybrids.

Similarly, Zhang et al. (2019a) created artificial gynoecious

watermelon lines by editing ClWIP1gene using clustered

regularly interspaced short palindromic repeats (CRISPR)/

CRISPR-associated system. Additionally, SP5G mutations in

field tomatoes hasten the blooming process and alter the

compact growth habit, resulting in a short flowering interval

and an early harvest (Soyk et al., 2017).

Herbicide resistance

Weeds are a significant stress factor that affects the yield and

quality of vegetables, and selective herbicides are frequently used

to control the growth and development of weeds during

cultivation. The herbicide target gene acetolactate synthase

(ALS) has been edited by using CRISPR-Cas9 technology in

vegetables like tomato, watermelon, soybean, and potato for

developing herbicide resistance in plants (Danilo et al., 2019;

Tian et al., 2018; Li et al., 2015; Veillet et al., 2019).

Phelipanche aegyptiaca, an obligatory weedy plant parasite,

requires the presence of the plant hormone strigolactone (SL) to

encourage seed germination. Carotenoid dioxygenase 8 (CCD8),

a crucial enzyme in the carotenoid synthesis pathway that

generates strigolactone in tomatoes, and More Axillary

Growth1 (MAX1), which is involved in strigolactone

synthesis, were modified using CRISPR-Cas9 to significantly

lower SL content and produce tomato plants resistant to P.

aegyptiaca (Bari et al., 2019; Bari et al., 2021).

Recently, Yang et al. (2022) designed and tested the efficiency

of sgRNA to use with Crispr/Cas system to edit herbicide-related

genes pds (phytoene desaturase), ALS (acetolactate synthase), and

EPSPS (5-Enolpyruvylshikimate-3-phosphate synthase) in

tomato. The outcomes of the sgRNA efficiency tests

confirmed that the transformation process could alter the

target locations. They verified that 19 different transgenic

tomatoes had adequately been edited by ALS2 P or

ALS1 W sgRNAs, and 2 of them carried three base mutations

that are likely to change their herbicide resistance.

Regulation of genome-edited crops

Genome/gene editing refers to the precise change in either of

DNA or RNA sequence of any target organism. This editing can lead

to change in a single base pair to completely reorganization of the

large genomic region. Sometimes, genes that are not present in the

natural gene pool are also introduced into the target individual to

generate novel traits. As this technique involve genetic manipulation

either by altering genome sequence or by addition of foreign genomic

sequence therefore it becomes mandatory to enforce the regulations

of theCartagena Protocol by any country. TheCartagena Protocol on

Biosafety set the foundation for regulating the release and

international trade of genetically modified organisms. However,

there have been differences in the patterns of GM crop

cultivation, utilization and legislation. While some nations restrict

production and deny consumption, others actively cultivate and

consume them (Garcia Ruiz et al., 2018). Some countries regulate

the process while others are involved in the regulation of the product

(Eckerstorfer et al., 2019; Van Vu et al., 2019).

For instance, in 2018, as per the guide lines of United States

Department of Agriculture (USDA) genome editing through

CRISPR-Cas 9 is like conventional breeding therefore does

not need any regulation under American Regulatory

Standards and are exempted from the regulatory frameworks

(Waltz, 2016a). This gives advantage in minimizing the time and

resources needed for the testing and legislation of the release of

the CRISPR edited crops. Growing research output is authentic

evidence that CRISPR-Cas edited crops holds significant promise

in improving the yield and quality of crops for the consumers

across the world.

In the year 2018, Canadian legislation stated that any gene

editing technology which produces a novel product must be

subjected to further regulatory supervision on toxicity,

allergenicity and any effects on other organisms except the

target (Smyth, 2017). For example, non-browning apples and

non-dark spot potatoes were approved in Canada after a long

examination process which ensured that the changes made in

these two products were not harmful to the human being.

However, the European Court of Justice (ECJ) has approved

many mutagenic crops developed through chemical and physical

mutagens (Waltz, 2016b) but considered gene-edited crops
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under same strict rules as traditional genetically modified (GM)

plants. Among the South American countries like Argentina has

developed a regulation system as per the guidelines of Cartagena

Protocol on Biosafety for the approval of genome-edited

products and relies on the case-by-case evaluation with the

exemption from the regulation in the absence of transgene

(Whelan and Lema, 2015). Chile and Brazil also followed the

same regulatory system regarding genome editing as Argentina.

Chile has given regulations in 2017 while Brazil in January 2018

(Duensing et al., 2018).

In Australia, the regulatory framework is set by the Gene

Technology Act 2000 (GT Act) and GT Regulations 2001 (GT

Regulations) with the purpose to protect people’s health, safety

and the environment by recognizing threats posed as a

consequence of genetic manipulation. The proposed

amendments relevant to genome editing would exclude

organisms developed with site-directed nucleases (SDN-1)

from regulation and stated that organisms developed with

SDN2 or SDN-3 are regulated as GMOs (Thysegen, 2019)

(Please see Figure 4 depicting mechanism of SDN-1, 2 and 3

types). In the New Zealand, release of genetically modified plants

is regulated by the Hazardous Substances and New Organisms

(HSNO) Act 1996. The Act generally defines a GMO as any

organism whose genome or genetic information has been altered

by in vitro methods (Fritsche et al., 2018).

In India, all the activities related to the development and use

of genetically modified products are regulated as per the ‘‘Rules

for the Manufacture/Use/Import/Export and Storage of

Hazardous Microorganisms, Genetically Engineered

Organisms or Cells’’, 1989 (Rules 1989) which covers new

genome editing technologies including CRISPR/Cas9 and

notified under the Environment (Protection) Act, 1986, by

Genetic Engineering Appraisal Committee (GEAC). (Warrier

and Pande 2016). This committee is responsible for granting

permits to conduct experimental and large-scale open field trials

and also granting approval for the commercial release of

genetically altered crops.

Challenges and future prospects of
clustered regularly interspaced short
palindromic repeats/CRISPR-associated
protein-9 genome editing

The CRISPR/Cas9 system is the latest cutting-edge technology

that augments crop improvement by generating high-yielding, better

quality, and resistant crop plants to biotic and abiotic stresses crops

in a short span of time (Doudna and Charpentier, 2014; Langner

et al., 2018). The NHEJ-mediated gene repair creates precise

alterations to knock out or change the function of a particular

target gene(s) which plays an important role in crop-trait-specific

applications, but still there exist many challenges which must be

overcome. Foremost is the selection of genes that are to be targeted

for mutations and the types of mutation to avoid off-target gene

editing. Moreover, it is difficult to carry out genome editing in the

target organisms without genome sequencing. Editing a single gene

does not result in desired phenotypic changes, because significant

agronomic factors are quantitative. To add desired mutant alleles,

effective CRISPR-Cas-mediated target site-specific insertion,

deletion, and chromosomal recombination procedures can be

applied (Zhu et al., 2020).

Once a gene has been identified, the second major challenge

is to deliver CRISPR-Cas gene-editing agents into plant cells and

the procedure to regenerate the putative edited plants (Chuang

et al., 2021; Lino et al., 2018). Actually, it is quite challenging to

create a universal and effective genetic transformation and

regeneration system for vegetable crops (Niazian et al., 2017).

In addition to this, for successful genetic transformation of

vegetable crops editing efficiency is to be considered, which is

further influenced by various factors, such as the number of

sgRNA and GC amount; the expression levels of sgRNA and

Cas9; and the secondary structure of the paired sgRNA and target

sequence. (Kumlehn et al., 2018; Hu et al., 2019). Since genome

editing in vegetable crops has such huge potential, we expect that

strategies will be formulated to overcome these challenges in the

near future.
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