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Background: Esophageal Squamous Cell Cancer (ESCC) is an aggressive

disease associated with a poor prognosis. As a newly defined form of

regulated cell death, ferroptosis plays a crucial role in cancer development

and treatment and might be a promising therapeutic target. However, the

expression patterns of ferroptosis-related genes (FRGs) in ESCC remain to be

systematically analyzed.

Methods: First, we retrieved the transcriptional profile of ESCC from TCGA and

GEOdatasets (GSE47404,GSE23400, andGSE53625) andperformedunsupervised

clustering to identify different ferroptosis patterns. Then, we used the ssGSEA

algorithm to estimate the immune cell infiltration of these patterns and explored

the differences in immune cell abundance. Common genes among patterns were

finally identified as signature genes of ferroptosis patterns.

Results: Herein, we depicted the multi-omics landscape of FRGs through

integrated bioinformatics analysis and identified three ESCC subtypes with

distinct immune characteristics: clusters A-C. Cluster C was abundant in

CD8+ T cells and other immune cell infiltration, while cluster A was

immune-barren. By comparing the differently expressed genes between

clusters of diverse datasets, we defined a gene signature for each cluster

and successfully validated it in the TCGA-ESCC dataset.

Conclusion: We provided a comprehensive insight into the expression pattern

of ferroptosis genes and their interaction with immune cell infiltration.

Additionally, we established a gene signature to define the ferroptosis

patterns, which might be used to predict the response to immunotherapy.
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Introduction

Esophageal cancer (ESCA) is an aggressive disease,

ranking seventh for incidence and sixth for mortality

globally in 2020 (Sung et al., 2021). Squamous cell

carcinoma is the predominant subtype of ESCA in Asian

countries, including China, and has a molecular profile

distinct from esophageal adenocarcinoma (Napier et al.,

2014; Lagergren et al., 2017; Cao et al., 2021; Sung et al.,

2021). Since most patients have advanced-stage diseases at

first diagnosis, even with multidisciplinary and combined

treatments, including surgery, chemotherapy, and

radiotherapy, the 5-year overall survival (OS) of ESCA

patients remains about 20–30% (Njei et al., 2016; Lagergren

et al., 2017; Zeng et al., 2018). Recent clinical trials have

presented amazing therapeutic effects of immune checkpoint

inhibitors, such as anti-PDL-1/PD-1 antibodies (Kato et al.,

2019; Shah et al., 2019; Huang et al., 2020). However, only 20%

of patients have PDL-1 expression, limiting the use of

immunotherapy (Kelly, 2019). Therefore, it is imperative to

develop new and effective treatments.

Ferroptosis, a newly defined form of regulated cell death,

has attracted increasing attention (Shen et al., 2018;

Friedmann Angeli et al., 2019; Lei et al., 2020; Li et al.,

2020; Wang et al., 2020; Jiang et al., 2021). This process

depends on iron and reactive oxygen species (ROS) and

differs from apoptosis, necrosis, atrophy, and other types of

regulated cell death in morphology, biochemistry, and

genetics (Wang et al., 2020; Jiang et al., 2021).

Phospholipid peroxidation is considered the hallmark of

ferroptosis cascades and is regulated by the cysteine/

glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis,

ferroptosis suppressor protein 1 (FSP1), and other GPX4-

independent pathways (Li and Li, 2020; Jiang et al., 2021). The

mechanisms of ferroptosis suggest its critical role in cancer

development and treatment. Due to active metabolism and

high ROS load, cancer cells are susceptible to oxidative

turbulence, whereas oxidative stress via excess iron is

associated with ferroptosis (Stockwell et al., 2017; Kuang

et al., 2020). Multiple cancer-relevant genes and signaling

pathways are involved in the process (Chu et al., 2019). A

recent study has revealed that NFS1 suppression—an iron-

sulfur cluster biosynthetic enzyme responsible for iron-sulfur

cluster maintenance upon oxygen stress—can activate the

iron-starvation response and cooperates with inhibition of

glutathione biosynthesis to trigger ferroptosis in lung

adenoma cells (Alvarez et al., 2017). Another study

emphasized the role of ferroptosis in radiation-induced

bystander effect (RIBE) (Wan et al., 2020). The activation

of RIBE mainly depends on the irradiated tumor cell-derived

microparticles (RT-MPs) in vivo, mediating the ferroptosis in

tumor cells, causing immunogenic cell death, and activating

macrophages. Therefore, pharmacological modulation of

ferroptosis has become a promising therapeutic strategy for

cancer treatment (Shen et al., 2018; Li et al., 2020).

Emerging evidence has suggested that ferroptosis may

interact with the tumor microenvironment (TME) and further

enhance or suppress the ability to escape immune surveillance,

but the specific mechanism remains unclear (Wan et al., 2020;

Wang et al., 2020; Dai et al., 2020). In pancreatic ductal

adenocarcinoma, researchers have found that the extracellular

release of KRASG12D during autophagy-dependent ferroptosis can

drive macrophages to switch to anM2-like pro-tumor phenotype

via STAT3-dependent fatty acid oxidation, finally promoting

tumor growth (Dai et al., 2020). Additionally, the direct crosstalk

between the immune system and ferroptosis has been validated.

Immunotherapy-activated CD8+ T cells induce peroxidation in

tumor cells via interferon-gamma, and the increased ferroptosis

amplifies immunotherapy’s efficacy (Wang et al., 2019). Thus,

ferroptosis might assist in promoting the antitumor effects of

immunotherapy.

Nevertheless, the complete landscape of ferroptosis in ESCC

remains unknown. Therefore, in the present study, we

systematically evaluated the expression of ferroptosis genes

and the corresponding tumor immune microenvironment

characteristics in ESCC and established different ferroptosis

patterns. Our current findings might be valuable for

predicting the response to immunotherapy.

Materials

Datasets and ferroptosis-related genes
(FRGs)

The gene expression data and the corresponding clinical

characteristics of ESCC patients were retrieved from The

Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/)

and Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.

nih.gov/geo) databases. We obtained the microarray data of

GSE47404, GSE23400, and GSE53625 from GEO as the

training group, which included 71, 51, and 179 samples,

seperately. The detailed clinical information was presented in

Table 1. The RNA sequence data of TCGA-ESCC cohort was

used as the validation group with 96 samples. Raw count values

were transformed into transcripts per kilobase million (TPM)

values. Single nucleotide polymorphisms (SNPs) and copy

number variations (CNVs) data were also downloaded from

TCGA database to evaluate somatic mutations. The mutation

atlas was annotated and visualized using the “maftools” R

package. Tumor mutation burden was also computed for

further analysis. Since all data used here is publicly available,

this study did not require the approval of the local ethics

committee.

The FerrDb database (http://www.zhounan.org/ferrdb/

current/) is a web-based consortium that provides a
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comprehensive and up-to-date database for ferroptosis

markers, regulatory molecules, and associated diseases

(Zhou et al., 2020). We identified 259 FRGs (driver: 108;

suppressor: 69; marker: 111). According to the instruction

of this database, the confidence level was classified into four

categories based on experimental reliability and

reproducibility. Among them, 120 genes (59 drivers,

1 driver/marker, 1 suppressor/marker, 1 markers,

55 suppressors, and 3 drivers/suppressors) had validated

evidence with strict human tests and were finally enrolled

in the current study (Supplementary Table S1).

Protein-protein interaction (PPI) analysis

The PPIs among ferroptosis genes were identified using

STRING according to the instructions. The PPI network was

visualized with Cytoscape software.

TABLE 1 Clinical Characteristics of ESCC patients in GEO and TCGA cohort.

GEO53625 N = 179 (%) GEO47404 N = 71 (%) TCGA-ESCC N = 96 (%)

Age (median) 59.6 66 61

Sex

female 33 (18.4) 9 (12.7) 15 (15.6)

male 146 (81.6) 59 (83.1) 81 (84.4)

unkown — 3 (4.2) —

Location

lower 62 (34.6) — 39 (40.6)

middle 97 (54.2) — 41 (42.7)

upper 20 (11.2) — 5 (5.2)

unkown — — 10 (10.4)

Grade

poorly 49 (27.4) 11 (15.5) —

moderately 98 (54.7) 33 (46.5) —

well 32 (17.9) 24 (33.8) —

unkown — 3 (4.2) —

T stage

T1 12 (6.7) 7 (9.9) 8 (8.5)

T2 27 (15.1) 9 (12.7) 32 (34.0)

T3 110 (61.5) 44 (62.0) 50 (53.2)

T4 30 (16.8) 8 (11.3) 4 (4.3)

unkown — 3 (4.2) —

N stage

N0 83 (46.4) — 55 (59.1)

N1 62 (34.6) — 29 (31.2)

N2 22 (12.3) — 6 (6.5)

N3 12 (6.7) — 3 (3.2)

Lymph node status

negative — 28 (39.4) —

positive — 40 (56.3) —

unknown — 3 (4.2) —

Stage

I 10 (5.6) — —

II 77 (43.0) — —

III 92 (51.4) — —

Survival status

dead 106 (59.2) — 32 (33.3)

survive 73 (40.8) — 64 (66.7)

*No clinical information was attached in GSE23400 dataset.
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Unsupervised clustering for ferroptosis
genes

Next, we performed unsupervised clustering based on the

expression of ferroptosis genes to identify distinct ferroptosis

patterns and classify patients for further analysis. The

“ConsensuClusterPlus” R package was used to perform the

clustering with 1,000 repetitions, ensuring the stability of

classification. The number and stability of clusters were

determined by the consensus matrix and consensus

cumulative distribution function (consensus CDF).

Differentially expressed genes (DEGs)
among clusters

The “limma” and “DESeq2” R packages were applied to

analyze DEGs separately in the microarray and RNA-seq

datasets. The significance criterion was set as an adjusted

p-value (FDR) < 0.05 and |log2 [fold change (FC)]| > 1.

Differentially expressed RNAs were visualized in heatmaps

and volcano plots using the “pheatmap” and “ggplot2” R

packages. Considering the batch effects from different

datasets, we performed differential expression gene analysis

separately in each dataset, and the results were summarized in

Venn plot.

Functional and pathway enrichment
analyses

To determine the biological processes (BPs), molecular

functions (MFs), and cellular components (CCs) related to the

ferroptosis patterns, Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses were

implemented based on the DEGs among subgroups using the

“ClusterProfiler” R package.

Furthermore, the enrichment score of validated gene sets was

estimated using the “GSVA” R package to quantify the activity of

biological pathways. The ssGSEA algorithm in this package was

used to estimate the relative abundance of immune cell

infiltration in the TME. Based on previous studies, the gene

signatures of 23 immune cells and a list of 79 immune checkpoint

genes were used here to estimate immune infiltration

(Supplementary Table S2) (Charoentong et al., 2017; Hu et al.,

2021).

Prediction of immunotherapy responses

Further, we assessed the immunotherapy response in the

Tumor Immune Dysfunction and Exclusion (TIDE) database

(http://tide.dfci.harvard.edu/) to investigate potential predictive

values of ferroptosis scores. The TIDE value was supposed to be

associated with the probability of immunotherapy response with

a default cut-off value set to 0. However, the recommended

tumor types for this database are limited to melanoma and non-

small cell lung cancer (NSCLC). Hence, these results should be

carefully interpreted.

Statistical analysis

Normality was tested using the Shapiro-Wilk normality test.

Next, t-tests or Wilcoxon rank-sum tests were used to compare

two normally or nonnormally distributed variables, respectively.

Correlation coefficients were computed via Spearman and

distance correlation analysis. For survival analysis, we used

the Kaplan-Meier method to generate the survival curves and

log-rank tests to identify significant differences between groups.

All statistical analyses were performed in R 4.0.3 software, and a

p < 0.05 was considered statistically significant.

Results

The multi-omics landscape of ferroptosis
in ESCC

The main workflow of our research was presented in

Figure 1. Herein, we depicted the multi-omics landscape of

FRGs genes using integrated bioinformatics analysis. First, we

explored the expression of FRGs between ESCC and adjacent

normal tissues in the GSE53625 and GSE23400 cohorts. Distinct

ferroptosis gene expression was detected between ESCC and

adjacent normal tissues (Figures 2A,B). We identified

24 differently expressed ferroptosis genes in the

GSE53625 and GSE23400 cohorts with |log2FC| > 1 and

FDR >0.05 (Figures 2C,D and Supplementary Table S3).

Among these genes, 11 driver genes (PGD, TF, ALOX12,

ALOX15B, MAPK3, PEPB1, CDO1, CHAC1, LINC00472,

PRKAA2, and YY1AP1) were downregulated in tumor tissues,

and five suppressor genes (SLC7A11, HELLS, TP63, FADS2, and

CA9) were upregulated. These results indicated the ferroptosis

resistance nature of ESCC samples. Next, we also conducted a

correlation analysis among these ferroptosis genes (Figures 2E,F,

Supplementary Figure S1). In the GSE53625, GSE47404, and

GSE23400 cohorts, we detected a close relationship among

G6PD, PGD, SLC7A11, ABCC1, and AKR1C3. The PPI

network showed that TP53, HIF1A, STAT3, and EGFR had

widespread interactions with the other genes (Supplementary

Figure S2).

Further, we summarized the incidence of CNVs and somatic

mutations of 116 ferroptosis regulators in the TCGA-ESCC

cohort (Figure 1G). TP63, EGFR, and CD44 displayed

prevalent CNV amplification, while CDKN2A, ATG7, ATM,
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RB1, CBS, GPX4, PML, and PGD had widespread depletion.

CNVs occurred in most samples (97.9%), ranking the most

common genetic alteration. Regarding single nucleotide

variants, TP53 exhibited the highest mutation frequency,

followed by NFE2L2, KEAP1, BRD4, and PML, with missense

mutations representing the most common mutation type.

We also assessed the immune cell infiltration in bulk tumor

samples using the ssGSEA algorithm to explore the roles of

ferroptosis genes in immune regulation. In the GSE53625 cohort,

ALOX5, DPP4, ATG7, and SLC40A1 had a strong positive

correlation with most immune cell infiltration, including

CD4+ T, CD8+ T, and nature killer cells, while other genes

(TF, NOX4, NF2, TAZ, ALOX12, and LINC00336) presented

opposite relationship with immune cell infiltration (Figure 3A).

In GSE23400, TNFAIP3 and IFNG were correlated with

activated CD8+ T cell infiltration, and NF2, ALOX12,

MAPK3, AKR1C1, and AKR1C3 were associated with the

suppression of activated CD8+ T cells (Figure 3B).

Altogether, these results depicted the multi-omics landscape

of FRGs, with significant genetic alteration and expression

heterogeneity between normal and tumor samples.

Identification of different ferroptosis
patterns

Further, we used unsupervised clustering to explore

ferroptosis patterns based on the expression of ferroptosis

genes. Two or three clusters were determined in GSE53625,

GSE23400, and GSE47404 datasets (Figures 4A–C). The CDF

curve plot and principal component analysis (PCA) verified the

rationality of the grouping (Figures 4D–F, Supplementary Figure

S3). The heatmaps showed that, compared to cluster 1 of

GSE53625, the expression of most ferroptosis genes was

elevated in cluster 2, similar to clusters 1 and 2 of GSE47404.

In GSE23400, cluster 1 differed from cluster 2 in the expression of

AKR1C1, AKR1C2, AKR1C3, G6PD, PGD, SLC7A11, ABCC1,

PML, CAV1, and MT1G. A similar phenomenon was also

observed between clusters 2 and 3 of GSE47404. Thus, we

hypothesized that three different ferroptosis patterns existed:

ferroptosis clusters A, B and, C, corresponding to

GSE47404 cluster 1 (or GSE53625 cluster 1),

GSE47404 cluster 2 (or GSE53625 cluster 2/GSE23400 cluster

1), GSE47404 cluster 3 (or GSE23400 cluster 2).

FIGURE 1
The main workflow of this study.
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Next, we investigated the relationship between clusters and

matching clinical information, including age, grade status,

clinical stage, and survival. Compared to cluster A, patients in

cluster B tended to be in a more advanced stage. The two

ferroptosis clusters did not differ in age, grade, and N stage

distribution (Figure 4G). The survival analysis showed similar

survival between clusters A and B (Figure 4H).

Correlation between ferroptosis patterns
and immune infiltration

We also found that the clusters exhibited significant

heterogeneity in immune cell infiltration and immune

checkpoints gene enrichment (Figure 4). Compared to cluster

A and B, cluster C displayed the most immune cell infiltration

(Figures 5A–C), and a higher expression of immune checkpoint

genes (Figures 5D–F), including PD-1, PD-L1, and CTLA-4.

Cluster C was abundant in most immune cells, including

activated CD4+ T cells, activated CD8+ T cells, activated

dendritic cells, macrophages, and natural killer cells. On the

other hand, cluster A presented reduced immune cell infiltration.

All three GEO datasets presented similar results. Hence, cluster C

was characterized by immune abundance, whereas cluster A by

immune barren. Considering the close relationship with immune

infiltration, we proposed that ferroptosis patterns can potentially

predict immunotherapy’s anticancer efficacy.

The KEGG and GO enrichment analyses indicated that

several immune-related KEGG pathways and GO annotations

were enriched among clusters, such as cytokine-cytokine

receptor interaction and PI3K-Akt signaling pathway involved

in immune cell activation (Figures 5G–L). Altogether, these

results demonstrated that ferroptosis might play an important

role in immune regulation and cell proliferation in the TME.

Molecular characteristics of ferroptosis
patterns

To explore the characteristic genes of each cluster, we finally

detected 3,742 DEGs in the GSE47404, 6,797 DEGs in the

GSE53625, and 83 DEGs in the GSE23400 datasets. Among

them, the AKR1C3 gene was the common ferroptosis DEG,

presenting a vital role in clustering (Supplementary Figure S4).

In GSE47404, ferroptosis cluster A was characterized by

upregulation of 751 DEGs compared to clusters B and C,

while in the GSE53625 cohort, cluster A displayed a

remarkable increase in 2,250 DEGs. We intersected the

characteristic genes of cluster A and finally found 38 genes,

including PRTG, KIT, PROX1, and DMD (Figure 6A).

Compared to clusters A and C, ferroptosis cluster B of the

GSE47404 cohort presented elevated expression of 206 DEGs.

However, in GSE23400 and GSE53625 datasets, only six DEGs

FIGURE 2
The multi-omics landscape of ferroptosis-related genes in
ESCC. (A–B) Expression of 112 ferroptosis genes between normal
(blue) and tumor (red) tissues in the GSE23400 (A) and
GSE53625 (B) cohorts. Each column represents individual
samples. The upper line represents the type of tissues. The color of
each pane represents the expression level. (C–D) Volcano plot of
differently expressed genes of GSE23400 (C) and GSE53625 (D)
cohorts. Red dots represent upregulated genes, blue dots
represent downregulated genes, and black dots represent genes
that do not differ. (E–F) Correlation heatmap between ferroptosis
genes in GSE23400 (E) and GSE53625 (F) cohorts. Red dots
represent positive correlations, blue dots represent negative
correlations, and blank represents no significant correlations.
Numbers in the pane represent coefficients. (G) Mutation
frequency of ferroptosis genes in the TCGA-ESCC cohort. Each
column represents an individual patient. The number on the right
indicates the mutation frequency in each regulator gene. The right
barplot showed the proportion of each variant type.
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were upregulated in cluster B, including AKR1C3, ALDH3A1,

TMEM116, PIR, TKT, and GCLC. Among them, AKR1C3 was

the only FRG and was considered the characteristic gene of

cluster B (Figure 6B).

As described above, we investigated the common DEGs

elevated in cluster C. In the three datasets, cluster C

displayed higher BST2, EREG, and MMP13 expressions

than the other two clusters. Therefore, BST2, EREG, and

MMP13 were identified as the characteristic genes of cluster

C (Figure 6C).

Finally, we compared the clusters of various datasets and

defined a gene signature to distinguish ferroptosis patterns. We

inferred that the different expression levels of signature genes

might represent different ferroptosis patterns.

Validation of the key ferroptosis genes in
ferroptosis clustering

To validate our results, we recruited TCGA-ESCC cohort as

the validation group. We set the median expression of signature

genes as the cutoff values. Based on AKR1C3 and

BST2 expression, all samples of TCGA-ESCC were classified

into three subgroups (Figure 7A): AKR1C3 high expression

FIGURE 3
Immune correlation of ferroptosis genes in ESCC. Correlation heatmap between ferroptosis genes and immune cells in GSE23400 (A) and
GSE53625 (B) cohorts. Red indicates positive correlations, and blue indicates negative correlations.

Frontiers in Genetics frontiersin.org07

Zhang et al. 10.3389/fgene.2022.1047382

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1047382


(corresponding to cluster B), AKR1C3 low and BST2 high

expression (corresponding to cluster C) and both genes low

expression (corresponding to cluster A) groups. Although no

clinical stage or survival difference was observed, the clusters

presented a significantly different immune landscape (Figure 7B).

Cluster C was closely related to the infiltration level of most

immune cells, such as activated CD4+ T cells, activated CD8+

T cells, immature B cells, and central memory CD8+ T cells, and

abundant in immune gene expressions, including the common

immune checkpoints PDL-1, CTLA4, and PD-1, which might be

more beneficial for immunotherapy in contrast to clusters B and

C (Figures 7C,D). Furthermore, we use TIDE value to predict the

immune response and found that cluster C had relative lower

TIDE score, which meant better response to immunotherapy

(Figure 7E). As for tumor mutation burden, the three clusters

shared similar TMB score (Figure 7F).

FIGURE 4
Ferroptosis patterns in the ESCC cohort. (A–C)Unsupervised clustering of ferroptosis genes in GSE23400 (A), GSE47404 (B), and GSE53625 (C).
The color of each pane represents the expression level with red indicating high expression, and blue indicating low expression. (D–F) Principal
component analysis (PCA) for the transcriptome profiles of three ferroptosis patterns in GSE23400 (D), GSE47404 (E), and GSE53625 (F). There is a
remarkable difference in transcriptome between different ferroptosis patterns. (G) Stacked bar plot of age, grade, T stage, and N stage between
clusters of the GSE53625 cohort. The ferroptosis clusters had similar age, grade, and N stage distribution, except of T stage. (H) Kaplan–Meier curves
of two ferroptosis clusters in the GSE53625 cohort (p = 0.59).
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FIGURE 5
Differential immune characteristics among ferroptosis patterns. (A–C) Relative enrichment of 23 immune cells and (D–F) immune checkpoint
genes in ferroptosis clusters of GSE23400, GSE47404, and GSE53625. The upper and lower ends of the boxes represent the interquartile range of
values. The lines in the boxes represent the median value, and the black dots represent outliers. The asterisks represent the p-values (* <0.05;
** <0.01; *** <0.001; ns, no significance). (G–I) Gene Ontology (GO) and Kyoto Encyclopedia of Genes and (J–L) Genomes (KEGG) pathways
analyses depicted the enriched pathways of ferroptosis-related genes: cluster B vs. cluster A, cluster B vs. cluster C, and cluster C vs. cluster A.
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According to previous literatures, gene AKR1C3 and

BST2 play an important role in malignancies and drug

resistance with involvement of a range of signal pathways,

including the PI3K/Akt, MAPK, ERK, and NF-κB signaling

pathways (Kuang et al., 2017; Mahauad-Fernandez and

Okeoma, 2017; Liu et al., 2020; Xu et al., 2020). In current

research, we performed bioinformatic analysis to explore the

potential function of BST2 and AKR1C3 gene (Supplementary

Figure S5). GSEA revealed that AKR1C3 gene was linked with

carcinogenesis, while BST2 was associated with signal

transduction and phagocytosis. Survival analysis indicated no

significant survival difference between high and low expression

of BST2 and AKR1C3 gene.

Discussion

The number of published studies on ferroptosis has

increased in recent years. Additionally, various studies have

addressed the vital role of ferroptosis in cancer development

and treatment, and many cancer-relevant genes and signaling

pathways have been identified (Stockwell et al., 2017; Chu

et al., 2019; Dai et al., 2020; Kuang et al., 2020; Lei et al., 2020).

However, most previous studies focused on a single

ferroptosis regulator or a prognostic ferroptosis gene

signature, and the comprehensive landscape of integrated

FRGs has not yet been investigated (Chen et al., 2021; Lu

et al., 2021; Song et al., 2021). In current research, we

systymatically described the multi-omics landscape of FRGs

genes, unveiled the distinct ferroptosis gene expression

pattern, as well as its interaction with immune

microenvironment, and finally identified characteristic

genes of each ferroptosis patterns.

Herein, we screened out 116 validated FRGs from the FerrDB

and investigated their transcriptomic and genomic profile in

ESCC samples from the GEO and TCGA databases. The

expression pattern heterogeneity between tumor samples and

normal tissues indicated the resistance of ESCC tumors to

ferroptosis. Additionally, genetic variations of FRGs were

common in ESCC samples, which may initiate or suppress

ferroptosis. Among these genetic variations, TP53 mutation

was the most frequent event and has been proved to be

involved in ferroptosis via SLC7A11 inhibition, independent

of the traditional GTX4 pathway. According to the detailed

serial analysis from Gu et al., TP53 can potentiate ferroptosis

by suppressing the transcription of the Xc-system subunit

SLC7A11 and contribute to the tumor suppressive function

in vitro and in vivo (Chu et al., 2019). After TP53,

NFE2L2 exhibited the most frequent gene mutation.

NFE2L2 is a nuclear transcription factor vital in counteracting

oxidative and electrophilic stresses through transcribing

antioxidant genes (Ryoo and Kwak, 2018; Kuang et al., 2020).

Besides, NFE2L2 contributes to lipid metabolism, iron

homeostasis, and other pathways, which interact with the

ferroptosis cascade (Kuang et al., 2020; Song et al., 2021).

CDKN2A was another common gene with CNV. Deleting

CDKN2A can act as an oxidative stress-induced genetic

alteration, inhibit cyclin-dependent kinases from promoting

DNA replication, and is involved in activating the

TP53 signaling pathway (Zhao et al., 2016; Serra and Chetty,

2018). Moreover, CDKN2A is also recognized as a

cuproptosis gene.

We identified three distinct ferroptosis clusters

characterized by different immune environments based on

the transcriptional pattern of ferroptosis genes. Ferroptosis

cluster C was characterized by high infiltration of almost all

kinds of immune cells and enriched in immune checkpoint

genes. In contrast, cluster A presented decreased immune cell

infiltration and a lack of immune checkpoint genes. The

functional analysis validated that the immune phenotypes

FIGURE 6
Gene signatures for each cluster. Based on the results from different datasets, venn diagrams showed the common upregulated DEGs of
clusters (A), (B), and (C).
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FIGURE 7
Validation of gene signatures in TCGA-ESCC cohort. (A) Three patterns were well identified based on the expression of signature genes. Cluster
B was characterized by high expression of most ferroptosis genes, especially AKR1C3, while cluster C featured BST2 and certain genes. (B) Survival
analysis of different ferroptosis clusters (p = 0.87). (C) Expression of checkpoint genes, (D) relative abundance of immune cells, (E) TIDE value, and (F)
TMB score were compared among the three clusters. The asterisks represent the p-values (* <0.05; ** <0.01; *** <0.001; ns, no significance)
(*p < 0.05, **p < 0.01,***p < 0.001, ****p < 0.0001).
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of cluster C were linked with several immune activation

pathways. This heterogeneity might predict different

responses to immunotherapy. PD-1/PDL-1 and

CTLA4 inhibitors have been approved for clinical

treatment, but only patients with high expression of PD-1,

PDL-1, or CTLA4 could benefit from immunotherapy.

According to the current study, ferroptosis clusters

distinguished the gene expression into three levels and were

associated with different responses to PD-1/PDL-1 blockade.

Thus, we inferred that ferroptosis patterns are potential

biomarkers for immunotherapy.

Furthermore, we explored the ferroptosis-related DEGs

among clusters and identified a set of characteristic genes for

each cluster. For example, cluster B demonstrated significant

upregulation of AKR1C3 compared to the other two clusters,

while cluster C was characterized by elevated expression of

BST2, EREG, and MMP13. Different from clusters B and C,

cluster A was characterized by a 38 gene set including PRTG,

KIT, PROX1, and DMD. We successfully defined the clusters

with these characteristic genes. A clustering algorithm was

developed based on the characteristic gene expression. Using

the median expression as the cut-off, we classified ESCC

samples of TCGA dataset into ferroptosis cluster A

with low expression of AKR1C3 and BST2, ferroptosis

cluster B with high expression of AKR1C3, and ferroptosis

cluster C with low expression of AKR1C3 and high

expression of BST2. The three patterns displayed distinct

immune phenotypes, similar to GEO exploration cohorts.

Cluster C might have better response to immunotherapy.

Compared to scores derived from PCA or GSVA algorithms,

our current clustering algorithm showed an advantage in

omitting complex computation and relying less on gene

distribution of individual cohorts, which facilitates clinical

application.

However, our current study also has some limitations. The

main shortcoming of this study was the limited number of

clinical samples used for validation, which requires further

investigation. Moreover, cell experiments are needed to

validate our hypotheses. Based on findings derived from

public data, we will subsequently explore the mechanisms of

vital FRGs in immune activation.

In summary, we provided a comprehensive insight into the

expression pattern of ferroptosis genes and their interaction

with TME immune cell infiltration. We demonstrated that

different ferroptosis patterns could distinguish the landscape

of the TME immune cell infiltration and immune checkpoint

genes. Finally, we established a clustering algorithm to define

ferroptosis patterns. These integrated analyses highlighted the

vital role of ferroptosis in immune activation in ESCC,

which might also contribute to guiding immunotherapy

strategies.
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