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Background: Immune-checkpoint blockade (ICB) has been routinely

implemented to treat head and neck squamous cell carcinoma (HNSCC)

patients. However, only a few patients benefit from immune checkpoint

inhibitor (ICI) therapies.

Methods: In this study, we used a combined cohort (including the GSE41613,

GSE65858, TCGA, and CELL cohorts) to identify hub genes significantly associated

with ICB and activated CD8+ T-cell gene signatures. We performed single-sample

gene set enrichment analysis (ssGSEA) to quantify the expression of hub genes; we

then constructed a novel immune signature named “the IMS” that can predict

immunotherapy responsiveness, prognosis, immune infiltration, and clinical

characteristics. Data from the GSE102349 external cohort and the

pembrolizumab cohort obtained from a clinical trial were used to validate the

efficiency of the IMS. In addition, we revealed potential mechanisms of the

antitumor response by analyzing the HNSCC single-cell database. Finally, we

used the LASSO algorithm to build an IMS-related risk model.

Results: The high IMS group was associated with significant immune activation,

better prognosis, and increased immunotherapy responsiveness; thus, the IMS

potentially represents a candidate biomarker for ICB. Moreover, a tumor

microenvironment with a higher IMS underwent remarkable metabolic

OPEN ACCESS

EDITED BY

Shibiao Wan,
University of Nebraska Medical Center,
United States

REVIEWED BY

Xiangxiang Hu,
University of North Carolina at Chapel
Hill, United States
Hehai Pan,
University of Pennsylvania, United States
Yitian Xu,
Houston Methodist Research Institute,
United States

*CORRESPONDENCE

Guolin Tan,
guolintan@csu.edu.cn

SPECIALTY SECTION

This article was submitted to
Computational Genomics,
a section of the journal
Frontiers in Genetics

RECEIVED 22 September 2022
ACCEPTED 13 October 2022
PUBLISHED 11 November 2022

CITATION

Wang Q, Zhao Y, Wang F and Tan G
(2022), A novel immune signature
predicts immunotherapy
responsiveness and reveals the
landscape of the tumor immune
microenvironment in head and neck
squamous cell carcinoma.
Front. Genet. 13:1051051.
doi: 10.3389/fgene.2022.1051051

COPYRIGHT

©2022Wang, Zhao, Wang and Tan. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Abbreviations: CELL, a public HNSCC cohort from Huang C et al.; CR, complete response; DEGs,
differentially expressed genes; GEO, Gene Expression Omnibus; GEP, gene expression profile; GO,
Gene Ontology; HBP, hexosamine biosynthesis pathway; HNSCC, head and neck squamous cell
carcinoma; GS, correlation between gene module and immune checkpoint gene set; GS1, correlation
between activated CD8 and immune checkpoint gene set; ICB, immune checkpoint blockade; ICIs,
immune checkpoint inhibitors; IMS, immune signature; KEGG, Kyoto Encyclopedia of Genes and
Genomes; MIF, macrophage migration inhibitory factor; MM, correlation between gene module and
activated CD8 gene set; PD, progressive disease; PPP, pentose phosphate pathway; PR, partial
response; SD, stable disease; TCGA, The Cancer Genome Atlas; TME, the tumor
microenvironment; WGCNA, weighted gene co-expression network analysis.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 11 November 2022
DOI 10.3389/fgene.2022.1051051

https://www.frontiersin.org/articles/10.3389/fgene.2022.1051051/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1051051/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1051051/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1051051/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1051051/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1051051/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.1051051&domain=pdf&date_stamp=2022-11-11
mailto:guolintan@csu.edu.cn
https://doi.org/10.3389/fgene.2022.1051051
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.1051051


reprogramming characterized by enrichment in the glycolysis/gluconeogenesis,

oxidative phosphorylation, and citrate cycle (TCA cycle) pathways. We also

revealed key information on cellular crosstalk between the IMS and other

immune lineages, which may mechanistically explain immune escape. In addition,

we constructed and validated a risk prediction model (CD2, TBC1D10C, and CD3E)

that could stratify HNSCC patients based on survival and response to ICB treatment.

Conclusion: IMS is a signature closely correlated with the tumor immune

microenvironment. The findings of this study contribute to the

understanding of the immune landscape in HNSCC patients. IMS may aid in

the clinical management of HNSCC patients through the identification of

effective immunotherapies for specific patients.

KEYWORDS

HNSCC, immune signature, immunotherapy, prognosis, tumor immune
microenvironment

Introduction

Head and neck squamous cell carcinoma (HNSCC) is the

sixth most prevalent cancer type worldwide; more than

890,000 people were diagnosed with HNSCC in 2018 (Bray

et al., 2018). In the past decade, immune checkpoint inhibitor

(ICI) treatment has been verified as providing stable clinical

benefits to patients with advanced cancers, including HNSCC.

For example, by blocking the PD-1 signaling receptor, the tumor-

specific CD8+ T lymphocytes in the tumor microenvironment

(TME) restore cytotoxicity, thereby inhibiting tumor immune

escape ability and controlling the disease. However, a clinical trial

revealed that, in patients beyond tumor control, only a

few HNSCC patients (18%) benefit from ICI treatment

FIGURE 1
Flow chart of this study.
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(Chow LQM, 2020). Hence, it is imperative to identify and

quantify potential effective biomarkers and signaling pathways

of HNSCC to improve our understanding of the immune biology

environment.

Many studies have benefitted from large, multi-dimensional

common datasets—such as The Cancer Genome Atlas (TCGA)—

and have confirmed that the infiltration level of immune cells and

alterations in cancer genomics are correlated with the immune

checkpoint blockade (ICB) response. For example, a higher level of

CD8 T cells is strongly associated with longer survival and increased

sensitivity to anti-PD-1 monoclonal antibody therapy (Cristescu

et al., 2018). Cytotoxic CD8 T cells play a key role in eradicating

malignant cells and can provide long-term protective immunity.

Therefore, exploring potential immunotherapeutic signatures based

on the ICB and CD8 gene sets could represent a reliable strategy for

classifying patients who might be responsive to ICIs.

Here, by analyzing bulk transcriptomics and single-cell RNA

sequencing, we identify a novel immune signature (IMS)

associated with patients’ response to ICIs. We unveiled

specific molecular mechanisms and identified hub genes to

FIGURE 2
(Continued).

Wang et al. 10.3389/fgene.2022.1051051

Frontiers in Genetics frontiersin.org03

https://doi.org/10.3389/fgene.2022.1051051
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org


better understand anti-tumor biology. Our findings highlight the

potential immunotherapy targets and pathways in HNSCC.

Methods

HNSCC dataset source and processing

We summarized the activated CD8+ T-cell transcriptome gene

set reported by Charoentong et al. (Charoentong et al., 2017)

(Supplementary Table S3). The ICB gene set and HNSCC

immunotherapy cohort were obtained from Cindy Yang et al.

(Cindy Yang et al., 2021) (Supplementary Table S4). In addition,

our research integrated data from TCGA (expression profiling by

high-throughput sequencing), the Gene Expression Omnibus

databases GSE65858 (expression profiling by array) and

GSE41613 (expression profiling by array), and CELL (Huang

et al., 2021) (expression profiling by high-throughput sequencing)

database. Although these four databases contain different

sequencing data, the R software package “combat” could remove

the batch effects from different experiment types and platforms.

Hence, we used this package andfiltered common genes to construct

a combined cohort. The Gene Expression Omnibus database

GSE102349 cohort and the pembrolizumab (Cindy Yang et al.,

2021) cohort from a clinical trial were used for external validation.

Weighted gene co-expression network
construction and hub gene identification

Weighted gene co-expression network analysis (WGCNA)

was performed using the WGCNA R package (Langfelder and

FIGURE 2
(Continued). Research process. (A) Principal component analysis showed the gene expression profile in four HNSCC cohorts (GSE65858,
GSE41613, TCGA, and CELL database) before elimination of the batch effects. (B) Principal component analysis showed the gene expression profile in
four HNSCC cohorts (GSE65858, GSE41613, TCGA and CELL database) after elimination of the batch effects. (C) Analysis of network topology for
various soft-thresholding powers. The red line indicates best pick soft threshold value = 4. (D) Cluster dendrogram of the differentially
expressed genes based on different metrics. Each color indicates a single module of weighted co-expressed genes. (E) Correlation heatmap
between the redmodule and activated CD8 T-cell and immune checkpoint signatures in combined cohort. Every column includes the concordance
value and p value. (F–G) Correlation scatter map in both immune checkpoint signature (F) and activated CD8 T-cell signature of red module (G).
(H–J) MF, BP, and CC analysis of 20 hub genes. (K) KEGG pathway enrichment analysis for 20 hub genes.
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Horvath, 2008). The best pick soft threshold value was 4; the

Pearson’s method was used to calculate the correlation among

ICB gene set, activated CD8+ T-cell gene set, and modules. The

gene modules with the lowest p value in the immune checkpoint

blockade and activated CD8+ T-cell modules were selected as

candidate gene modules related to immune checkpoint

inhibitors. We identified candidate genes based on the

correlation value and sorted the array in descending order.

Hub genes were filtered according to the following criteria:

MM (correlation between gene module and activated

CD8 gene set), GS (correlation between gene module and

immune checkpoint gene set), and GS1 (correlation between

activated CD8 and immune checkpoint gene set) > 0.8.

Hypergeometric analysis of hub genes
function and pathway enrichment

We used the clusterProfiler R package (Yu et al., 2012) to

perform Kyoto Encyclopedia of Genes and Genomes (KEGG)

analysis of the hub genes. Gene Ontology (GO) analysis,

including biological process (BP), molecular function (MF), and

cellular component (CC), was performed in the same manner.

Adjusted p < 0.05 was used to determine the significance of the

biological functions and pathways of the hub genes.

Construction of molecular types based on
the hub genes

We used the consensus clustering algorithm in R named

“ClassDiscovery” to distinguish hub gene expression patterns.

Single-sample gene set enrichment analysis (ssGSEA) and

univariate Cox regression methods were used to construct a

novel immune signature, named “the IMS.”

Estimation of immune infiltration and ICI
response

The ssGSEA, CIBERSORT (Newman et al., 2015), and

“ESTIMATE” methods were employed to evaluate the

absolute abundance of multiple immune cell populations

and calculate the immune score. Gene sets related to

immune checkpoint blockade and sensitivity to

immunotherapy were associated with the IMS and could

predict the ICI response.

Single-cell quality control and data
processing

We downloaded the GSE139324 single-cell cohort from

the Gene Expression Omnibus database. We used the R

package Seurat (Butler et al., 2018) to analyze this cohort.

We filtered the sample with <10% mitochondrial genes. We

used the FindVariableGenes function to select highly variable

genes with parameter nfeatures = 2000. These variable genes

were used as inputs for PCA using the RunPCA function.

Dims = 1:15 was used for the FindNeighbors function, and

resolution = 0.5 were used for the FindClusters function.

Thus, 12 clusters were identified, and cluster analysis was

performed using the RunUMAP function. We used the

FindAllMarkers function to identify differentially expressed

genes (DEGs) for each cluster with the parameters min.pct =

0.25 and thresh.use = 0.25. We compared hub genes (CD96,

CD247, CD3G, SH2D1A, TBC1D10C, CXCR3, SIRPG, SLA2,

and ARHGAP9) in DEGs for IMS annotation in clusters. The

Single R package was used to annotate the remaining clusters.

We used the MuSic deconvolution method (Wang et al., 2019)

to estimate the IMS proportion in TCGA bulk-seq. The

CellChat method (Jin et al., 2021) was used to construct

cellular communication. We used the scMetabolism method

(Wu et al., 2022a) to perform metabolism quantification for

the IMS; the metabolism signaling pathway gene set was

downloaded from the Molecular Signatures

Database (MSigDB) (Liberzon et al., 2015) hallmark gene

set collection.

TABLE 1 20 Hub genes.

moduleGenes MM GS GS1

CD48 0.926604886 0.800746447 0.900384012

ARHGAP9 0.917185835 0.80250068 0.893224992

CD2 0.902078578 0.853224821 0.914141467

CORO1A 0.895081873 0.810303791 0.883376826

SH2D1A 0.885400282 0.831343766 0.881920263

TBC1D10C 0.878388208 0.837079858 0.870648173

CD3E 0.876696 0.828357429 0.883652564

HSCT 0.875260547 0.823555945 0.859493958

CD3G 0.872087532 0.82483128 0.887972451

CD247 0.871033865 0.83890792 0.881848041

CD3D 0.870528592 0.886309137 0.895750187

SLA2 0.867521398 0.846417413 0.883378874

SIRPG 0.861009041 0.846457191 0.882788945

CXCR3 0.860076796 0.806477374 0.864782986

CD96 0.850736777 0.807605878 0.854626303

GZMK 0.834441905 0.805893185 0.821888253

CXCR6 0.832592868 0.811703704 0.851306327

NKG7 0.827653932 0.890920351 0.860515962

CD7 0.820449395 0.816523291 0.841903385

CD8A 0.816318943 0.845573165 0.850149829
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Construction and verification of the
prognostic model

We used LASSO regression to filter optimal prognostic gene

combinations to classify our combined cohort. The risk score formula

was generated using the Predict function in R. According to the

stratification risk patterns, the “survival” R package was employed to

determine the demarcation point of each dataset of each subgroup,

and the “survminer” R package plotted Kaplan–Meier curves. All

patients were classified into high- or low-risk groups based on the

median cut-off value. We also validated these results in the external

GSE102349 and pembrolizumab (Cindy Yang et al., 2021) cohorts

from a clinical trial.

Statistical analysis

All statistical analysis and bioinformatics methods were

performed using R (V4.1.2, https://www.r-project.org/).

Correlation analysis was conducted using the Pearson and

Spearman methods. The Wilcoxon test was performed to

compare continuous variables and ordered categorical variables.

Data and code availability statements

All datasets used in this study are available in a public database.

The codes supporting the conclusions of this article can be obtained

by reasonable request to the corresponding author.

Results

Research process

A flowchart of this study of IMS-related characteristics

associated with HNSCC is provided in Figure 1. First, we used

the “combat” software package to avoid batch effects. The gene

expression profile of each cohort was dispersive (Figure 2A); after

the “combat” process, the profile was agminated (Figure 2B). The

FIGURE 3
(Continued).
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ICB and activated CD8+ T-cell gene sets were obtained from

Charoentong et al. (Charoentong et al., 2017) and Cindy Yang

et al. (Cindy Yang et al., 2021). We filtered out genes that

exhibited less variance than all quartiles of variance in the

integrated cohort samples to construct WGCNA (Langfelder

and Horvath, 2008) and identify key modules. Using the

selection method described above, 13,048 genes were obtained

from 977 samples. We used these genes to build nine different

FIGURE 3
(Continued).
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colored cluster dendrograms based on the best pick soft threshold

value (Figure 2C) and found that the red gene module was

extremely positively correlated with activated CD8 T-cell and

immune checkpoint signatures (activated CD8 T cell: r = 0.78, p =

6e–105; immune checkpoint: r = 0.93, p = 7e–221, Figures 2D,E).

We further applied the method of correlation analysis to create a

plot and found a significant correlation between red module

members and the gene signature of activated CD8 T cells and

immune checkpoints (immune checkpoint: r = 0.97, p < 1e–200;

activated CD8 T cell: r = 0.85, p < 1e–200; Figures 2F,G). The

above result indicated that the red module genes play an

important role in responsiveness to HNSCC immunotherapy.

Therefore, we extracted those genes in the red module, calculated

their corresponding correlation value, sorted the array in a

descending order, and filtered both MM, GS, and GS1 >0.8 as

hub genes (Table 1).

Then, we used the “clusterProfiler” package (Yu et al., 2012)

in R to analyze the hub gene enrichment landscape (Figures

2H–K). GO analysis showed that these genes were mainly

enriched in functions such as T-cell receptor binding, T-cell

FIGURE 3
(Continued). Construction of IMS could predict HNSCCpatient survival andHPV status. (A)Univariate Cox regression analysis of about 12 genes.
Hazard ratio (HR) < 1 represents that these genes were protective factors. (B) The heatmap displays the correlation between the two types of 12 genes
and the expression variance, C1 (387 cases), C2 (589 cases), “1” means dead, “0” means alive, “fustat” means survival status. (C,D) The Kaplan-Meier
plot exhibited significant statistic p value of overall survival rate among the two phenotypes of 12 genes in the combined (log rank p= 0.013) and
TCGA cohorts (log rank p = 0.026), respectively. C1 was better than C2, unit of time (years). (E) Violin plot showed differential IMS expression in the
C1 and C2 groups; p-value<2.22e-16. (F–J) The Kaplan-Meier plot exhibited significant statistical p value of overall survival rate among the two IMS
phenotypes in the combined cohort (log rank p=0.0024), CELL cohort (log rank p=0.017), TCGA cohort (log rank p=0.023), GSE41613 (log rank p=
0.008), and GSE65858 cohort (log rank p = 0.049), respectively, unit of time (years). (K) IMS in groups of GSE102349 cohort; high IMS group
represents C1, low IMS group represents C2; p = 1.49e-37. (L) The Kaplan–Meier plot exhibited significant statistical p value of overall survival rate
among the two IMS phenotypes in the external GSE102349 cohort. Unit of time (years). (M) IMS in the group of TCGA cohort; HPV-negative group
(410), HPV-positive group (89); p = 0.00014. (N) IMS in the group of GSE65858 cohort; HPV-negative group (196), HPV-positive group (74); p =
0.002.
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activation, T-cell differentiation, and the external side of the

plasma membrane. KEGG analysis showed that hub genes were

associated with the PD-1 signaling pathway in cancer, the T-cell

receptor signaling pathway, and T-cell differentiation. These

enrichment results indicated that hub genes support biological

functions in T-cell regulation and the immune response

(Spangler et al., 2015; Joseph et al., 2020) and may provide

the basis for a novel classification of immunophenotypes in head

and neck squamous cell carcinoma.

The IMS could predict HNSCC patient
survival and HPV status

To assess whether hub genes could predict HNSCC patient

survival, we used the univariate Cox regression method to filter

candidate prognostic genes, including CD2, SH2D1A,

TBC1D10C, CD3E, CD3G, CD247, SLA2, SIRPG, CXCR3,

CD96, CD7, and ARHGAP9 (Figure 3A). We used the R

package “ClassDiscovery” to classify two unique modification

patterns and named them Clust_C1 (387 samples) and Clust_C2

(589 samples, Figure 3B). After removing samples with

incomplete clinical data, we plotted the survival curve between

these two subtypes. Clust_C1 provides a particularly significant

survival advantage, and Clust_C2 is associated with poor

prognosis (log rank p = 0.013, Figure 3C). In the internal

cohort (TCGA), this modification pattern also revealed that

Clust_C1 exhibits longer survival than Clust_C2 (log rank p =

0.026, Figure 3D).

We then used ssGSEA to quantify the expression of these

12 genes, which were used to construct the IMS. The violin plot

showed that the IMS was significantly higher in C1 than in C2

(Figure 3E, p value < 2.22e-16). Using the optimal cut-off value

determined with the R package “survminer,” the Kaplan‒Meier

curve showed that the IMS was not only a prognostic factor for

head and neck squamous cell carcinoma in this combined cohort

but also in the individual cohorts (Figures 3F–J, log rank p =

0.0024, 0.017, 0.023, 0.008, and 0.049 for the combined cohort,

FIGURE 4
(Continued).
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CELL cohort, TCGA cohort, GSE41613 cohort, and

GSE65858 cohort, respectively).

In the external cohort GSE102349, we used the same method

to quantify the expression of these 12 genes and found that these

12 immune genes related to the IMS also classified the patients

and predicted significantly favorable survival (Figures 3K,L;

p-value = 1.49e-37, log rank p = 0.011). A previous study

demonstrated that patients with HPV-positive HNSCC have

better overall survival than those with HPV-negative HNSCC

(Ang et al., 2010). Therefore, we also detected the IMS in the

HPV-positive and HPV-negative groups. The results showed that

the IMS in the HPV-positive group was remarkably higher than

that in the HPV-negative group in the TCGA and

GSE65858 cohorts (p = 0.000165; p = 0.002; Figures 3M,N).

Those results showed that HPV + HNSCC patients with longer

survival could be due to a high IMS level.

IMS could predict immunotherapy
responsiveness and classify HNSCC
patients based on immunophenotype

In the HNSCC ICI treatment cohort (Cindy Yang et al.,

2021), we found that the group highly sensitive to the ICI

response had a significantly higher IMS than the low-

sensitivity group (p = 0.002; Figure 4A). We divided the

immunotherapy cohort into two groups based on the IMS

and found that the high IMS group had a longer survival time

(Figure 4B, log rank p = 0.047). We then calculated the ICI

response score as described by Wu et al. (Wu et al., 2022b). A

higher score represented greater sensitivity to immune

checkpoint inhibitor treatment; we found that the high IMS

group in C1 had a remarkably higher score than that in C2

(Figure 4C; p = 7.56e-146).

FIGURE 4
(Continued).
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FIGURE 4
(Continued). IMS could predict immunotherapy response and stratify the immunophenotype in HNSCC patients. (A) IMS in group of
immunotherapy cohort; low-sensitivity group, high-sensitivity group; p = 0.002. (B) The Kaplan-Meier plot exhibited a statistical p value of overall
survival rate among the two IMS phenotypes in the immunotherapy cohort. Unit of time (months). (C) IMS in groups of combined cohorts; high IMS
group (387) represents Clust_C1, low IMS group (589) represents Clust_C2; p = 7.56e-146. (D) Enrichment of each immune cell type infiltrating
in group of Clust; C1 (387 cases), C2 (589 cases); combined cohort; the asterisk represents the different p values (* <0.05; ** <0.01; *** <0.001,
**** <0.0001). (E)Differential expression of immune checkpoint genes (CD247, CD274, CTLA4, PDCD1, TLR9, TNFRSF4, TNFRSF9) in group of Clust;
C1 (387 cases) and C2 (589 cases); combined cohort; asterisks represent different p values (* <0.05; ** <0.01; *** <0.001, **** <0.0001). (F)
ESTIMATEScore, ImmuneScore, and StromalScore in group of Clust; C1 (387 cases), C2 (589 cases); from combined cohort; asterisks represent
different p values (* <0.05; ** <0.01; *** <0.001, **** <0.0001). (G) TumorPurity in group of Clust; C1 (387 cases), C2 (589 cases); combined cohort;
p-value = 6.92e-81. (H) Complex-heatmap displays the landscape in the combined cohort; top panel displays the expression of genes involved in
immune checkpoint targets; bottom panel displays the infiltration level of 24 microenvironment cell types. ESTIMATEScore, ImmuneScore,
StromalScore, TumorPurity, C1 (387 cases), andC2 (589 cases) are labeled at top of heatmap, IMS are labeled at the bottomof the heatmap. (I)Bubble
plot displays the correlation between the IMS, four score type, and seven immune checkpoint target genes. Blue means a positive correlation, red
means a negative correlation, color depth and color size means the intensity of the correlation. The levels of correlation are marked with numbers.
Upper triangular matrix represents Pearson correlation, lower triangular matrix represents Spearman correlation. (J) Image representing the
pathological HE staining variation between the high and low IMS groups (TCGA database).
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To detect the relationship between the immune cell-type

infiltration and IMS, we divided samples from these combined

cohorts into the C1 and C2 groups. We used the ssGSEA

method to standardize the immune cell signatures obtained

from Bindea et al. (Bindea et al., 2013). We found that the

infiltration levels of every immune cell type in the C1 group

were significantly higher than those in the C2 group, except for

CD56bright natural killer cells and immature dendritic cells

(Figure 4D). ICB therapy is effective for HNSCC, so we

collected seven immune checkpoint target genes (CD247,

CD274, PDCD1, TNFRSF9, TNFRSF4, CTLA4, and TLR9)

reported in previous studies (Ramos-Casals et al., 2020; van

de Donk et al., 2021). We found that all seven of these genes

exhibited significant differential expression between the high

and low IMS groups (Figure 4E).

We used the ESTIMATE R package to quantify the scores of

stromal and immune cells in this combined cohort: the

ESTIMATEScore, ImmuneScore, StromalScore, and

TumorPurity. We found that the ESTIMATEScore,

ImmuneScore, and StromalScore were higher in the

C1 group than the C2 group, but that the C1 group had

lower TumorPurity (Figures 4F,G; p = 6.92e-81). We also

used the CIBERSORT algorithm (Newman et al., 2015) to

calculate the infiltration of different immune cell types in

these groups and found that the C1 group had a significantly

higher infiltration level. We plotted a combined heatmap to

display the above results (Figure 4H) and found that the IMS

was positively correlated with the ESTIMATEScore,

ImmuneScore, StromalScore, and seven immune checkpoint

target genes but was negatively correlated with TumorPurity

(Figure 4I). We further confirmed that Clust_C1 exhibited

greater levels of immune cell infiltration, but Clust_C2 had

less infiltration of immune cells in the tumor nests (HNSCC

TCGA Pathology cohort; Figure 4J).

FIGURE 5
(Continued).
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Exploration of IMS characteristics using
the single-cell RNA sequencing database

We selected CD45-positive cells as immune cells to elucidate

the tumor immune microenvironment of HNSCC and identified

6435 cells from three patients after quality control. We

distinguished 12 distinct clusters based on a resolution value

of 0.5 (Figure 5A). IMS clusters were annotated using nine genes

from the IMS classifier (CD96, CD247, CD3G, SH2D1A,

TBC1D10C, CXCR3, SIRPG, SLA2, and ARHGAP9;

Figure 5B). According to the cell cluster distribution and

classifier gene co-expression regions, we labeled Clusters 3, 4,

and 6 as the IMS cluster. We used the Single R package to classify

several other distinct clusters: B-cell memory cells, NK cells,

mature monocyte-derived DCs, CD14+ monocytes, CD4+ central

memory T cells, CD8+ T cells, and CD4+ T cells (Figure 5C). In

addition, we performed theMuSic deconvolution method (Wang

et al., 2019) to calculate the bulk tissue proportion of IMS in the

TCGA cohort with this single-cell RNA sequencing database

reference (Supplementary Table S1). As we had expected,

HNSCC patients with a high IMS had a remarkably favorable

survival (log rank p = 0.0046; Figure 5D). This result validated the

IMS constructed by ssGSEA or by MuSic deconvolution as a

prognostic indicator in HNSCC.

To further detect the enrichment of IMS populations in

HNSCC immune cells, we hypothesized that IMS populations

might be functionally distinct across other immune cell

types. Hence, we performed ligand–receptor-based

immune–immune cellular cross-talk analysis (Jin et al.,

2021) (Figure 5E) and generated a heatmap to better assess

the frequency of immune–immune cellular cross-talk

(Figure 5F). These results suggested that HNSCC immune

cells could be preferentially reprogrammed by the impact of

TME, thereby inducing their specific functional status—likely

FIGURE 5
(Continued).
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explained by the intrinsic difference in differential gene

expression. To distinguish the significant ligand–receptor

interactions of the IMS with other immune cell types, we

used the same method (Jin et al., 2021) to study the

signaling of the intercellular communication network in

HNSCC immune cells. We identified macrophage

migration inhibitory factor (MIF) ligand‒receptor pairs

(CD74+CXCR4 and CD74+CD44) as the most significant

signaling pathway that facilitates communication between

the IMS and every immune cell type except CD8+ T cells

(Figure 5G). In the combined bulk cohort, the high IMS group

also exhibited high expression of CD74 and CXCR4

(Figure 5H; p = 8.69e-151, p = 2.47e-67); therefore, these

ligand–receptor pairs specifically enriched in HNSCC

immune cell types may provide a clue for targeted

immunotherapy.

Cellular glucose metabolism plays a determinant role in

immune cell function and viability. Some investigations

revealed that upregulation of glycolysis/gluconeogenesis, the

tricarboxylic acid cycle (TCA cycle), and oxidative

phosphorylation were hallmarks of antitumor immune cell

activation (Wang et al., 2011; Menk et al., 2018; Patel et al.,

2019). Thus, we used the scMetabolism method (Wu et al.,

2022a) to better understand these three metabolic pathways in

HNSCC immune cells. First, we detected the average

expression of glucose metabolic genes in different T-cell

FIGURE 5
(Continued).
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FIGURE 5
(Continued). Exploration of IMS characteristic in single-cell RNA sequencing database. (A) UMAP plot of selected 6435 single cells in immune
cells (CD45 positive). Different colors represent different cell types. (B)UMAP plot shows the expression of nine genes in IMS classifier. (C)UMAP plot
of selected 6435 single cells in immune cells (CD45 positive). Twelve cell clusters were divided into eight cell types. (D) Kaplan–Meier plot displays
significant differences of survival rate among high-IMS proportion and low-IMS proportion in TCGA cohorts. MuSic Deconvolution method.
High group wasmore favorable than low group, unit of time (years). (E) The differential immune–immune cellular communication weight coefficient

(Continued )
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types; all immune cells showed a strong imbalanced

distribution of metabolic genes associated with glycolysis/

gluconeogenesis signaling genes (Figures 5I,J). We

subsequently calculated the enrichment abundance of two

other metabolism-associated pathways in different immune

cell types and found an IMS, indicating extensive

involvement in the TCA cycle and oxidative

phosphorylation compared to all immune cell types

(Figure 5K). The boxplot of IMS enrichment revealed that

the TCA cycle and glycolysis/gluconeogenesis metabolic

pathways ranked first among all immune cell types and that

the oxidative phosphorylation pathway ranked fifth

(Figure 5L). Our combined cohort further verified that

glycolysis/gluconeogenesis, the TCA cycle, and oxidative

metabolic pathways were dominant in the IMS high group

(Figure 5M,N; p = 1.8e-32, p = 1.49e-25, and p = 4.09e-228,

respectively). These results revealed that cellular energy

metabolic regulation could mediate the phenotype and

function of IMS cells in response to antitumor effects.

Construction and verification of the IMS
risk prediction model

Several studies have validated that immune-related

molecules are biomarkers for prognosis (Fridman et al.,

2017; Bruni et al., 2020; Zitvogel et al., 2021). Thus, we

used the LASSO algorithm to filter candidate immune

genes from the IMS classifier (Figure 6A). Three immune

genes (CD2, CD3E, and TBC1D10C) were identified using the

lambda-min value, with one immune gene (TBC1D10C)

identified using lambda-1se value. Considering the

precision of future clinical testing, we selected three

immune genes to construct a risk model. We used the

“Predict” function in R to calculate the risk score based on

these three genes and classified this combined cohort based on

the median risk score. The box chart showed that the risk score

in the alive and dead groups was significantly different. We

found that the dead group had an exceedingly higher risk

score than the alive group (p = 2e-5; Figure 6B). Kaplan–Meier

analysis results showed that the high-score group had

significantly higher mortality than the low-score group; this

finding was validated in the internal TCGA cohort (log rank

p < 0.0001, log rank p = 0.00054; Figures 6C,D). A receiver

operating characteristic (ROC) curve was used to validate the

sensitivity and specificity of this risk model; we found that the

AUC of the combined cohort risk model was 0.58 (Figure 6E).

We also calculated the AUC values at 1, 3, and 5 years (1-year

AUC = 0.58, 3-year AUC = 0.55, 5-year AUC = 0.59;

Figure 6F). These values suggested that the risk model

based on the combined cohort exhibited predictive

significance. We also validated these results in the external

cohort GSE102349 (log rank p = 0.0012, AUC = 0.71; Figures

6G,H). Then, we divided HNSCC patients into two groups

according to the expression of these three immune genes. The

Kaplan–Meier analysis results showed that patients with high

expression of these genes had significantly better survival than

those with low expression in the combined cohort (CD2, log

rank p = 0.0083, TBC1D10C, log rank p < 0.0001, CD3E, log

rank p = 0.02; Figures 6I–K). In addition, we analyzed the

expression of these three immune genes in patients in the

HNSCC immunotherapy cohort with complete response

(CR), partial response (PR), stable disease (SD), and

progressive disease (PD), as defined by RECIST criteria. We

found significantly increased expression of all these genes in

CR/PR patients compared with SD/PD patients (Figure 6L).

Furthermore, we analyzed CD2, TBC1D10C, and CD3E

expression in patients enrolled in a Phase II basket clinical

trial of pembrolizumab (Cindy Yang et al., 2021). This clinical

trial assessed a pan cancer immunotherapy cohort (including

HNSCC, breast cancer, ovarian cancer, and melanoma). As

expected, the Kaplan–Meier curve showed that these three

FIGURE 5 (Continued)
shows IMS cross-talk between all immune cell type. (F) The heatmap of immune–immune cellular communication shows the counts of IMS
cross-talk between all immune cell types. (G) Communication network of the significant ligand–receptor pairs between IMS and other immune cell
types, which contribute to the signaling from IMS to memory B cell, dendritic cell, CD14+ monocyte cell, CD4+ T cell, CD8+ T cell, CD4+ memory
T cell, and NK cell subpopulations. Dot color reflects communication probabilities and dot size represents computed p-values. Empty space
means the communication probability is zero. p-Values are computed from a one-sided permutation test. (H) CD74 and CXCR4 (MIF) in groups of
combined cohorts; high pathway group (387) represents high IMS, low pathway group (589) represents low IMS; p = 8.69e-151, p = 2.47e-67. (I)
Heatmap of metabolic genes’ average expression in different immune cell types. (J) Glycolysis/gluconeogenesis pathway distribution plot of all
immune cells. (K) Enrichment of immune cell types in oxidative phosphorylation and TCA cycle pathways. Dot color reflects enrichment probabilities
and dot size represents computed p-values. (L) The rank of each immune cell-type enrichment in glycolysis/gluconeogenesis, oxidative
phosphorylation, and TCA cycle pathways. The result shows IMS ranked first in the glycolysis/ gluconeogenesis and citrate cycle (TCA cycle) pathway
but fifth in the oxidative phosphorylation pathway. (M) Glycolysis/gluconeogenesis pathway in groups of combined cohorts; high pathway group
(387) represents high IMS, low pathway group (589) represents low IMS; p = 1.8e-32. (N)Oxidative phosphorylation and TCA cycle pathway in groups
of combined cohorts; high pathway group (387) represents high IMS, low pathway group (589) represents low IMS; p = 1.49e-25, p = 4.09e-228.
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genes were prognostic factors (Supplementary Figures S6A–C;

CD3E, log rank p = 0.007, CD2, log rank p = 0.0047, TBC1D10C,

log rank p = 0.0059). The ROC results obtained by multivariate

Cox regression validated the predictive value of these three genes

in the pan cancer immunotherapy cohort (Supplementary Figure

S6D; AUC = 0.67).

FIGURE 6
(Continued).
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FIGURE 6
Construction and verification of IMS risk prediction model. (A) Hundred-time cross-validation for tuning parameter selection in the LASSO
model; combined cohort. (B) Risk score range in two groups (0 = alive, 1 = dead); combined cohort. (C) Kaplan–Meier curve shows high-risk and
low-risk groups based on the risk score; combined cohort; log rank p < 0.0001; unit of time (years). (D) Kaplan–Meier curve shows high-risk and low-
risk groups based on the risk score; TCGA cohort; log rank p = 0.00054, unit of time (years). (E) Receiver operating characteristic curve in
combined cohort; AUC = 0.58. (F) Time–ROC curve in combined cohort; AUC 1 year = 0.58; AUC 3 years = 0.55; AUC 5 years = 0.59. (G)
Kaplan–Meier curve shows high-risk and low-risk groups based on the risk score; external GSE102349 cohort; log rank p = 0.0012; unit of time
(years). (H) Receiver operating characteristic curve in GSE102349 cohort; AUC =0.71. (I–K) Kaplan–Meier curve shows high-risk and low-risk groups
based onCD2, TBC1D10C, and CD3E expression, respectively; combined cohort CD2 log rank p= 0.0083; TBC1D10C log rank p < 0.0001; CD3E log
rank p = 0.02; unit of time (years). (L) CD2, TBC1D10C, and CD3E expression in immunotherapy cohort, complete response (CR), partial response
(PR), stable disease (SD), progressive disease (PD) as per RECIST criteria; asterisks represent different p values (* <0.05; ** <0.01; *** <0.001,
**** <0.0001).
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Discussion

Our study identified potential immunotherapy biomarkers by

analyzing the gene expression profiles from the combined and

immunotherapy cohorts. Screening hub genes with significant

MM, GS, and GS1 values greater than 0.8, 20 genes among them

were particularly prominent. All these genes were enriched in the

functions of immunotherapy and immune response. We classified

HNSCC patients using these hub genes and constructed a novel

immune signature named the IMS to calculate survival rates and

performed immune enrichment analyses.We found that a high IMS

predicts longer survival and abundant immune infiltration. These

results indicate that the high IMS group will benefit from ICI

treatment. These results were validated using the external

GSE102349 cohort and HNSCC immunotherapy cohort.

According to Topalian, S. L et al. (Topalian et al., 2012), better

ICI efficacy was significantly correlated with a higher expression of

related immune checkpoint genes, such as PDCD1. Another study

showed that HPV-negative head and neck tumor patients exhibit

poor prognoses compared to HPV-positive patients (Johnson et al.,

2020). In our study, the high IMS group exhibits a higher expression

of checkpoint molecules compared with the low IMS group. In

addition, a high IMS indicated that HNSCC patients were more

likely to have an HPV-positive status. Our study also found a

meaningfully positive correlation between the IMS and immune

checkpoint targets. Those observations indicate that HPV+HNSCC

patients are more likely to benefit from immunotherapy. Moreover,

our study revealed that the IMS was positively correlated with the

ESTIMATEScore, ImmuneScore, and StromalScore, but negatively

correlated with TumorPurity, hence giving us an expanded

understanding that the IMS might exert a positive impact on

clinical outcomes.

Single-cell RNA sequencing revealed a complex immune

microenvironment in head and neck squamous tumors. We

classified patients based on the IMS and seven immune cell

clusters, and the deconvolution results showed that a high IMS

proportion was robustly related to favorable survival in the TCGA

cohort. These results suggest that these IMS classifier genes could be

potentially used to guide clinical immunotherapy treatment. Energy

metabolism is essential for the antitumor function of immune

effector cells. T-cell replication and function are highly

dependent on the upregulation of specific glycolytic programs,

including aerobic glycolysis, the hexosamine biosynthesis pathway

(HBP), the pentose phosphate pathway (PPP), and the TCA cycle

(Leone and Powell, 2020). For example, the PPP metabolizes

glucose-6-phosphate to generate NADPH and ribose-5-

phosphate, which are required for fatty acid and plasma

membrane synthesis in newly activated CD8+ T cells. In addition,

the inhibition of 2-oxoglutarate-dependent dioxygenases through

alterations in TCAmetabolites such as αKG, succinate, and fumarate

increase memory cell differentiation in CD8+ T cells (Kidani et al.,

2013; Tyrakis et al., 2016). Our study revealed that the IMS cell

cluster was particularly enriched in these metabolic pathways, which

is consistent with our combined bulk sample-based results. These

results suggest that IMS cells in HNSCC have undergone extensive

remodeling and are strongly enriched in metabolic pathways,

indicating that metabolism pathways or genes could regulate

immune checkpoint targets. To this end, the combination of

metabolic drugs with immune checkpoint inhibitors represents a

promising method of enhancing the efficacy of immune checkpoint

blockade.

A comprehensive investigation of intercellular communications

is essential for understanding the interactions and spatial proximity

among HNSCC immune cells. In our study, we first identified MIF

ligand‒receptor pairs as the dominant signaling pathway that

facilitate communication between IMS cells and other immune

cell types. This MIF ligand‒receptor analysis of the putative

interactions displayed here can be pursued further to better

understand the ecosystem cultivated by intercellular

communication in the HNSCC tumor microenvironment.

Sumaiya et al. (Sumaiya et al., 2022) reported that MIF was

overexpressed in almost all types of solid tumors, including

HNSCC, and induced negative impacts on the immune system,

thus leading to tumor growth and metastasis. Our study further

contextualizes this finding for the combined bulk cohort, thus

providing an explanation for the poor response rate of ICI

treatment in HNSCC. In summary, our immune signature IMS

can be useful in characterizing the HNSCC tumor immune

microenvironment, stratifying HNSCC patients into different

immunophenotype groups, predicting the prognosis of HNSCC

patients, and promoting an understanding of the mechanism

underlying the antitumor response and immune escape in HNSCC.

We constructed a prognostic model based on the IMS, with the

validation results showing that the risk model exhibited high

accuracy and sensitivity. Moreover, the risk score can be used

as an independent prognostic factor, indicating that it has a stable

and powerful survival predictive ability. The effectiveness and

rationality of establishing the IMS-related risk model based on

a big data algorithm will facilitate the clinical diagnosis and

treatment process in patients. Previous studies have verified

that CD3E, CD2, and TBC1D10C play a significant role in

immune activation and cytotoxicity. For example, CD3E is part

of the T-cell receptor/CD3 complex (TCR/CD3 complex) and

plays a role in T-cell development and signal transduction, which is

essential for the activation and positive selection of CD4 or

CD8 T cells (Doucey et al., 2003; Fischer et al., 2005). CD2 is

implicated in the activation of T cells by promoting adhesion and

T-cell receptor signaling, and the upregulation of CD2 could

enhance antitumor T-cell responses (Demetriou et al., 2020). In

a recent study, TBC1D10C was reported to be a regulator of

immune activity and to play an important role in shaping

macrophage activity by remodeling the cytoskeleton-plasma
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membrane to facilitate different T-cell functions (Villagomez et al.,

2021). At present, no studies have demonstrated the correlation

between these three immune genes and immunotherapy in

HNSCC. We used clustering analysis to confirm that these

three immune genes were more highly expressed in the high

IMS group. In addition, the classification of patients in our

combined bulk cohort based on risk score and comparison of

gene expression in the CR/PR and SD/PD groups suggested that

CD3E, CD2, and TBC1D10C represent genes that are potentially

predictive of response to immunotherapy. We found that each of

the three immune genes was associated with good survival in both

the cohort from the immunotherapy clinical trial and the

combined cohort. These results confirmed that CD3E, CD2,

and TBC1D10C could be used independently as genes that

predict response to immunotherapy.

Despite these promising findings, we recognize some

limitations of our research. For example, fresh clinical sample

collection is difficult, so we did not conduct external validation

using fresh tumor samples; further experimental evidence from

cellular andmolecular assays is thus needed to validate the findings

of this study. In addition, we conducted a retrospective cohort

study with a commonly used internet database, so the results

should be further verified in a multicenter prospective cohort

study. Moreover, the tumor immune environment includes

multiple immune populations, and patient prognosis depends

on CD8 cells as well as CD4 cells, Treg cells, and myeloid cells,

including macrophages, neutrophils, and myeloid-derived

suppressor cells. We will focus more on molecular interactions

between these immune cells in our follow-up research.

Conclusion

We established a novel and robust immune signature referred to

as “the IMS” to classify immunophenotypes in head and neck

squamous cell carcinoma (HNSCC) patients; this signature was

validated using internal and external cohorts. Responsiveness to

immunotherapy was predicted for different IMS groups, and this

information may provide an important foundational framework for

exploring HNSCC immunotherapy targets. We identified IMS cell

clusters in a single-cell database, suggesting that a high IMS predicts

favorable survival based on cross-talk between IMS and other

immune lineages. We observed unique possibilities to target

metabolic pathways to enhance the immunotherapy response. In

addition, we constructed a prognostic model based on the IMS and

provided reliable biomarkers of prognosis in HNSCC patients.

Overall, our study contributes to the understanding of the tumor

immune landscape in patients with HNSCC and serves as a basis for

future in-depth exploration of the role of IMS cells.
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