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Background: Benign familial hematuria and Alport syndrome are common

causes of familial hematuria among children and young adults, which are

attributable to variants in the collagen type IV alpha chain genes, COL4A3,

COL4A4, or COL4A5. The study was conducted to identify the underlying

genetic causes in patients with familial hematuria.

Methods: Two unrelated Han-Chinese pedigrees with familial hematuria were

recruited for this study. Whole exome sequencing was combined with in silico

analysis to identify potential genetic variants, followed by variant confirmation

by Sanger sequencing. Reverse transcription, PCR, and Sanger sequencingwere

performed to evaluate the effect of the detected splicing variant on mRNA

splicing.

Results: A novel heterozygous splicing c.595-1G>A variant and a known

heterozygous c.1715G>C variant in the collagen type IV alpha 4 chain gene

(COL4A4) were identified and confirmed in patients of pedigree 1 and pedigree

2, respectively. Complementary DNA analysis indicated this splicing variant

could abolish the canonical splice acceptor site and cause a single nucleotide

deletion of exon 10, which was predicted to produce a truncated protein.

Conclusions: The two COL4A4 variants, c.595-1G>A variant and c.1715G>C
(p.Gly572Ala) variant, were identified as the genetic etiologies of two families

with familial hematuria, respectively. Our study broadened the variant spectrum

of theCOL4A4 gene and explained the possible pathogenesis, whichwill benefit

clinical management and genetic counseling.
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Introduction

The familial hematuria of glomerular origin is usually due to a

group of genetically and phenotypically heterogeneous disorders,

such as benign familial hematuria (BFH), Alport syndrome (AS),

glomerulopathy with fibronectin deposits (GFND), and

C3 glomerulonephritis (C3GN) (Deltas et al., 2013). The

common causes of familial hematuria among children and

young adults are BFH and AS (Kashtan, 2009; Gale, 2013). BFH

(OMIM 141200) is usually a non-progressive autosomal dominant

renal disorder with a penetrance of 70% (Blumenthal et al., 1988;

Lemmink et al., 1996; Savige et al., 2013), which is mainly

characterized by persistent or recurrent glomerular hematuria,

diffuse thinning of the glomerular basement membrane (GBM),

and normal renal function (Slajpah et al., 2007). BFH is usually

referred to as thin basement membrane nephropathy (TBMN)

(Marcocci et al., 2009; Deltas et al., 2013; Gale, 2013), but

TBMN is no longer considered benign as some can develop into

end-stage renal disease (ESRD) in adults (Dische et al., 1985; Naylor

et al., 2021). The frequency of this condition is estimated to be at

least 1.0% in theworldwide population (Buzza et al., 2001; Chan and

Gale, 2015), 5.2% in a population with microscopical examination

and morphometry of GBM (Dische et al., 1990), and 15.5%–26% in

children with hematuria and renal biopsy (Piqueras et al., 1998;

Roth et al., 2001). It seems to be more prevalent in females than in

males (Buzza et al., 2001; Savige et al., 2003). BFH is often

attributable to heterozygous variants in the collagen type IV

alpha 3 chain gene (COL4A3) or the collagen type IV alpha

4 chain gene (COL4A4), arranging head to head on

chromosome 2 (Boye et al., 1998; Tazón Vega et al., 2003). AS

most often manifests hematuria, proteinuria, and progressive renal

failure, sometimes associated with sensorineural hearing loss and

ocular abnormalities (Hudson et al., 2003), and the renal pathology

is characterized by irregular thickening, thinning, and lamellation of

GBM (Savige et al., 2013; Kamiyoshi et al., 2016). The COL4A3/

COL4A4 heterozygous variants were also reported to cause

autosomal dominant Alport syndrome (ADAS, OMIM 104200)

(Boye et al., 1998), while homozygous or compound heterozygous

variants were responsible for the autosomal recessive Alport

syndrome (ARAS) (Longo et al., 2002; Voskarides et al., 2007).

The heterozygous carriers of the ARAS family can present

manifestations like BFH (Heidet et al., 2001; Savige et al., 2003).

X-linked AS (XLAS), the most common form, accounts for about

85% of AS patients, which is ascribed to variants in the collagen type

IV alpha 5 chain gene (COL4A5) (Slajpah et al., 2007; Nabais Sá

et al., 2015). Compared with ARAS and XLAS, ADAS is relatively

milder and slowly progressive with rare extrarenal manifestations

(Kamiyoshi et al., 2016). Given the heterotrimeric association of

type IV collagen α3/α4/α5 chain in the GBM and the overlapping

clinical symptoms, a spectrum ranging from totally asymptomatic

or isolated microscopic hematuria to proteinuria, up to chronic

renal failure (CRF) and ESRD (Nabais Sá et al., 2015; Furlano et al.,

2021; Kashtan, 2021), it is rational to consider BFH and AS as an

entity and to term them collectively as collagen IV-related

nephropathies (Tazón Vega et al., 2003; Pieri et al., 2014). BFH

is considered to be the mildest end in the continuous spectrum, and

FIGURE 1
Pedigree and sequence analysis of the two unrelated Han-Chinese families with familial hematuria. (A) Pedigree 1. Squares and circles represent
males and females, respectively. The fully shaded symbol indicates the affected individual. Arrow indicates the proband. (B) The genomic sequence
with heterozygous COL4A4 c.595-1G>A variant (III:2 in pedigree 1). (C) The wild-type COL4A4 genomic sequence (II:2 in pedigree 1). (D) Analysis of
complementary DNA revealed a deletion of the first base of exon 10 (III:2 in pedigree 1). (E) Pedigree 2. Arrow indicates the proband. The slash
indicates deceased individual. (F) The genomic sequence with heterozygous COL4A4 c.1715G>C variant (II:1 in pedigree 2). (G) The wild-type
COL4A4 genomic sequence (I:2 in pedigree 2). (H) Conservation analysis of the COL4A4 p.Gly572 residue. COL4A4, the collagen type IV alpha
4 chain gene.
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the most severe end is represented by ARAS (Lemmink et al., 1996;

Nieuwhof et al., 1997; Xu et al., 2016). However, BFH can resemble

early AS, especially ADAS, in initial clinical presentation and the

electron-microscopic features of the GBM, rendering the exact

diagnosis notoriously difficult (Badenas et al., 2002; Gross et al.,

2003; Voskarides et al., 2007). A complete investigation of family

history, careful clinical evaluation, long-term specialist follow-up,

and available renal biopsy analysis are vital in avoidingmisdiagnosis

or missed diagnosis (Kashtan, 2021). This study aimed to identify

the genetic etiologies of familial hematuria in two unrelated Han-

Chinese families and to elucidate possible morbigenous

mechanisms.

FIGURE 2
Electron micrograph of renal biopsy specimen from the proband (II:1) in pedigree 2. (A) Irregular thickening of the glomerular basement
membrane (GBM) (yellow arrow). (B) Irregular thinning of the GBM (white arrow), and electron-dense deposits (yellow triangle). Original
magnification 6500×.

TABLE 1 Clinical data of patients with the COL4A4 gene variant.

Items Pedigree 1 Pedigree 2

I:1 II:1 III:2 II:1

Sex Male Female Male Male

Age (years) 71 41 15 30

BMIa (kg/m2) 27.7 20.6 22.4 21.5

Serum creatinineb (µmol/L) 96 61 76 123

eGFRc (ml/min/1.73 m2) 68 108 129 67

Microscopic hematuria Trace 2+ 1+ 2+

Gross hematuria No No No No

Proteinuria No Trace No No

Hypertension No No No No

GBM changes by EM NA NA NA Irregular thickening and thinning

Sensorineural hearing loss No No No No

Ocular abnormalities No No No No

BMI, body mass index; eGFR, estimated glomerular filtration rate; GBM, glomerular basement membrane; EM, electron microscopy; NA, not available.
aNormal weight, 18.5≤BMI<23; overweight, 23≤BMI<25; obesity, BMI≥25.
bReference interval for the test of serum creatinine is 57–111 μmol/L for males and 41–81 μmol/L for females in pedigree 1, and 59–104 μmol/L for males in pedigree 2, using distinct

methods.
ceGFR was calculated by the chronic kidney disease epidemiology collaboration (CKD-EPI) equation, and the reference interval is 56–122 ml/min/1.73 m2.
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Materials and methods

Subjects and clinical evaluations

Members of two Han-Chinese pedigrees were recruited

from the Third Xiangya Hospital of Central South University,

China (Figure 1). Detailed audiological examinations and

ophthalmologic assessments were performed, including

pure-tone audiometry, acoustic immittance, otoacoustic

emissions, auditory brainstem response, slit-lamp

evaluation, fundus examination, and optical coherence

tomography. Peripheral blood samples were collected from

four patients and four asymptomatic family members of two

pedigrees, together with available clinical information.

Written informed consents were obtained from all

participating individuals. The entire study complied with

the Declaration of Helsinki guidelines and was approved by

the Institutional Review Board of the Third Xiangya Hospital

of Central South University, China.

DNA extraction, exome capture, and
sequencing

Whole exome sequencing (WES) was conducted on the

proband and their parents of pedigree 1, and the proband of

pedigree 2. Genomic DNA (gDNA) of participating individuals

was extracted from peripheral venous blood lymphocytes

following the manufacturer’s protocol (Huang et al., 2021;

Xiong et al., 2021). The qualified gDNA was fragmented

randomly and then processed for end-repairing, A-tailing, and

adaptor ligation. These adapter-ligated fragments were amplified

by polymerase chain reactions (PCR) followed by purification

and exome array hybridization. After further enrichment and

purification, the captured libraries were sequenced on the high-

throughput sequencing platforms: Illumina NextSeq500

(pedigree 1) and DNBSEQ (pedigree 2).

Variant analysis and Sanger sequencing

After filtering the raw data from the sequencing platform,

data processing including sequence alignment, variant calling,

annotation, and analysis was performed according to previously

described criteria (Wu et al., 2016; Wu et al., 2019), as detailed in

the Supplementary Methods.

The potential pathogenic variants identified in patients were

further tested in participating individuals via Sanger sequencing.

The following are the sequences of primers: 5′-GCTGGTGGC
TGTGATTTCTT-3′ and 5′-CACCTGTGTCTGACCCAAAA-3′
for detecting the potential variant in the pedigree 1, 5′-CCAACC
CAGAATCAAGGTCA-3′ and 5′-TCCTGGATCCCCTTTTTC
TC-3′ for detecting potential variant in pedigree 2.

RNA isolation, complementary DNA
synthesis, and PCR analysis

To analyze the effect of identified splicing variant, total RNA

was extracted from the peripheral blood lymphocytes of the

patients (I:1, II:1, and III:2) in pedigree 1 using the TRIzol reagent

(Invitrogen, Carlsbad, CA, United States). The complementary

DNA (cDNA) was synthesized by reverse transcription using the

First Strand cDNA Synthesis Kit (Toyobo, Japan), and further

amplified by PCR using the specifically designed primers: 5′-
TGGGGAAAAGGGAGAAAAAG-3′ and 5′-ACCTTGCTG
ACCAACCTCAC-3′. PCR products were checked by agarose

gel electrophoresis and then analyzed on the ABI 3730XL DNA

sequencer (ABI, Carlsbad, CA, United States).

Conservative analysis and variant
evaluation

The protein sequence alignment among nine species was

completed by the NCBI Basic Local Alignment Search Tool

(BLAST, https://blast.ncbi.nlm.nih.gov/BlastAlign.cgi). The

American College of Medical Genetics and Genomics (ACMG)

guidelines for interpreting sequence variants were utilized to classify

the identified variants (Richards et al., 2015; Savige et al., 2021).

Quantification of nonsense-mediated
decay by Sanger sequencing

Nonsense-mediated decay (NMD) was determined by

sequencing analysis of COL4A4 cDNA from patients I:1, II:1,

and III:2 of pedigree 1, and by comparing the areas under the

peaks (AUP) of wild-type (WT) and mutant (MT) alleles. The

AUP of the WT and MT specific-alleles were quantified by the

ImageJ software v1.53a (NIH, United States), and the ratio of

AUP of MT over corresponding WT was then calculated.

Statistical analysis was performed using the Microsoft Excel

2016 software (Microsoft, Inc.) and GraphPad Prism v9.4.0

(GraphPad Software, Inc.) using Student’s t test. p<.05 was

considered significant.

Results

Clinical data

The proband (III:2) of pedigree 1, a 15-year-old boy, was

accidentally found to have microscopic hematuria during the

physical examination for enrollment 3 years ago. The

dysmorphic erythrocytes in the urinary sediment observed by

phase-contrast microscopy supported the diagnosis of

glomerular hematuria. Further investigation found that his
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mother (II:1) also had long-term microscopic hematuria,

occasionally accompanied by trace proteinuria by routine

tests. His 71-year-old grandfather (I:1) had microscopic

hematuria persisting for an uncertain time. All three patients

exhibit no signs of impairment in blood pressure or renal

function. Audiological and ophthalmologic assessments of the

proband and his mother demonstrated no signs of sensorineural

hearing loss or ocular lesions.

The proband (II:1) of pedigree 2, a 30-year-old male,

displayed microscopic hematuria and a mildly elevated serum

creatinine level on routine physical examination. His serum

creatinine fluctuated between 110 and 123 μmol/L (reference

interval: 59–104 μmol/L) during 3 years of follow-up. Renal

biopsy was performed in the Sichuan Provincial People’s

Hospital half a year ago. Light microscopy showed segmental

mild hyperplasia of mesangial cells and matrix.

Immunofluorescence staining of IgM, IgA, C3, κ, and λ was

positive, showing a massive pattern of deposition within the

mesangium. On electron microscopy, there is segmental mild

mesangial expansion with massive electron-dense deposits and

segmental irregular thickening and thinning of the GBM

(Figure 2). The audiological and ophthalmologic evaluations

revealed no abnormalities. Clinical data of these patients were

summarized in Table 1.

WES and identification of pathogenic
variants

The detailed WES data of four individuals are available in

Supplementary Table 1. After database and in silico analysis

screening, a novel heterozygous c.595-1G>A variant in the

intron 9 of the COL4A4 gene (NG_011592.1, NM_000092.5)

was suggested as the potential pathogenic factor of patients

in pedigree 1, and a known heterozygous c.1715G>C
(p.Gly572Ala) variant in the exon 24 of the COL4A4 gene

TABLE 2 Identification of the COL4A4 gene variants in two pedigrees with familial hematuria.

Items Variant 1 Variant 2

Exon — 24

Intron 9 —

Nucleotide change c.595-1G>A c.1715G>C

Amino acid change p.Gly199Aspfs*20 p.Gly572Ala

Genotype Heterozygous Heterozygous

Variant type Splicing Missense

dbSNP154 rs number No rs1446915781

Allele frequencies 1000G No No

ESP6500 No No

gnomAD No 4.01×10−6

ChinaMAP No 9.44×10−5

HGMD accession number No CM176102

ClinVar No Likely pathogenic

MutationTaster2021 Deleterious Deleterious

SIFT — Damaging

PROVEAN — Deleterious

PolyPhen-2 — Probably damaging

NetGene2 server Destroy the acceptor site —

BDGP NNSplice v0.9 Destroy the acceptor site —

ACMG criteria applied PVS1+PS3+PM2+PP1+PP3 PM1+PM2+PP2+PP3+PP5

dbSNP154, Single Nucleotide Polymorphism Database (version 154); rs, Reference SNP; 1000G, 1000 Genomes Project; ESP6500, Exome Sequencing Project 6500; gnomAD, Genome

Aggregation Database; ChinaMAP, China Metabolic Analytics Project; HGMD, Human Gene Mutation Database; SIFT, Sorting Intolerant from Tolerant; PROVEAN, Protein Variation

Effect Analyzer; PolyPhen-2, Polymorphism Phenotyping version 2; BDGP NNSplice, Berkeley Drosophila Genome Project Splice Site Prediction by Neural Network; ACMG, American

College of Medical Genetics and Genomics; PVS, pathogenic very strong; PS, pathogenic strong; PM, pathogenic moderate; PP, pathogenic supporting.
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was considered to be the potential disease-related variant of

the proband in pedigree 2. The results of in silico analysis are

presented in Table 2. After Sanger sequencing, the

heterozygous splicing variant, c.595-1G>A, was identified

in the patients I:1, II:1, and III:2 of pedigree 1, and the

heterozygous missense variant c.1715G>C was confirmed in

the proband II:1 of pedigree 2. These two variants were

absent in the enrolled asymptomatic family members. For

the reverse transcription PCR products, agarose gel

electrophoresis and Sanger sequencing revealed no exon

skipping or intron retention. Sanger sequencing indicated

that the COL4A4 c.599-1G>A substitution can abolish the

intron 9 canonical splice acceptor site and introduce a new

splice site, resulting in the loss of the first base of exon

10 during splicing, which was predicted to cause a frame shift

and premature termination of translation (c.595delG,

p.Gly199Aspfs*20). The COL4A4 glycine at position 572

(p.Gly572) is highly conserved across species (Figure 1).

According to ACMG guidelines, the two variants were

classified as “pathogenic”.

Quantification of NMD

The differences between the AUP of the WT and MT alleles

are statistically significant (p<.0001). The relative expression of

the MT allele is approximately 50% lower than the WT allele by

comparing the AUP of specific alleles in the cDNA sequencing

chromatogram of these three patients (I:1, II:1, and III:2) in

pedigree 1 (Figure 3).

Discussion

The COL4A4 gene (OMIM 120131), located at 2q36.3,

contains 48 exons encoding the α4 chain of type IV collagen

(Boye et al., 1998). Each chain contains an N-terminal 7S

domain, a long, central, triple-helical collagenous domain of

Gly-Xaa-Yaa repeats frequently interrupted by short non-

collagenous regions, and a C-terminal non-collagenous (NC1)

domain (Figure 4) (Boutaud et al., 2000; LeBleu et al., 2010). The

six highly homologous chains of type IV collagen, namely α1(IV)
to α6(IV), were encoded by six genes (COL4A1 to COL4A6)

(Hudson et al., 2003; Cicuéndez et al., 2021). In mammals, the

existence of six distinct α(IV) chains could only assemble into

three different trimers, namely α1α1α2(IV), α3α4α5(IV), and
α5α5α6(IV) (LeBleu et al., 2010). During fetal development,

collagen α1α1α2(IV) is ubiquitously distributed in all

basement membranes (BMs) (Sand et al., 2013), while in the

mature GBM and BMs of cochlea and eye, α3α4α5(IV) is the

major component (Hudson et al., 2003; Suleiman et al., 2013;

Savige et al., 2015). The pathogenic variants in any one of the

three genes (COL4A3, COL4A4, and COL4A5) may interfere with

the developmental switch, resulting in the persistent expression

or compensatory increase of fewer cross-linked and more

protease-susceptible α1α1α2(IV), which leads to BFH or AS

(Suleiman et al., 2013; Clark et al., 2016; Xu et al., 2016).

Currently, more than 400 COL4A4 gene variants have been

recorded in the Human Gene Mutation Database (HGMD), of

which at least 29 and 65 variants are associated with BFH and

ADAS, respectively, and three variants can cause both disorders.

These different variants are widely distributed in the COL4A4

gene without hot spots described, and the most frequent variants

are glycine substitutions (46/97) (Figure 4). The frequency of

nonsense, splicing, and frameshift variants in ADAS seems to be

higher than that in BFH (44.12% vs. 37.50%), consistent with that

these variants usually cause more severe phenotypes (Shang et al.,

2019).

In this study, two variants in the COL4A4 gene were

identified in two unrelated Chinese pedigrees with familial

hematuria. The heterozygous c.595-1G>A variant is

completely co-segregated with the disorder phenotype within

pedigree 1. The heterozygous c.1715G>C transversion detected

in the proband of pedigree 2 has been previously reported in

compound heterozygosity with variant c.-23T>G in a Chinese AS

male patient, and both his sons with heterozygous c.-23T>G
variant only presented isolated hematuria (Liu et al., 2017),

supporting that the identified c.1715G>C variant may be

pathogenic and seems to exert a pathogenic effect to result in

a more severe renal phenotype. The absence of these two variants

in the asymptomatic family members, the prediction of its

deleterious effect by in silico programs, cDNA analysis,

FIGURE 3
The areas under the peaks of wild-type (WT) and mutant (MT)
alleles by sequencing analysis of COL4A4 cDNA from patients I:1,
II:1, and III:2 of pedigree 1. *Statistically significant differences
(Student’s t test, p<.0001).
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protein sequence alignment, and ACMG criteria evaluation

suggested that they were likely disease-causing variants in

these two pedigrees.

The splicing variant c.595-1G>Amay induce NMD of the

altered COL4A4 mRNA or produce a truncated loss-of-

function α4(IV) chain, consistent with similar studies

(Schwarze et al., 2001; Davidson et al., 2007; Korstanje

et al., 2014; Hashikami et al., 2018). The missense variant

c.1715G>C (p.Gly572Ala) occurred in the first position of

critical Gly-Xaa-Yaa repeats in the collagenous domain. The

highly conserved glycine residue is the smallest amino acid

that can fit tightly into the center of the triple helix structure

FIGURE 4
Statistics of the COL4A4 gene variants related to benign familial hematuria (BFH) or autosomal dominant Alport syndrome (ADAS). Collagen
type IV alpha 4 chain contains an N-terminal 7S domain, a long, central triple-helical region, and a C-terminal non-collagenous (NC1) domain.
Variants identified in this study were indicated in bold and red. COL4A4, the collagen type IV alpha 4 chain gene.
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of the α(IV) chain and is crucial to the helix formation

(Deltas et al., 2013; Murray et al., 2014). Hence, both

variants in the COL4A4 gene may disrupt the normal

synthesis of the α4(IV) chain and cause defective

synthesis, assembly, deposition, or function of the

α3α4α5(IV) network (Korstanje et al., 2014; Kashtan et al.,

2018), interfering natural development process and leading

to the abnormal GBMs (Clark et al., 2016; Naylor et al.,

2021). Additionally, the poor association of abnormal α4(IV)
with the α3(IV) and α5(IV) chain may leave more misfolded

protein in the endoplasmic reticulum (ER), disrupt

podocyte’s special secretory capacity, and lead to GBM

defects (Pieri et al., 2014). These defective GBMs may

partially allow the escape of erythrocytes into Bowman’s

space, thereby triggering the onset of hematuria

(Yoshikawa et al., 1984).

In pedigree 1, isolated microscopic hematuria, normal

renal function, and absence of other signs related to AS in the

proband, his mother, and grandfather, are more suggestive of

a heterozygous COL4A4-related BFH than AS. In pedigree 2,

given that the proband presented microscopic hematuria,

mildly elevated serum creatinine level, and irregular

thickening and thinning of the GBM, without signs of

sensorineural hearing loss or ocular lesions, a diagnosis of

early ADAS cannot be ruled out. The IgA deposits within the

mesangium corresponding to IgA nephropathy could be due

to the predisposition of mesangial IgA deposition in

defective GBMs caused by COL4A4 variant (Savige and

Harraka, 2021). Usually, from clinical phenotype and

renal biopsy, the coexistence of AS and IgA nephropathy

is attributed to two independent causes. However, some

variants in the COL4A3, COL4A4, or COL4A5 gene seem

to increase the susceptibility to IgA nephropathy, which is

supported by IgA deposits occasionally observed in the AS

patients and the COL4A3, COL4A4, or COL4A5 gene variants

reported in a minority of IgA nephropathy patients

(Kamiyoshi et al., 2016; Li et al., 2020; Cambier et al.,

2021). Based on the identified responsible variant,

COL4A4-associated nephropathies, a sub-classification of

the conditions in the two pedigrees, is strongly

recommended. In this way, these similar or overlapping

clinical manifestations could be attributed to a single

disease spectrum rather than several distinct disease

statuses. It would, therefore, be beneficial to risk

assessment, disease management, and genetic counseling

of diseased individuals.

Taken together, a novel c.595-1G>A variant and a known

c.1715G>C (p.Gly572Ala) variant of the COL4A4 gene were

identified in two Chinese families with familial hematuria,

respectively. WES has been proven to be a powerful tool for

uncovering the genetic etiologies of heterogeneous disorders

and identifying at-risk individuals, which will assist in early

clinical diagnosis and accurate disease classification.

Currently, there is a lack of evidence-based treatment for

persistent microscopic hematuria (Xu et al., 2016), but it is of

paramount importance to regularly monitor proteinuria

development, renal function, and blood pressure every 1-

2 years (Savige et al., 2003). Our findings broadened the

variant spectrum of the COL4A4 gene and may assist in

reproductive risk counseling of these two families and

improved medical care.
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