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Objective: This study aimed to exploit cellular heterogeneity for revealing mechanisms
and identifying therapeutic targets for Parkinson’s disease (PD) via single-cell
transcriptomics.

Methods: Single-cell RNA sequencing (scRNA-seq) data on midbrain specimens from PD
and healthy individuals were obtained from the GSE157783 dataset. After quality control
and preprocessing, the principal component analysis (PCA) was presented. Cells were
clustered with the Seurat package. Cell clusters were labeled by matching marker genes
and annotations of the brain in the CellMarker database. The ligand–receptor networks
were established, and the core cell cluster was selected. Biological functions of
differentially expressed genes in core cell clusters were analyzed. Upregulated marker
genes were identified between PD and healthy individuals, which were measured in 18 PD
patients’ and 18 healthy individuals’ blood specimens through RT-qPCR and Western
blotting.

Results: The first nine PCs were determined, which can better represent the overall
change. Five cell clusters were identified, including oligodendrocytes, astrocytes, neurons,
microglial cells, and endothelial cells. Among them, endothelial cells were the core cell
cluster in the ligand–receptor network. Marker genes of endothelial cells possessed
various biological functions. Among them, five marker genes (ANGPT2, APOD,
HSP90AA1, HSPA1A, and PDE1C) were upregulated in PD patients’ than in healthy
individuals’ endothelial cells, which were confirmed in PD patients’ than in healthy
individuals’ blood specimens.
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Conclusion: Our findings revealed that the cellular heterogeneity of PD and endothelial
cells could play a major role in cell-to-cell communications. Five upregulated marker genes
of endothelial cells could be underlying therapeutic targets of PD, which deserve more in-
depth clinical research.

Keywords: Parkinson’s disease, single-cell RNA sequencing, cellular heterogeneity, molecular mechanisms,
therapeutic targets

INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative movement
disorder with insidious onset, which affects 1%–2% of older
people over 65 years (Chang et al., 2019). It possesses distinct
pathological characteristics of progressive degeneration of
midbrain-type dopaminergic neurons in the substantia nigra
(Hanan et al., 2020). Patients usually present typical dyskinesias
such as stiffness, tremors, and bradykinesia and non-motor
disorders such as cognitive and sensory disorders (Ásgrímsdóttir
and Arenas, 2020). Despite extensive research on the mechanisms
of PD, its pathogenesis still needs more profound elucidation. The
current treatment options are symptomatic, which cannot solve the
root causes of PD or restrain the loss of midbrain-type
dopaminergic neurons (Ásgrímsdóttir and Arenas, 2020). With
the progression of PD, these therapies inevitably lose their
effectiveness and have side effects. Thus, it highlights the critical
significance for novel therapy aimed at the root causes of PD.

Traditional high-throughput sequencing technology needs to
obtain enough DNA samples from many cells, so sequencing
data are the integral characteristic information of these cells. The
single-cell RNA sequencing (scRNA-seq) technology is a high-
throughput sequencing analysis of the genome and transcriptome
at the single-cell level, which can reveal the gene structure and gene
expression dynamics of a single cell and reflect the heterogeneity
between cells (González-Silva et al., 2020). For example, Katarína
Tiklová et al. applied scRNA-seq to identify graft compositions
derived from stem cells in a PD model, addressing an outstanding
issue in cell replacement (Tiklová et al., 2020). Furthermore,
Charmaine Lang et al. reconstructed PD development and
corrected Parkinson’s cellular phenotypes via scRNA-seq of
dopamine neurons derived from induced pluripotent stem cells
(Lang et al., 2019). Hugo J R Fernandes et al. uncovered specific
stress responses in dopamine neurons of PD based on single-cell
transcriptomics (Fernandes et al., 2020). These studies emphasize
the importance of scRNA-seq in the understanding of PD
progression and the development of cell replacement therapies.
Herein, this study applied scRNA-seq profiling of the midbrain
specimens from PD and healthy individuals to exploit the cellular
heterogeneity of PD, which offered novel insights into the
mechanisms and therapeutic targets for this disease.

MATERIALS AND METHODS

scRNA-Seq Data
scRNA-seq data of midbrain specimens from five idiopathic PD
patients and six healthy individuals were downloaded from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/gds/; accession: GSE157783) (Badanjak et al., 2021). Single-
nucleus suspension was prepared by scraping off the tissues from the
glass slides and utilizing the modified version of the standard 10x
Genomics nuclei isolation protocol. Single-nuclei barcoded cDNA
library was prepared according to the 10x Genomics Chromium
system and sequenced on the NovaSeq 6000 Illumina platform.

Quality Control and Preprocessing
First, empty droplets that did not have any cells were identified,
and barcode-swapped pseudo-cells were then removed utilizing
the DropletUtils package in R (version 1.10.2) (Griffiths et al.,
2018; Lun et al., 2019). The total unique molecular identifier
(UMI) count, the number of cells containing the count, and the
percentage of the count were separately calculated via the
calculateQCMetrics function in the scater package (McCarthy
et al., 2017). Low-quality cells were removed based on the criteria
of the proportion of mitochondrial genes ≤ 10% and ribosomal
genes ≥10%.Mitochondrial and ribosomal genes often consume a
large fraction of reads in the scRNA-seq data, and their relative
abundance varies from sample to sample (Jaeger et al., 2021). The
aforementioned genes were not interesting to this study, which
were removed for downstream analyses. Afterward, the average
count of genes between all cells, the percentage of cells that were
non-zero for each gene, and the percentage of a subset of cells to
the total cells based on the average count were calculated
separately via the perFeatureQCMetric function. Using the
NormalizeData function in the Seurat package (Butler et al.,
2018), the expression matrix of each sample after filtering was
standardized with the LogNormalize method.

Principal Component Analysis
The top 2000 genes with the largest variation among cells were
screened utilizing the runPCA function. Then, with these 2000
genes as the input, the ScaleData function in the Seurat package
was utilized to linearly scale the expression data. The linear
dimensionality reduction analysis (PCA) was presented via the
runPCA function in the Seurat package, which was visualized by
the VizDimLoadings function. After dimensionality reduction,
the first two principal components (PCs) were extracted to draw a
scatter plot with the DimPlot function. The PCs were ranked
based on the percentage of variance by each PC, and the optimal
number of PCs was determined. Using the DimHeatmap
function, the top 30 genes were depicted for each PC.

Cell Cluster
Batch effects were removed by the ScaleData function of the
Seurat package. After selecting the top PCs with the largest
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standard deviation, the FindNeighbors and FindClusters
functions in the Seurat package were utilized to perform the
cell cluster analysis. Then, UMAP was presented via the
RunUMAP function in the Seurat package.

Cluster Marker Genes
Marker genes between each cluster and all other cells were
calculated via the FindAllMarkers function in the Seurat
package with the cutoff of |log fold change (FC)| ≥ 0.1, the
expression ratio of the cell population ≥0.25, and p value ≤0.05. In
accordance with the existing annotations of the brain in the
CellMarker database (http://biocc.hrbmu.edu.cn/CellMarker/or
http://bio-bigdata.hrbmu.edu.cn/CellMarker/), the cells were
labeled (Zhang et al., 2019).

Pseudotime Analysis
The Monocle 3 package in R was utilized to perform the
pseudotime analysis of each cell type (Qiu et al., 2017). Genes
that were expressed in at least 5% of cells were selected. The
dimensionality reduction analysis was presented via the
reduceDimension function, and cells were clustered by the
clusterCells function. Afterward, the genes that were different
between cell clusters (p value <0.05) were determined using the
differentialGeneTest function. Using the reduceDimension
function, the dimensionality reduction analysis of the cells was
carried out based on these differential genes with the
Discriminative Dimensionality Reduction via learning a Tree
(DDRTree) method. Finally, the cells were sorted and
visualized using the orderCells function.

FIGURE 1 |Quality control and preprocessing of scRNA-seq. (A) Ranking of cells according to the total UMI count. (B) Number of cells that expressed genes. (C)
Ratio of ribosomal genes expressed in each cell after filtering out cells with <100 expressed genes. (D) Top 20 genes expressing more cells.
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Ligand–Receptor-Mediated Multicellular
Signal
In accordance with the ligand–receptor pairing data from a
previous study (Ramilowski et al., 2015), the receptor–ligand
pairs were analyzed according to marker genes in various cell
clusters. A ligand–receptor network was then constructed via the
Cytoscape software (Doncheva et al., 2019). Moreover, the
receptor–ligand pair genes were extracted. The core cell cluster
with the largest number of intercellular receptor–ligand pairs was
selected.

Differential Expression Analysis
Differentially expressed genes (DEGs) in the core cell cluster
between PD patients and healthy individuals were screened with
the cutoff of |FC| > 1.5 and adjusted p value <0.05.

Functional Enrichment Analysis
Gene Ontology (GO) of marker genes was presented based on the
Database for Annotation, Visualization, and Integrated Discovery
(DAVID; http://www.david.niaid.nih.gov) (Dennis et al., 2003).
GO contains three classifications: the biological process (BP),
cellular component (CC), and molecular function (MF).
Moreover, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis was used to probe underlying
pathways enriched by marker genes.

Protein–Protein Interaction
Functional and physical interactions of DEGs in endothelial cells
were analyzed by the STRING database (http://string-db.org/)
(Szklarczyk et al., 2017). A PPI network was visualized via
Cytoscape software. The degree of each node was calculated.

FIGURE 2 | Dimensionality reduction analysis of scRNA-seq. (A)Most variable 2000 genes among cells. (B) First two PCs of the normalized data. (C) Visualization
of PCA results in all cells. (D) Elbow plot for determining the optimal number of PCs.When PC = 9, the standard deviation was relatively small. (E)Heat map for the top 30
feature genes for the first 9 PCs. (F) Cell clusters based on UMAP. Each cluster is identified by a unique color.
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Patients and Specimens
This study enrolled 18 PD patients and 18 healthy participants
from the Affiliated Hospital of Youjiang Medical University for
Nationalities. All subjects signed written informed consent. The
diagnosis of PD was based on typical clinical symptoms, signs,
and imaging diagnosis. PD patients with tumors, cachexia, severe
infections of the system or central nervous system, etc., were
excluded. This study was approved by the Ethics Committee of
the Affiliated Hospital of Youjiang Medical University for
Nationalities (YYFY-LL-2016-04). Under fasting and quiet
conditions, the blood of PD patients and healthy individuals
were collected, which was centrifuged to collect the supernatant,
followed by storage at −80°C.

RT-qPCR
Total RNA was isolated from blood specimens utilizing an RNeasy
mini kit (Qiagen, Germany), and RNA quantity and purity were
evaluated using a NanoPhotometer spectrophotometer. For the
analysis, 0.2 μg RNA was reverse transcribed utilizing the
FastQuant RT Kit (QIAGEN, Germany), followed by adding the
SYBR Green master mix (Beyotime, China). Primers for RT-qPCR
are as follows: ANGPT2, 5′-AACTTTCGGAAGAGCATGGAC-3’
(forward) and 5′-CGAGTCATCGTATTCGAGCGG-3’ (reverse);
APOD, 5′-ACAAGCATTTCATCTTGGGAAGT-3’ (forward)
and 5′-CATCAGCTCTCAACTCCTGGT -3’ (reverse);
HSP90AA1, 5′-AGGAGGTTGAGACGTTCGC-3’ (forward) and

5′-AGAGTTCGATCTTGTTTGTTCGG-3’ (reverse); HSPA1A,
5′- TGGTGCAGTCCGACATGAAG-3’ (forward) and 5′-GCT
GAGAGTCGTTGAAGTAGGC-3’ (reverse); PDE1C, 5′-GAT
GTGGACAAGTGGTCCTTTG-3’ (forward) and 5′-GGGGAT
CTTGAAACGGCTGA-3’ (reverse); and GAPDH, 5′-CTGGGC
TACACTGAGCACC-3’ (forward) and 5′-AAGTGGTCGTTG
AGGGCAATG-3’ (reverse). The relative expression was
determined utilizing the 2−ΔΔCt method.

Western Blotting
The blood specimens were lysed in RIPA buffer, and protein lysate
was quantified using a BCA kit (Bio-Rad, United States). Proteins
were electrophoresed via 8%–12% SDS-polyacrylamide gel and
transferred to PVDF membranes. The membranes were probed
with the following primary antibodies: ANGPT2 (1:2000; ab155106;
Abcam, United States), APOD (1:1,000; ab256496), HSP90AA1 (1:
10,000; ab203126), HSPA1A (1:2000; ab194360), PDE1C (1:500;
ab14602), and β-actin (1:200; ab115777). Immunoreactive proteins
were measured utilizing goat anti-rabbit IgG H&L (HRP)-
preabsorbed secondary antibodies (1:2000; ab7090). The protein
gray values were quantified by ImageJ software.

Statistical Analysis
All data were analyzed using R language or GraphPad Prism 8.0.1
software. Two groups were compared with Student’s t-tests. A
p-value < 0.05 was considered statistically significant.

FIGURE 3 | Identification of cell clusters for PD. (A) Cell clusters with the UMAP method. (B) Heat map for the top 10 marker genes for each cluster. (C) Feature
genes for each cluster. (D) Pseudotime analysis of endothelial cells in PD and healthy samples. Each point represents a single cell.
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FIGURE 4 | Cell–cell communications across cell clusters. (A) Scatter diagram for the top five marker genes of each cell cluster. The size of the dot indicates the
percentage of the gene expression in a cell. The color of the dot indicates the expression level of the gene in the cell. Blue indicates high expression. (B) Ligand–receptor
relationship networks of healthy samples. The arrow points to the recipient cell. The width of the line is proportional to the number of ligand–receptor gene relationships.
(C) Ligand–receptor relationship networks of PD samples. The arrow points to the recipient cell. The width of the line is proportional to the number of
ligand–receptor gene relationships. (D) Volcano plot and (E) Heat map for the DEGs between PD and healthy endothelial cells. (F) Venn diagram for the common genes
between upregulated genes and all other marker genes in the cell–cell communication network. (G) Relationships between upregulated marker genes. The arrow
direction points from the ligand to the receptor.
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RESULTS

Quality Control and Preprocessing of
scRNA-Seq
The scRNA-seq profiles of the midbrain specimens from five PD
patients and six healthy individuals were retrieved from the
GSE157783 dataset. We counted the expression of each
barcode corresponding to each cell and filtered out barcodes
without any gene expression (Figure 1A). Figure 1B depicts the
distribution of the number of cells according to counts, expressed

genes, and ribosome proportions. Cells with the number of
expressed genes <100 were filtered out, and then, we counted
the ratio of mitochondrial and ribosomal gene expressions in each
cell. Figure 1C shows the ratios of the ribosomal gene expression
in all cells. We found that the ratios of mitochondrial genes in all
cells were zero. Cells with the proportion of ribosomal genes
<10% were further removed. Finally, robust and helpful scRNA-
seq data were obtained in this study. Figure 1D lists the top 20
gene expressions in more cells, such as MALAT1, PCDH9,
IL1RAPL1, DLG2, and MAGI2.

FIGURE 5 | Potential biological functions of DEGs in endothelial cells. (A) Bubble chart for the top 20 GO enrichment results including the biological process (BP;
green), cellular component (CC; red), and molecular function (MF; blue). Core networks for the top five (B) BP, (C) CC, and (D) MF terms and enriched genes. (E) Heat
map for the top 15 KEGG pathways and enriched genes. The cell color represents the |log2FC| of genes. The warm color indicates upregulated genes, and the cool color
indicates downregulated genes.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 6867397

Huang et al. Single-Cell Transcriptomics for PD

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Dimensionality Reduction Analysis of
scRNA-Seq
Following normalization of the filtered scRNA-seq data, we
screened the most variable 2000 genes among cells (Figure 2A).
Among them, VGF, LOC102546299, SST, IL1RAPL2, HBB,
ADAMTSL1, HDC, NPY, NPSR1, and FSTL4 were most
variable. Using the most variable 2000 genes as inputs, PCA
results were visualized in order to minimize the number of
relevant variables (Figures 2B,C). Figure 2D shows the ranking
of the percentage contribution of each PC to the overall
variation level. We mainly focused on the PC of the “elbow”.
When PC = 9, the standard deviation was relatively small,

suggesting that the first nine PCs can better represent the
overall change. Figure 2E shows the top 30 marker genes in
each PC. To explore the source of heterogeneity, the top 30
feature genes were shown for the first nine PCs. With the UMAP
method, cells in the first nine PCs were clustered into 15
categories (Figure 2F).

Identification of Cell Clusters for PD
In accordance with the cell marker genes of the brain in the
CellMarker database and the marker genes of each cell cluster,
five cell clusters were identified for healthy individuals and PD
patients, composed of oligodendrocytes, astrocytes, neurons,

FIGURE 6 | Hub genes in endothelial cells. A PPI network was constructed based on all DEGs in endothelial cells.
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microglial cells, and endothelial cells (Figure 3A). Figure 3B
shows the differentially expressed genes in each cluster compared
with other cell clusters. The gene expression was projected into
dimensionality reduction clustering results. As shown in
Figure 3C, the top feature genes for oligodendrocytes
(LHFPL3), astrocytes (SLC14A1), neurons (NELL1 and
LHFPL3), microglial cells (CSF1R), and endothelial cells

(FLT1) were separately listed. The cell lineage development of
endothelial cells was depicted via the Monocle 3 package
(Figure 3D). The Monocle algorithm was used to learn the
dynamic changes in gene expressions experienced by each
endothelial cell. PD samples exhibited distinct cell trajectories
of endothelial cells compared with healthy individuals’ samples.
More PD cells were enriched in branch 3.

FIGURE 7 | Validation of the expression of five upregulated marker genes in the cell–cell communication network in blood samples from PD patients and healthy
participants. (A–E) RT-qPCR for detecting the mRNA expressions of ANGPT2, HSP90AA1, PDE1C, APOD, and HSPA1A in the blood specimens from 18 PD patients
and 18 healthy participants. (F–K) Western blotting for measuring the protein expressions of ANGPT2, HSP90AA1, PDE1C, APOD, and HSPA1A in the blood
specimens from 18 PD patients and 18 healthy participants. *p < 0.05; **p < 0.01; and ***p < 0.001.
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Endothelial Cell as the Core Cell Cluster in
Cell–Cell Communications
We selected the top five marker genes of each cell cluster, which
are displayed in Figure 4A. The top five marker genes for each
cluster are as follows: endothelial cells (FLT1, ABCB1, ATP10A,
CLDN5, and VWF), microglial cells (ARHGAP24, DOCK8,
APBB1IP, ARHGAP15, and PLXDC2), astrocytes (HPSE2,
TRPM3, CFAP299, DNAH9, and CFAP54), oligodendrocytes
(TNR, VCAN, LHFPL3, DSCAM, and MEGF11), and neurons
(TENM2,DSCAM,GALNTL6,KCNIP4, andKCNIP1). Cell to cell
communications across different cell clusters depend on
associations between ligands and receptors. Herein, we
matched the ligand–receptor relationships for the marker
genes in each cell cluster. The cell-to-cell communication
networks of healthy individuals’ and PD patients’ samples
were separately established (Figures 4B,C). We calculated the
degree of each cell cluster as follows: endothelial cells (degree =
243), oligodendrocytes (degree = 212), astrocytes (degree = 157),
neurons (degree = 81), and microglial cells (degree = 62). In
accordance with the cell cluster with the largest number of
intercellular receptor–ligand pairs, endothelial cells were
identified as the core cell cluster. We extracted the gene
expression matrix of endothelial cells. With the cutoff of |FC|
> 1.5 and adjusted p value <0.05, 55 up- and 50 downregulated
genes were identified between PD patients’ and healthy
individuals’ endothelial cells (Figure 4D). Supplementary
Table S1 lists the 55 upregulated genes. Moreover,
Supplementary Table S2shows the 50 downregulated genes. A
heat map depicted that these DEGs could distinguish PD patients
from healthy individuals (Figure 4E). We further intersected the
upregulated genes with all other marker genes in the cell–cell
communication network. As a result, five upregulated marker
genes were identified, including ANGPT2, APOD, HSP90AA1,
HSPA1A, and PDE1C (Figure 4F). Figure 4G shows their
ligand–receptor interactions in all cell clusters. In endothelial
cells, ANGPT2-TEK, ANGPT2-TIE1, and APOD-LEPR
relationships were found.

Potential Biological Functions of
Differentially Expressed Genes (DEGs)
Between PD Patients’ and Healthy
Individuals’ Endothelial Cells
To probe the underlying biological functions of DEGs in
endothelial cells, we presented the GO enrichment analysis.
Figure 5A depicts the top 20 GO terms enriched by DEGs.
These DEGs were involved in animal organ development, cell
surface receptor signaling pathway, cellular response to an
organic substance, multicellular organism development, and
signaling transduction biological processes (Figure 5B). In
Figure 5C, they participated in cellular components of cytosol,
extracellular exosome, extracellular vesicle, plasma membrane,
and vesicle. Furthermore, they had the molecular functions of
adenyl nucleotide–binding, ATP-binding, protein
homodimerization, purine nucleotide–binding, and purine
ribonucleotide–binding (Figure 5D) activities. We further

analyzed the KEGG pathways enriched by these DEGs. In
Figure 5E, these DEGs were enriched in HIF-1, protein
processing in the endoplasmic reticulum, MAPK, NOD-like
receptor, antigen processing and presentation, GABAergic
synapse, and Ras and Rap1 signaling pathways.

Hub Genes in Endothelial Cells
Based on all DEGs in endothelial cells, a PPI network was
constructed, composed of 48 nodes (Figure 6). The top ten
nodes with the highest degree were considered as hub genes,
including HSP90AA1 (degree = 14), HSP90AB1 (degree = 13),
HSPA8 (degree = 11), HSPA1A (degree = 10), DNAJB1 (degree =
9), HSPA1B (degree = 9), HSPH1 (degree = 8), IRF1 (degree = 8),
PTGES3 (degree = 8), and DNAJA1 (degree = 7).

Validation of Marker Genes in the Cell–Cell
Communication Network
In total, 18 PD patients and 18 healthy participants were enrolled
in our study. Five upregulated marker genes in the cell–cell
communication network were detected in blood samples
through RT-qPCR and Western blotting. RT-qPCR results
confirmed that ANGPT2 (Figure 7A), HSP90AA1
(Figure 7B), PDE1C (Figure 7C), APOD (Figure 7D), and
HSPA1A (Figure 7E) mRNAs were markedly upregulated in
blood specimens from PD patients compared with healthy
participants. Their high expressions in PD blood samples were
also confirmed by Western blotting (Figures 7F–K).

DISCUSSION

In this study, we comprehensively analyzed the cellular
heterogeneity of PD via single-cell transcriptomics. In the
cell–cell communications, endothelial cells were the core cell
cluster. The DEGs in endothelial cells possessed key biological
functions. Five upregulated marker genes were identified for
endothelial cells, which could become promising therapeutic
targets for PD.

Cell heterogeneity is a common feature of biological systems
and biological tissues. Single-cell sequencing technology reveals
the genetic differences between different cell populations, which
is conducive to the refinement of cell classification and expansion
of the tree of life. Herein, we employed scRNA-seq data of the
midbrain specimens from PD patients and healthy individuals. In
the previous research, 12 cell types were identified including
astrocytes, CADPS2high, DaNs, endothelial cells, ependymal cells,
excitatory cells, GABA, inhibitory cells, microglial cells, OPCs,
oligodendrocytes, and pericytes (Badanjak et al., 2021). Different
from previous research, five cell clusters were identified in this
study, composed of oligodendrocytes, astrocytes, neurons,
microglial cells, and endothelial cells. Cells are the basic unit
of organisms. Even if they are derived from the same individual
and the same cell line, specific cells may have different
characteristics in the genome and transcriptome. Previous
genomic research results have often shown the average value
of gene expressions in a group of cells, so it is difficult to clarify the
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specific cell types that play a key role in the development of life
and disease. With the rapid development of molecular biology
techniques, the whole genome or transcriptome of a single cell is
amplified and then sequenced by the next-generation sequencing
technology. scRNA realizes single-cell whole-genome
sequencing, thereby revealing differences in cell populations
and evolution (Picelli, 2017; Rostom et al., 2017; Papalexi and
Satija, 2018). Our data suggested that endothelial cells could play
a major role in the cell–cell communication for PD. Endothelial
cells may regulate the blood–brain barrier permeability,
interactions between cells and matrix, and angiogenesis and
the like (Sweeney et al., 2019). Five marker genes were
upregulated in PD patients’ than in healthy individuals’
endothelial cells, including ANGPT2, APOD, HSP90AA1,
HSPA1A, and PDE1C. Their upregulation was confirmed in 18
PD patients’ compared with 18 healthy individuals’ blood
specimens through RT-qPCR and Western blotting. Among
them, APOD, an anti-inflammatory and antioxidant lipocalin
transporter of the small hydrophobic molecule, is widely
expressed in the brain tissues and plasma. A cross-sectional
study found that serum ApoD levels had a significant
correlation with the PD stage (Waldner et al., 2018). It has
been confirmed that upregulation of ApoD possesses a
neuroprotective function (Dassati et al., 2020). HSPA1A, a
molecular chaperone, can prevent and decelerate PD-like
neurodegeneration (Ekimova et al., 2018). Combining previous
studies, these five upregulated marker genes deserve in-depth
clinical research.

We found that DEGs in endothelial cells participated in organism
development such as animal organ development, cell surface receptor
signaling pathway, cellular response to an organic substance,
multicellular organism development, and signaling transduction
biological processes. Furthermore, they were involved in PD-
related cellular components such as cytosol, extracellular exosome,
extracellular vesicle, plasma membrane, and vesicle. Extracellular
vesicle includes exosome and microvesicle, which may remove
harmful molecules and spread PD-related pathogenic proteins
(Hill, 2019). For example, extracellular vesicles secreted from
neural cells may mediate homeostasis of the brain and
communications between neural and peripheral cells (Upadhya
et al., 2020). Our data also showed that DEGs in endothelial cells
had the molecular functions of adenyl nucleotide–binding, ATP-
binding, protein homodimerization activity, purine
nucleotide–binding, and purine ribonucleotide–binding activities.
The KEGG pathway enrichment analysis demonstrated that these
DEGs were enriched in various key pathways such as HIF-1, protein
processing in the endoplasmic reticulum,MAPK,NOD-like receptor,
antigen processing and presentation, GABAergic synapse, and Ras
and Rap1 signaling pathways (Li et al., 2019). These data highlighted
the critical roles of DEGs in endothelial cells.

Immune-related pathways such as primary
immunodeficiency, antigen processing and presentation,
natural killer cell–mediated cytotoxicity, T-cell receptor, and
B-cell receptor were overexpressed in PD patients’ samples
than in healthy individuals’ samples. Excessive inflammatory
responses in brain tissues may lead to neurodegeneration and
parkinsonism (Grozdanov et al., 2019). Immunotherapy has been

developed for treating PD in recent years. However, appropriate
immune-related markers are still lacking (Williams-Gray et al.,
2016). Furthermore, the purine metabolism, VEGF, chemokine,
JAK/STAT, toll-like, MAPK, and calcium signaling pathways
were overexpressed in PD patients’ than in healthy individuals’
endothelial cells. Based on these DEGs in endothelial cells, we
established a PPI network and identified ten hub genes, including
HSP90AA1, HSP90AB1, HSPA8, HSPA1A, DNAJB1, HSPA1B,
HSPH1, IRF1, PTGES3, and DNAJA1. Among them, upregulated
HSP90AB1 exerts complementary effects on protein misfolding
during PD (Xie et al., 2016). IRF1 upregulation facilitates the
cerebral vascular endothelial inflammatory response in PD
(Yunfu et al., 2014). The roles of hub genes in PD progression
require more exploration.

CONCLUSION

In this study, we characterized five cell clusters including
oligodendrocytes, astrocytes, neurons, microglial cells, and
endothelial cells. Among them, endothelial cells were the core
cell cluster in cell–cell communications. Furthermore, fivemarker
genes were upregulated in PD than in healthy endothelial cells,
which could be underlying therapeutic targets for PD. DEGs in
endothelial cells participated in various biological functions,
highlighting the key roles of endothelial cells in PD.
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