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Metabolic syndrome is a group of heritable metabolic traits that are highly associated with
type 2 diabetes (T2DM). Classical interventions to T2DM include individual self-
management of environmental risk factors, such as improving diet quality, increasing
physical activity, and reducing smoking and alcohol consumption, which decreases the
risk of developing metabolic syndrome. However, it is poorly understood how the
phenotypes of diabetes-related metabolic traits change with respect to lifestyle
modifications at the individual level. In the analysis, we used 12 diabetes-related
metabolic traits and eight lifestyle covariates from the UK Biobank comprising 288,837
white British participants genotyped for 1,133,273 genome-wide single nucleotide
polymorphisms. We found 16 GxE interactions. Modulation of genetic effects by
physical activity was seen for four traits (glucose, HbA1c, C-reactive protein, systolic
blood pressure) and by alcohol and smoking for three (BMI, glucose, waist–hip ratio and
BMI and diastolic and systolic blood pressure, respectively). We also found a number of
significant phenotypic modulations by the lifestyle covariates, which were not attributed to
the genetic effects in the model. Overall, modulation in the metabolic risk in response to the
level of lifestyle covariates was clearly observed, and its direction and magnitude were
varied depending on individual differences. We also showed that the metabolic risk inferred
by our model was notably higher in T2DM prospective cases than controls. Our findings
highlight the importance of individual genetic differences in the prevention and
management of diabetes and suggest that the one-size-fits-all approach may not
benefit all.
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INTRODUCTION

Diabetes mellitus is a metabolic disease normally caused by high
blood glucose levels, which can lead to complications in kidneys,
eyes, and the nervous system (Rolo and Palmeira, 2006).
Currently, it is one of the top 10 leading causes of death in
the world (Heron, 2018), highlighting the importance of
improved strategies on prevention and management. Type 2
diabetes mellitus (T2DM), which accounts for more than 90%
of all cases of diabetes (Chatterjee et al., 2017), is known to be
more polygenic than other types of diabetes (Kramer et al., 2003;
Jiang et al., 2019). T2DM is often comorbid with other complex
diseases, such as cardiovascular diseases (Giovannucci et al., 2010;
Martín-Timón et al., 2014), and metabolic syndrome is highly
associated with increasing the risk for both T2DM and
cardiovascular diseases (Haffner, 2006; Abou Ziki and Mani,
2016). Metabolic syndrome is a group of traits that causes
metabolic diseases, such as diabetes. Diabetes-related metabolic
traits can include glucose, hemoglobin A1c (HbA1c), C-reactive
protein (CRP), body mass index (BMI), cholesterols, and blood
pressure (BP) (Sabatti et al., 2009).

Metabolic abnormalities and diabetes risk are affected by
genetic factors (Kong et al., 2015). A recent genome-wide
association study (GWAS) identified 143 genetic variants
associated with T2DM that shed light on the etiology of the
disease (Xue et al., 2018). However, the identified genetic variants
explain only a small proportion of phenotypic variance (Maher,
2008; Manolio et al., 2009; Xue et al., 2018), which is unlikely to
accurately predict the individual genetic (or polygenic) risk of
T2DM in early life stages (Janssens and van Duijn, 2008). A
whole-genome approach using all common single nucleotide
polymorphisms (SNPs), instead of using a few genome-wide
significant SNPs, has been proposed as a new promising
approach for polygenic risk prediction (Yang et al., 2010;
Fernando et al., 2017; Khera et al., 2019). Recently, it has been
shown that the accuracy of polygenic risk prediction can be
increased further when using advanced statistical models and
designs (Maier et al., 2018; Lloyd-Jones et al., 2019; Truong et al.,
2020; Zhou et al., 2020).

In addition to the genetic factors, T2DM risks are also
increased by environmental conditions, such as unhealthy diet
and physical inactivity (Dendup et al., 2018). Therefore, T2DM
preventions and interventions include improving diet quality,
increasing physical activity, and reducing smoking and alcohol
consumption. These interventions are often uniformly
recommended for people with high metabolic risk irrespective
of their response to these interventions. However, this one-size-
fits-all approach may be inefficient because it does not consider
individual genetic differences (Schork, 2015; Prasad and Groop,
2019; Philipson, 2020). In fact, it is little known how the T2DM
risk in response to lifestyle modification can vary with respect to
individuals’ genotypes, i.e., genotype-by-environment (GxE)
interaction, and it is poorly understood how the information
of GxE interaction can be incorporated in a T2DM intervention.
It is unlikely that the changed genetic effects by lifestyle
modification are in the same direction and magnitude for all
people; therefore, the lifestyle modification should be tailored to

each individual, considering individual genetic difference,
i.e., personalized intervention.

In this study, we applied a whole-genome approach (Ni et al.,
2019) to estimate the genetic and nongenetic effects on
12 diabetes-related metabolic traits modulated by eight lifestyle
covariates. We show that the direction and magnitude of
metabolic risk in response to the level of lifestyle covariates
vary depending on individual genetic differences,
i.e., phenotypic plasticity of the risk. We also show that the
predicted metabolic risk of T2DM prospective cases is
significantly higher than controls. We conclude that a
paradigm shift in intervention approaches for T2DM is
required to account for individual differences, which are
realized as precision medicine afforded by the increased
availability of genomic data (e.g., UK Biobank) and advanced
computational models. This novel approach will enable more
accurate treatments and preventions of T2DM.

METHODS

Ethical Statement
The UK Biobank’s scientific protocol and operational procedures
were reviewed and approved by the North West Multi-Centre
Research Ethics Committee (MREC), National Information
Governance Board for Health & Social Care (NIGB), and
Community Health Index Advisory Group (CHIAG). The
access to the UK Biobank data was approved by the UK
Biobank based on the application 14575 [“Whole-genome
approaches for dissecting (shared) genetic architecture and
individual risk prediction of complex traits in human
populations”]. Research ethics were approved by the
University of South Australia Human Research Ethics
Committee (HREC).

Participants
The UK Biobank consists of more than 500,000 individuals,
recruited from 22 assessment centers across the UK between
March 2006 and October 2010 (Sudlow et al., 2015). The
participants were recruited when they were between 37 and
73 years old (Ollier et al., 2005), and all information used in
this study are derived from information collected during the
baseline survey.

Phenotypic Data
As outcomes, we used the information of diabetes-related
metabolic traits, including glucose, HbA1c, total cholesterol
(TC), LDL cholesterol (LDL), HDL cholesterol (HDL), CRP,
sodium and potassium in urine, BMI, waist–hip ratio (WHR),
and systolic and diastolic BP with details on assay and
measures given in Supplementary Material
(Supplementary Note S1). Lifestyle covariates were
obtained by self-report and included age at recruitment,
alcohol intake frequency (ALC), smoking status (SMK), and
metabolic equivalent task (MET) minutes per week for
walking, moderate, vigorous, total activities and healthy
dietary scores (Supplementary Note S2).
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Genotypic Data
This study used the UK Biobank genotypic data, which
comprise 92,693,895 SNPs genotyped from 488,377
participants. In preliminary quality controls, we excluded
individuals and SNPs that did not meet the following criteria
from the UK Biobank data. At the individual level, we excluded
individuals who were not white British (to reduce the effect of
population stratification), have a missing rate ≥5%, have a
gender mismatch between self-reported and genetic data,
and with putative sex chromosome aneuploidy. One
individual from a pair, which has a genomic relationship
larger than .05, was randomly selected and excluded.
Furthermore, individuals who were population outliers
(i.e., not within ±6 standard deviations from the first and
second principal components) were excluded. At the SNP
level, SNPs with an information score less than .6, with SNP
missing rate less than 95%, with Hardy–Weinberg equilibrium
p-value less than 0.0001, and with minor allele frequency less
than 1% were excluded. Duplicated SNPs were also removed.
The ratio of discordant SNPs between the initial and second
released individuals in the UK Biobank data was calculated, and
an additional 29 individuals who had a discordance rate more
than 0.05 were excluded. We only used HapMap3 SNPs from
the quality-controlled data, which are of high quality and well
calibrated to dissect the genetic architecture of complex
diseases (Ripke et al., 2013; Tropf et al., 2017). After quality
controls, the cleaned data include 1,133,273 SNPs and 288,837
participants.

Due to the usage of the individual level of genotypic data,
which demands high computational resources, we further divided
samples into six groups. Of the total samples, 91,472 individuals
from the first release of these selected individuals were divided
into two groups. Meanwhile, 197,365 individuals from the second
release were divided into four groups. Meta-analysis estimates
and p-values across the six groups were reported.

Data Analysis
Adjustment for the Phenotypes of Main Traits and
Lifestyle Covariates.
For the interaction analyses, the phenotypes of the main traits
(Supplementary Table S1) were adjusted for demographics,
assessment center, genotype measurement batch, and
population structure measured by the first 10 principal
components (PCs) (Jin et al., 2011). Demographic variables
included sex, year of birth, income, education, and Townsend
deprivation index. The education variable was obtained following
Okbay et al. (2016), and the details are in Supplementary Table
S2. For each interaction analysis, the covariate in the interaction
model was also used to adjust the phenotypes of the main trait,
which was necessary to avoid any spurious interaction signals due
to correlations between the main trait and the covariate
(Robinson et al., 2017; Ni et al., 2019). In addition to these
key variables for the adjustment, other lifestyle covariates not in
the model could be considered, depending on their relevance to
the main trait. We note that the glucose was further adjusted for
fasting time, which is the interval between the last food or drink
and blood sample being taken.

When a lifestyle covariate was used as the second trait in a
bivariate model (see Supplementary Note S3), the phenotypes of
the second trait were also adjusted for potential confounders
including demographics, batch, center, and the first 10 PCs. In
addition to these potential confounders, other lifestyle covariates
were possibly considered, depending on their relevance to the
second trait. The distribution of adjusted phenotypes of lifestyle
covariates are shown in Supplementary Figure S1.

For the diabetes-related metabolic traits in the main analyses,
an additional quality control (QC) was applied to the adjusted
phenotypes to exclude outliers that are outside the three standard
deviations in either direction from the mean of the phenotypic
data (Osborne, 2010). The adjusted and QCed phenotypes were
further transformed using a rank-based inverse normal function
to satisfy the underlying assumption of the model, i.e., the
normality assumption (see Supplementary Figure S2). Note
that these steps are essential to prevent spurious interaction
signals (Robinson et al., 2017; Ni et al., 2019). The number of
individual records remained after these processes (adjustment,
outlier QC, and transformation) are listed in Supplementary
Table S3.

Statistical Models
The overall workflow for the designed experiment is in
Supplementary Figure S3. We used a multivariate reaction
norm model (MRNM) that can estimate both GxE and
residual-by-environment (RxE), simultaneously (Ni et al.,
2019), where RxE indicates the nongenetic effects that are
modulated by the lifestyle covariates. Data analyses were
performed using MTG2 software (Lee and van der Werf,
2016). In the main analyses, there were four models, i.e., a
null model without any interactions, models with GxE or RxE
interaction only, and a full model jointly fitting GxE and RxE
interactions. The maximum likelihoods from the four models
were compared to test if there was significant interaction (see
Supplementary Figure S3). A significance p-value threshold was
set at 5.21E-04 (= .05/96) after Bonferroni correction to account
for 96 tests in total. We declared a significance if the p-value was
lower than the significance threshold and the sum of estimated
variances of GxE and RxE (i.e., σ2g1

and/or σ2τ1 ) was nonnegative to
avoid estimated interaction effects out of the legitimate parameter
space. The model description for MRNM can be found in
Supplementary Note S3.

Model Comparisons to Detect Interaction Effects
Based on the model comparison using four different MRNMs
(Supplementary Note S3), five different interaction effects can be
tested (Supplementary Figure S3; Supplementary Table S4).
The restricted maximum likelihood values obtained from the four
models were used to assess their model fits (Ni et al., 2019). The
significance of interaction effects was determined based on the
p-values from likelihood ratio chi-squared tests comparing the
full and reduced models. The five kinds of interaction effects are
1) overall interaction detected from the comparison between the
null and full models, which includes both GxE and RxE
interaction, noting that the overlapping section represents the
collinearity between estimated GxE and RxE interactions (Ni
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et al., 2019); 2) GxE interaction detected from the comparison
between the null and GxE only models, which is not corrected for
the collinearity with RxE interaction; 3) RxE interaction detected
from the comparison between the null and RxE only models,
which is not corrected for the collinearity with GxE interaction;
4) orthogonal GxE interaction detected from the comparison
between the RxE only and full models, which is corrected for the
collinearity with RxE interaction; and 5) orthogonal RxE
interaction detected from the comparison between GxE and
full models, which is corrected for the collinearity with GxE
interaction (Supplementary Figure S3). It is noted that, while
overall interactions are important, it is of interest to disentangle
between GxE and RxE interactions that are without collinearity,
referred to as orthogonal GxE or RxE interaction
(Supplementary Figure S3).

Predicted Phenotypes (Risk) of Metabolic Traits
Based on the full model (see Supplementary Note S3), the
expected phenotypes for each individual, comprising estimated
additive genetic (α̂0), GxE interaction (α̂1) and RxE interaction
effects (τ̂1), can be written as

ŷ � α̂0 + α̂1 · c + τ̂1 · c (1)
where ŷ is the predicted phenotypes and c is the standardized
lifestyle covariate that with a mean of zero and a standard
deviation of one. To be consistent across traits, we used the
full model to predict the phenotypes for all traits.

Furthermore, we derived the trajectory of the predicted
phenotypes across different levels of lifestyle covariates in each
of the 96 analyses (12 traits x 8 covariates). For this, individuals
were divided into three groups, that is, the top, middle, and
bottom 20% groups according to the estimated interaction effects
(the sum of GxE and RxE effects, i.e., α̂1 + τ̂1). In addition, each
of the three groups was further stratified into two groups, T2DM
prospective cases and controls. Note that we restricted to use
incident (i.e., prospective) cases only, according to ICD-10
information (code E11) to avoid any effects of T2DM status
on metabolic risk (Supplementary Note S1). We estimated the
intercept and slope of a linear model regressing the predicted
phenotypes on the covariate for each group.

The values of intercepts and slopes were averaged over the 69
analyses that showed significant signals for both GxE and RxE
interactions. The averaged values of intercepts and slopes might
represent the overall relationship between metabolic risk and lifestyle
covariates. In this process, we considered making favorable and
unfavorable directions consistent across the main traits and
covariates to facilitate a better interpretation in line with metabolic
risks on T2DM. For example, the sign of HDL, physical activity, and
healthy diet values were switched when analyzing phenotypes so that
the direction of favorableness for these variables is consistent with
other variables (glucose, HbA1c, TC, LDL, CRP, sodium, potassium,
BMI, WHR, systolic BP, diastolic BP, Age, ALC, SMK). To test
whether the difference between the groups with cases and controls is
statistically significant, we did a paired t-test.

In addition to the comparison using 69 analyses with the
significant overall interactions, we performed the same analyses

using 16 analyses that showed significant signals for orthogonal
GxE interaction and 58 analyses for orthogonal RxE interaction.
The predicted phenotypes were grouped as same as the overall
interaction according to the estimated of GxE or RxE interaction
effects (i.e., α̂1 or τ̂1).

Heritability
We calculated the heritability using the estimated genetic and
residual variances from the null model (i.e., multivariate GREML)
or interaction model (MRNM), which can be expressed as

h2 � σ2
α0

σ2
α0
+ σ2

τ0

where σ2α0 is the main genetic variance and σ2τ0 is the residual
variance. This estimation assumes the environmental
homogeneity of the study sample.

Causality Analysis
As complementary analyses, we used CAUSE software (Morrison
et al., 2020), which is a newly proposed Mendelian randomization
method, to detect the causal effects of lifestyle covariates on T2DM
metabolic traits. In causality analyses, the GWAS summary statistics
of pruned SNPs were used to infer the causality and its significance,
following the instruction of CAUSE. The same genotype and
phenotype data as in the main interaction analyses were used in
the causality analyses. We note that the phenotypes of the metabolic
traits used as outcomes in causality analyses were required not to be
adjusted for the covariate used as the exposure (i.e., lifestyle
covariate) because CAUSE tests the association of the first
moment (mean), different from MRNM that estimates the
second moment (variance) across covariate values.

RESULTS

Interactions
We tested if the genetic (GxE) and nongenetic effects (RxE) of
12 diabetes-related metabolic traits are modulated by eight
lifestyle covariates (see Methods) and found that 69 out of 96
tests showed significant signals for the interactions when
comparing the full and null models (Supplementary Figure
S4). The significant p-values were obtained from the likelihood
ratio tests after Bonferroni correction. As shown in
Supplementary Figure S4, the genetic and nongenetic effects
of glucose and HbA1c, which are highly associated with T2DM
(Supplementary Table S5), are shown to be significantly
modulated by all eight lifestyle factors. CRP, which is a well-
known biomarker of inflammation, is also significantly altered by
all lifestyle covariates.

It is of interest to disentangle the modulated genetic effects
from nongenetic effects, i.e., GxE effects orthogonal to RxE
effects. When comparing the full model with the RxE only
model, there were 16 tests showing significant orthogonal GxE
interactions after the Bonferroni correction (see Methods)
(Figure 1; Supplementary Table S6). Specifically, the genetic
effects of glucose were shown to be modulated by the level of
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physical activity (p-value = 7.18E-07). Strong modulations of
genetic effects by physical activity were observed for HbA1c and
CRP (p-values < 4.66E-04). Although there was no evidence of
orthogonal interaction between physical activity and BMI, other
lifestyle factors significantly modulated the genetic effects of BMI
(e.g., p-value = 1.86E-10 for ALC-BMI) (Figure 1).

We also compared the full model with GxE only model to
assess orthogonal RxE interaction effects and found 58 significant
signals out of 96 tests (Supplementary Figure S5). The
significance of RxE interaction was generally stronger than
that of GxE interaction. For glucose and HbA1c, which are
closely related to T2DM, most of the lifestyle factors had
significant modulation effects, captured by orthogonal RxE
interaction. It is remarkable that there were significant
interaction signals for CRP that were consistently observed
across all lifestyle factors with p-values ranging from 4.32E-96
to 5.51E-12. In the analyses of BMI, a strong risk factor of T2DM,
it was shown that the non-genetic effects (Zhou and Lee, 2021) of
BMI were significantly modulated by ALC and physical activity.

A number of orthogonal RxE interactions found in this study
can be supported by a causality analysis, using CAUSE software
(Morrison et al., 2020) (Supplementary Figure S6). For example,
CAUSE analysis showed significant causal effects of lifestyle
factors on phenotypes for pairs of ALC-HbA1c, ALC-TC,
ALC-HDL and diet-sodium, which also appeared to be
significant for the orthogonal RxE interaction (Supplementary
Figure S5). In addition, the significant causal relationship of each

pair of ALC-BMI, ALC-WHR, and SMK-WHR can be partly
explained by the orthogonal GxE interaction (Figure 1) or
combined GxE and RxE interactions (Supplementary Figure S2).

MRNM allows individually different responses to a lifestyle
modification, which cannot be modeled in standard additive
models. To demonstrate this property of MRNM, we plotted
predicted phenotypes (see Eq. 1 in Methods) against the
standardized values of lifestyle factors for three groups (the top,
middle, and bottom 20%) stratified according to the magnitude of
estimated GxE interaction (Supplementary Figure S7). This shows
that the expected phenotypes in response to the modification of
lifestyle factors can be different among individuals, and the slope of
phenotypes is positive, zero, or negative for the top, middle, or
bottom group, respectively (Supplementary Figure S7). This
demonstrates that individual genetic difference should be
carefully considered in a lifestyle modification, i.e., an
intervention of metabolic risk.

We further stratified each of the three groups into T2DM
prospective cases and controls, hence, six groups in total. The
intercept and slope of regressing the predicted phenotypes on the
standardized lifestyle measures were estimated for each of the six
groups (e.g., Supplementary Figure S8). We applied this
approach to the 69 pairs with significant overall interactions
(Figure 2) and calculated the mean and standard error of
intercepts and slopes across all pairs, to assess if there was any
significant difference between prospective cases and controls in
each of the bottom, middle, and top 20% groups (Figure 2). It was

FIGURE 1 | Bubble plot of p-values indicating significant orthogonal GxE interactions. There were 16 significant orthogonal GxE interactions when testing the
genetic effects of 12 diabetes-related metabolic traits modulated by eight covariates. Likelihood ratio tests were used to compare the full model with the RxE only model
for each of six independent data sets, and p-values were meta-analyzed using the Fisher method. The size of dot reflects its significance; the bigger the more significant.
For example, the BMI-ALC pair is most significant (p-value = 1.86E-10), indicating that ALC significantly modulates genetic effects of BMI phenotypes. WHR, waist-
hip ratio; TC, Total cholesterol; systolic, systolic blood pressure; sodium, sodium in urine; potassium, potassium in urine; LDL, low density lipoprotein cholesterol; HDL,
high density lipoprotein cholesterol; HbA1c, haemoglobinA1C; CRP, C reactive protein; BMI, body mass index; Age, Age at recruitment; ALC, alcohol intake frequency;
smk, smoking status; PA:summed, a summed physical activity; PA:walk, physical activity walking; PA:moderate, physical activity moderate intensity; PA:vigorous,
physical activity vigorous intensity; Diet, healthy dietary scores.
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shown that the intercepts of prospective cases were significantly
higher than those of controls in all three groups (paired t-test
p-value = 2.25E-07, 6.98E-10, and 1.68E-09), indicating that
prospective cases were likely to have higher metabolic risk
than controls. However, the slope of predicted risks was not
significantly different between prospective cases and controls,
showing that the change of metabolic risk in response to lifestyle
modification is invariant across prospective cases and controls.
Similar results were observed when considering GxE or RxE
interaction only in that the intercepts were higher for prospective
cases than controls (Supplementary Figures S9 ,S10). We note
that, when using the model of RxE interaction only, the slope was
significantly steeper for prospective cases than controls in each of
the three groups, suggesting that the metabolic risk of prospective
cases is more sensitive to lifestyle modification, compared with
controls (Supplementary Figure S10), which was, however, not
observed when using the model of GxE interaction only.

Heritability
Heritability estimation can be biased if nonnegligible interaction
effects are not properly modeled. In the standard additive model
(e.g., GREML), the variance attributed to unmodeled interactions
can be partitioned as residual variance, which results in
underestimated heritability, i.e., so-called still-missing
heritability (Wray and Maier, 2014). This is evident for
diabetes-related metabolic traits (Figure 3) for which the ratio
of change in heritability for each trait was positive and not
negligible. For example, the estimated heritability of CRP
increased by 2.5% when significant interactions were
considered appropriately. In the comparison of glucose and
HbA1c, which are most relevant to T2DM, we observed more
than 1.5% of heritability changes, and this supports the
hypothesis that a fraction of still-missing heritability in
metabolic traits is due to interaction effects being unaccounted
for. The estimated variances for the main genetic and residual

FIGURE 2 | Plasticity of diabetes-related metabolic traits of 69 significant overall interactions in response to the level of lifestyle effects by grouping T2DM
prospective cases and controls. Individuals are stratified into three groups: the bottom, middle, and top 20% groups according to estimated GxE and RxE interactions
from the full model (i.e., σ2α1 + σ2τ1 ). We further classified individuals into T2DM prospective cases (red) and controls (blue) in each of three groups, hence, six groups in
total. To compare the differences in trajectories between with T2DM cases and controls, a linear model regressing the phenotype of main trait on standardized
lifestyle measures was used to estimate the intercept and slope for each of six groups. The values of intercepts and slopes were averaged over the 69 analyses that
showed significant signals for both GxE and RxE interactions. The averaged values of intercepts and slopes represent the overall relationship betweenmetabolic risk and
lifestyle covariates, where we considered making favorable and unfavorable directions consistent across the main trait and covariates to facilitate a better interpretation in
line with metabolic risks on T2DM (seeMethods). Boxplots for each group are represented to show the differences in terms of the calculated intercepts and slopes, and
the mean of values for intercepts and slopes were represented as regression lines. The mean and standard error of intercepts and slopes across the analyses of the 69
pairs with significant overall interactions were estimated to assess if there is any significant difference of the mean between cases and control in each of the three groups:
the bottom, middle, and top 20% groups. There were no significant differences between cases and controls in the mean of slopes in all three groups. The mean of
intercepts is significantly different between cases and controls in all three groups (p-values = 2.25E-07, 6.98E-10, and 1.68E-09). The arrows on both axes in linear
regression figures indicate an unfavorable direction in regard to T2DM health.
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effects from GREML and MRNM were compared, showing that
the residual variance was mostly overestimated (hence,
underestimated heritability) in the GREML (Supplementary
Figure S11).

DISCUSSION

It is well established that phenotypic changes in diabetes-related
metabolic traits, such as glucose and HbA1c, are associated with
lifestyle modifications (Harding et al., 2001; Nakanishi et al., 2003;
Rafalson et al., 2009), which has motivated lifestyle interventions for
the prevention and treatment of T2DM (Eriksson and Lindgrde,
1991; Knowler et al., 2002; Shin et al., 2012). However, it remains
unknown if these interventions should be applied uniformly to
everyone (i.e., a one-size-fits-all approach) or tailored to individuals
(i.e., precision health approach). In this study, we show that lifestyle
modification can significantly alter the genetic and nongenetic effects
of metabolic traits (i.e., GxE and RxE interactions), where the
direction and magnitude of the alteration depend on individual
differences in genetic information. This finding demonstrates that a
more personalized approach is needed for T2DM intervention.

Previous studies have already indicated concerns about the
inefficiency of the one-size-fits-all approach (Gill and Cooper,
2008; Pozzilli et al., 2014; Johansen, 2015; Schork, 2015). These
concerns can be overcome by accounting for individual genetic
difference. For example, it is desirable to know how the diabetes-
related metabolic risk in response to lifestyle modifications varies
across individuals according to their genotypes, and this
knowledge will allow a personalized lifestyle intervention to
T2DM that can be tailored to each individual need.

Our finding for significant genome-wide GxE interactions
across diabetes-related metabolic traits is novel and can be
applied in such personalized lifestyle interventions. To our
knowledge, no whole-genome GxE interactions have been
reported for diabetes-related metabolic traits. Previously, we
reported significant GxE and RxE interactions for some
metabolic traits, including BMI, BP, cholesterols, and WHR;
however, GxE interaction could not be disentangled from RxE
because of a small sample size (Ni et al., 2019; Zhou et al., 2020).
In this study, we disentangled GxE interaction from RxE
interaction using a large sample size for diabetes-related
metabolic traits such as glucose, HbA1c and CRP that were
not studied before. We also demonstrated the validity of the
estimated RxE interactions, using CAUSE analyses (Morrison
et al., 2020). RxE interaction can be also explained by
environment-by-environment interactions (Zhou and Lee, 2021).

Unlike standard additive models, MRNM allows us to stratify
samples into three groups (the top, middle, and bottom 20%)
according to estimated individual GxE or/and RxE interaction
effects. The patterns of the expected phenotypes of the metabolic
traits were clearly distinct between the three groups. This shows
that the one-size-fits-all approach may not be the best strategy in
a T2DM intervention. Importantly, the predicted metabolic risk
was significantly higher in T2DM prospective cases than controls.
Interestingly, the phenotypic plasticity of metabolic risk in
response to lifestyle modification is significantly different
between prospective cases and controls only when considering
nongenetic effects of metabolic risk (i.e., using the model with
RxE interaction only).

We found that 69 significant signals out of 96 tests were
detected for overall interactions, indicating that GxE and RxE

FIGURE 3 | The ratio of change in SNP heritability. The differences between heritability estimates from the GREML and MRNM were represented as the ratio of
change in heritability (%). Each bar indicates the differences in heritability, and the ratio was calculated as (h2MRNM − h2GREML )/ h

2
GREML, where h

2
MRNM and h2GREML indicate the

estimated heritability fromMRNM and GREML, respectively. Therefore, the positive ratio denotes that estimate of MRNM is higher than that of GREML. The vertical line is
the 95% confidence interval of the ratio averaged over the analyses of each trait with significant overall interaction. Traits with significant difference between MRNM
and GREML are colored red. The interaction analyses of 69 pairs with significant overall interactions were used in the heritability comparisons. WHR, waist-hip ratio;
diastolic, diastolic blood pressure; HDL, high density lipoprotein cholesterol; sodium, sodium in urine; LDL, low density lipoprotein cholesterol; potassium, potassium in
urine; TC, total cholesterol; HbA1c, haemoglobinA1C; BMI, body mass index; CRP, C reactive protein; systolic, systolic blood pressure.
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interactions play a significant role in the etiology of T2DM. It is
remarkable that 34.8% of the significant tests (24 out of 69) are
strongly significant (p-value < 10E-100). However, these signals
are mostly attributed to RxE interactions (Figure 1 vs.
Supplementary Figure S5), which is also summarized in
Supplementary Figure S3. To disentangle GxE from RxE, we
adjusted the significance of GxE effects accounting for the
collinearity with RxE and found 16 significant signals for
orthogonal GxE interactions. Similarly, we found 58 significant
signals for orthogonal RxE interactions. The smaller number of
significant GxE interactions, compared with RxE interactions, is
probably due to the fact that the power is smaller because a large
number of genetic variants (>1 M) were involved in the
interaction term (Sham and Purcell, 2014).

Although a causality analysis (CAUSE) was used to replicate
some of our findings, we note that causality models (such as CAUSE
or Mendelian randomization model) are different from MRNM in
that they test associations among genetic instruments, exposure, and
outcome at the phenotypic level using least squares or similar
methods. MRNM, instead, adjusts and removes the phenotypic
association because its main interest is to estimate the
heterogeneity of genetic and nongenetic variance across different
lifestyle values. Therefore, MRNM is probably robust to the
assumptions to be made in the causality models (e.g., horizontal
pleiotropic effects that are removed from the adjustment inMRNM).
Nonetheless, consistent results from these two very different models
can increase the reliability of the findings.

In summary, the modulation of diabetes-related metabolic risk
in response to the level of lifestyle covariates was clearly observed,
and its direction and magnitude varied depending on individual
genetic differences. Interestingly, such genetic phenotypic
plasticity was invariant across T2DM prospective cases and
controls although the overall metabolic genetic risk is
significantly higher in T2DM prospective cases than controls.
Our findings highlight the importance of individual genetic
differences in the prevention and management of diabetes and
suggest that the one-size-fits-all approach may not benefit all.
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