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Congenital bilateral absence of the vas deferens (CBAVD) is clinically characterized by the
absence of the bilateral vas deferens; the main clinical manifestation is infertility, accounting
for 1–2% of male infertility cases. CBAVD may be accompanied by congenital
abnormalities in the urogenital system and cystic fibrosis (CF)-related clinical
manifestations. CBAVD can develop as a mild manifestation of CF or can be isolated.
The main pathogenic mechanism of CBAVD is gene mutation, and CBAVD and CF have a
common genetic mutation background. CFTR mutation is the main pathogenic cause of
CBAVD and CF, and ADGRG2mutation is the secondmost common cause. Although lack
of the vas deferens in CBAVD patients causes infertility due to the inability to release sperm,
the testes of CBAVD patients have spermatogenic function. Therefore, CBAVD patients
can achieve fertility through sperm retrieval surgery and assisted reproductive technology
(ART). However, gene mutations in CBAVD patients can have an impact on the ART
outcome, and there is a risk of passing on genemutations to offspring. For CBAVD patients
and their spouses, performing genetic counseling (which currently refers mainly to CFTR
mutation screening) helps to reduce the risks of genetic mutations being passed on to
offspring and of offspring having CF with concomitant CBAVD.
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INTRODUCTION

Congenital bilateral absence of the vas deferens (CBAVD) is an important cause of male infertility,
accounting for 1–2% of such cases (Hussein et al., 2011). Its main manifestation is the absence of the
bilateral vas deferens, wherein the sperm produced by the testes fail to be exported after passing
through the epididymis, resulting in male infertility (Bieth et al., 2021). Therefore, CBAVD is often
diagnosed due to infertility derived from a lack of sperm and has a certain genetic risk. CBAVD can
be one of the symptoms of cystic fibrosis (CF), a human autosomal recessive disease called CF-
CBAVD that occurs in more than 95% of CF cases (Chillón et al., 1995). However, CBAVDmay not
be associated with CF, and in these cases, the disease is referred to as isolated CBAVD (Bieth et al.,
2021). In addition to CF-related symptoms, other congenital genitourinary abnormalities, mainly
including dysplasia or the absence of the kidneys and seminal vesicles, can accompany CBAVD
(Casals et al., 2000; Akinsal et al., 2018). Patients with CBAVD can conceive offspring through sperm
extraction surgery and assisted reproductive technology (ART) (Viville et al., 2000; Kamal et al.,
2010; Llabador et al., 2015). The pathogenesis for CBAVD is widely accepted to be due to genetic
mutations that have a certain heredity in the offspring of CBAVD patients; therefore, CBAVD
patients and their spouses need to undergo genetic counseling when considering the conception of
offspring to ensure that their offspring have no risk of CF and CBAVD (de Souza et al., 2018). This
review provides a detailed introduction to multiple aspects of CBAVD, including its etiology, clinical
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manifestations, imaging examination, diagnosis, treatment and
ART outcomes, and discusses genetic counseling.

ETIOLOGY

There are two views on the pathological mechanism of CBAVD:
vas deferens agenesis and vas deferens atresia (Bieth et al., 2021).
Although the detailed pathological mechanisms need to be
further confirmed, these pathological mechanisms are
generally recognized to be caused by gene mutations.

Cystic Fibrosis Transmembrane
Conductance Regulator Mutation
Cystic fibrosis transmembrane conductance regulator (CFTR)
genemutation is the first to be found to be related to CBAVD, and
this mutation is considered to be the main causal entity in the
occurrence of CBAVD (Kerem et al., 1989; Rommens et al., 1989).
CFTR is located on the long arm of chromosome 7, the detailed
position is 7q31.2, and the total length ofCFTR is 250 kb (Riordan
et al., 1989). It has a total of 27 exons and encodes a protein
product comprising 1,480 amino acids (Riordan et al., 1989). The
CFTR protein consists of five domains: two nucleotide-binding
domains (NBDs), namely NBD-1 and NBD-2; two membrane-
spanning domains (MSDs), namely, MSD-1 andMSD-2; and one
regulatory domain R (Welsh and Smith, 1993). CFTR is a
glycosylated transmembrane protein that acts as a cAMP-
regulated chloride ion channel on the apical membrane of
many epithelial cells and functions together with several ion
transporters, including chloride/bicarbonate exchangers, sodium
channels, water channels (aquaporins) and proton exchangers
(Na+/H+) (Choi et al., 2001).

With the accumulation of CBAVD and CFTR mutation
research in different countries, more than 2000 CFTR mutants
have been found to be closely related to the formation of CBAVD
(Bieth et al., 2021). Among them, some variants, such as ΔF508,
IVS8-5T, the (TG)m variant, and M470V, are frequent mutants
that contribute to CBAVD occurrence (Chillón et al., 1995; de
Souza et al., 2018). Additionally, CFTR mutation in CBAVD has
the following two characteristics. 1. The frequency of CFTR
mutants in CBAVD is significantly higher than that in non-
CBAVD male infertility. CFTR mutants also occur in non-
CBAVD obstructive azoospermia and spermatogenetic failure,
where the frequency of CFTR mutants, such as the 5T allele, is
lower than that in CBAVD (Stuppia et al., 2005; Asadi et al., 2019;
Rudnik-Schöneborn et al., 2021). Some mutants in CBAVD are
not even present in non-CBAVD male infertility. For example,
there was no ΔI507 or ΔF508 in nonobstructive azoospermia in a
study from India (Heidari et al., 2017). In non-CBAVD male
infertile patients in Tunisia, ΔF508 and the 5T allele could not be
detected (Ghorbel et al., 2012). 2. The types, frequencies and roles
of CFTR mutants are significantly different between different
races and regions. In terms of mutant frequency, the number of
Caucasians with two CFTR mutants is significantly higher than
that of non-Caucasians with these mutants. In terms of mutant
types, the frequency of F508del in Caucasians is significantly

higher than that in non-Caucasians, while the frequency of 5T
variation is the opposite (Yu et al., 2012). Additionally, it has been
shown that mutants in the promoter region of CFTR in Chinese
individuals are significantly different from those in Caucasians
(Bai et al., 2018; Feng et al., 2019). In terms of mutant roles, meta-
analysis showed that 5T variation (OR = 8.35, 95% CI =
6.03–10.81) is a risk factor for CBAVD populations in Sydney,
France, India, China, Egypt and Iraq, while ΔF508 (OR = 22.2,
95% CI = 7.49–65.79) is a risk factor for CBAVD populations
from Slovenia, Iran, Canada, and Egypt. Interestingly, among
CBAVD populations from France, Italy, China and Iran, M470V
is a protective factor (OR = 0.74, 95% CI = 0.60–0.91) (Xu et al.,
2014).

Under physiological conditions and except in sperm, CFTR is
expressed in the germ cell cytoplasm and cytomembrane
(Teixeira et al., 2013). CFTR expression on the
cytomembranes of Sertoli cells and diploid sperm cells of the
testes of CBAVD patients is reduced, and CFTR expression in the
cytoplasm is lost (Teixeira et al., 2013). Experimental research has
also confirmed that the sperm fertilizing capacity is attenuated
due to a lack of CFTR-mediated transportation of carbonate ions
during the sperm capacitation process (Xu et al., 2007). It has also
been shown that ΔF508 and IVS8-5T increased the risk of
infertility by 1.63- and 1.69-fold in nonobstructive
azoospermia, respectively (Yang et al., 2020). Therefore, in
addition to the absence of the vas deferens in CBAVD
patients, CFTR mutations may be involved in spermatogenesis.

Adhesion G Protein-Coupled Receptor G2
Gene Mutation
The adhesion G protein-coupled receptor G2 gene (ADGRG2) is
considered to be the second mutated gene that causes CBAVD
(Patat et al., 2016). It is located at Xp22.13, has 29 exons and
produces 10 transcripts, of which the longest transcript is 3.1 kb,
which encodes adhesion G protein-coupled receptor G2 (Bieth
et al., 2021). ADGRG2 is expressed mainly on the apical lumen
membrane of nonciliated epithelial cells of the human efferent
duct (Bieth et al., 2021). Studies have found that among CBAVD
patients without CFTR mutations, some carry ADGRG2
mutations, such as p. C570Y, p. K990E, p. Glu516Ter, p.
Cys949AlafsTer81, p. Leu668ArgfsTer21 and c. G118T: p.
Glu40* (Patat et al., 2016; Yang et al., 2017; Wu et al., 2020).
These mutants are considered to be related to the occurrence of
CBAVD. One experimental study confirmed that in the cases
with ADGRG2 mutations, the proximal epididymis tissue lacks
ADGRG2 protein expression (Wu et al., 2020). This further
suggests that the loss of ADGRG2 protein or function caused
by ADGRG2 mutation is closely related to the occurrence of
CBAVD. In addition, a study found that among CBAVD patients
without CFTR mutations, those without renal abnormalities had
ADGRG2 mutations; however, ADGRG2 mutations were not
detected in those with renal abnormalities (Patat et al., 2016).
This suggests that patients with renal abnormalities plus CBAVD
may have the same genetic mutation background as that of
patients with CBAVD alone but that the genetic background
of renal abnormalities is different from that of CBAVD alone.
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Other Genetic Mutations
In addition to the two genes and their mutations mentioned
above, several other mutated genes have been screened out and
linked to CBAVD. In the Taiwanese CBAVD population, most
did not carry CFTR mutations but did have SLC9A3 mutations
and single-copy deletions (Wang et al., 2017). SLC9A3 single-
copy deletions cause a decrease in CFTR protein expression,
which in turn leads to changes in the structure of the epididymis
and vas deferens (Wang et al., 2017). Basic research has also
confirmed that knockout of SLC9A3 in mice can cause atrophy of
the vas deferens and disclosure of the seminal vesicle mucosa (Wu
et al., 2019). Clinically, SLC9A3 deletion can increase CBAVD
incidence from 3.1 to 37.9% (Wu et al., 2019). Additionally,
PANK2 mutations including copy number variations and
homozygous deletion were also found in Taiwan CBAVD
patients (Lee et al., 2009). Finally, one study suggested that the
genetic etiology of CBAVDmay be changes in transcriptional and
posttranscriptional activity and found that RNA SCNN1B and
CA12 mutations were related to CBAVD (Shen et al., 2019).

CLINICAL FEATURES

In most cases, CBAVD is a clinical manifestation of CF rather
than an isolated event (Chillón et al., 1995; Lewis-Jones et al.,
2000); therefore, the clinical manifestations can be diverse
(Bombieri et al., 2011). In addition to infertility due to the
absence of the bilateral vas deferens, CBAVD may be
accompanied by abnormalities of the genitourinary system,
mainly including abnormalities in or the absence of the
seminal vesicles and kidneys (Casals et al., 2000; Radpour
et al., 2008; Cai et al., 2019). The volume of the testis is
typically normal or small (Boucher et al., 1999). Semen
parameter analysis shows azoospermia, a lower ejaculation
volume (<1.0 ml) and pH < 7.0 (Boucher et al., 1999). FSH
levels are below the normal range, and the level of each seminal
plasma biochemical marker is lower than normal (Boucher et al.,
1999). In addition to the abovementioned genitourinary system-
related manifestations, CF-CBAVD patients may have
remarkable clinical manifestations of CF including recurrent
idiopathic chronic pancreatitis; respiratory diseases, such as
chronic obstructive pulmonary disease and bronchitis, high-
chloride sweat, and sinusitis, among others (Bombieri et al.,
2011; Schulz and Tümmler, 2016; Averill et al., 2017).

IMAGING EXAMINATION

Strong evidence of the absence of the vas deferens in CBAVD
patients relies on imaging examination. Although the aim of the
physical examination of scrotum can by met (AbdElnaser et al.,
2021), for those with residual vas deferens or fibrous cord-like
structures remaining after vas deferens atresia, the diagnosis of
CBAVD is often missed. Imaging examination can address this
limitation. B-ultrasound is the simplest and most harmless
imaging examination method. It can not only clearly show the
vas deferens through the transabdominal, scrotal, and transrectal

methods (Schlegel et al., 1996; Daudin et al., 2000; Liu et al., 2017)
but also detect whether the seminal vesicles, kidneys and other
structures are abnormal (Lotti and Maggi, 2015). This method is
always used by andrologists clinically during the diagnosis of
CBAVD. However, there are certain deficiencies when displaying
structures such as the vas deferens and seminal vesicles (Chiang
et al., 2013). MRI can also clearly show defects of the internal
seminal tract and internal organs of the genitourinary system and
provide valuable information on the vas deferens and seminal
vesicles that cannot be obtained by B-ultrasound, including the
remaining segments of the vas deferens and the remaining
seminal vesicles (Chiang et al., 2013). Therefore, in addition to
physical examination for the vas deferens, B-ultrasound should
also be performed. If the diagnostic results obtained are
inconsistent with other clinical manifestations of CBAVD,
especially the semen analysis, further MRI examinations
should be performed to confirm the diagnosis of CBAVD.

DIAGNOSIS AND DIFFERENTIAL
DIAGNOSIS

The diagnosis of CBAVD relies mainly on identification of the
absence of the bilateral vas deferens through physical
examination and imaging methods, and then based on the
following semen-related examination results, the diagnosis is
further confirmed: low ejaculate volume (<1.0 ml or 1.5 ml are
also reported), semen analysis showing azoospermia, pH < 7.0,
seminal fructose <13 μmol/ejaculation and GPC <2 μmol/
ejaculation (de Souza et al., 2018; Bieth et al., 2021). Other
tissue abnormalities in the genitourinary system, such as
seminal vesicles and kidneys, can be used as supportive
evidence for the diagnosis of CBAVD, but they are not
essential diagnostic evidence for the diagnosis of CBAVD. The
differential diagnosis of CBAVD involves various male infertility
diseases that can cause azoospermia, including obstructive
azoospermia and nonobstructive azoospermia. The main
difference is that except for CBAVD, all azoospermia-related
infertility diseases have evidence of the existence of the vas
deferens.

TREATMENT AND ART OUTCOMES

From the perspective of andrology, the primary treatment
purpose of CBAVD is to solve the problem with the goal of
enabling the conception of genetic offspring, and CBAVD is often
discovered and diagnosed because of long-term male infertility.
With the development of sperm extraction technology and ART,
CBAVD patients can achieve fertility with the aforementioned
two technologies (Elhanbly et al., 2015; Fang et al., 2020; Jixiang
et al., 2021). For CBAVD patients, the first step of ART methods,
such as intracytoplasmic sperm injection (ICSI), is the procedure
for obtaining sperm. At present, sperm extraction techniques
include mainly microsurgical epididymal sperm aspiration
(MESA), testicular sperm extraction (TESE), and percutaneous
epididymal sperm aspiration (PSEA) (Meniru et al., 1997; van
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Wely et al., 2015). Although the sperm obtained by these
techniques combined with ICSI can enable CBAVD to obtain
offspring, there are different reports on the impact of these
techniques on the ICSI outcome. Regardless of whether the
sperm originates from the testis or the epididymis, it the
fertility rate, clinical pregnancy rate and miscarriage rate are
the same in obstructive azoospermia (Kamal et al., 2010).
However, it has been reported that in patients with CBAVD,
extraction of sperm from the epididymis via MESA has higher
live birth, clinical and ongoing pregnancy rates than sperm
extracted from the testis via TSEA (Llabador et al., 2015; van
Wely et al., 2015). The reason for this difference may be related to
the following factors.

Spermatogenesis State
One study found that among CBAVD patients undergoing TESE,
some have normal spermatogenesis, while others have
hypospermatogenesis (Llabador et al., 2015). Compared with
normal spermatogenesis, hypospermatogenesis has a lower
pregnancy rate (65.6 vs. 72.9%) and embryo cleavage rate
(88.6 vs. 92.1%) (Llabador et al., 2015). Although the number
of sperm required for ICSI is low, patients with
hypospermatogenesis can provide enough sperm for ICSI.
Therefore, lack of attention to the spermatogenesis status of
patients in CBAVD studies of ART outcomes may be an
important contributing factor to inconsistencies in the results
of ART outcome analyses.

Age is related to the state of spermatogenesis. It has been
shown that the sperm status obtained by PSEA in CBAVD
patients is affected by age. Among patients aged <30 years,
30–40 years and >40 years, the sperm number, variability, and
normal sperm rate gradually decreases with age, and the
pregnancy rate and take-home baby rate also decrease.
Accumulated evidence shows that semen parameters in
normal males gradually become abnormal with age, including
a decrease in semen concentration and semen quantity and an
increase in the deformity rate and DNA fragment rate (Vaughan
et al., 2020; Gao et al., 2021; Ramirez et al., 2021; Zhang et al.,
2021). In these studies, age grouping was narrow, suggesting that
small increases in age lead to semen parameter abnormality. In
CBAVD patients, significant changes in semen parameters are
evident with an age gap of only 10 years and the small age gap in
CBAVD patients has a significant impact on ART outcome.
Therefore, age differences among CBAVD populations in
different studies, which may not be significant between groups,
may lead to different ART outcomes due to variation in
spermatogenesis.

Genetic Mutation Status
CFTR is expressed in almost all germ cells and is involved in the
process of spermatogenesis (Teixeira et al., 2013), and its
mutation may cause abnormal spermatogenesis and lead to
attenuated sperm function, such as sperm fertilizing capacity
(Xu et al., 2007). CMA3 reflects the chromatin concentration. The
higher the CMA3 level in sperm is, the lower the fertilization rate
will be. One study showed that compared to those in the sperm of
non-CBAVD obstructive azoospermia patients, CMA3 levels

were highest in the sperm of CBAVD patients (Ramos et al.,
2004), suggesting that sperm function was impaired in CBAVD.
Additionally, compared with patients with non-CBAVD
obstructive azoospermia, the frequency of CFTR mutations in
CBAVD patients was higher, and the rate of miscarriage and
stillbirth was higher (Lu et al., 2014). Consistently, another study
confirmed that compared with CBAVD, the acquired cause of
obstructive azoospermia, such as non-CBAVD obstructive
azoospermia, has a higher pregnancy rate and lower abortion
rate (Nicopoullos et al., 2004). In addition, compared with non-
CFTR mutations, CFTR mutations can lead to higher abortion
and stillbirth rates (Lu et al., 2014). However, a study on ICSI
outcomes in CBAVD patients without CFTR gene mutations
found that the risk of chromosomal abnormalities after ICSI in
CBAVD patients was similar to that in normal men, and the
pregnancy success rate was also similar, even under the premise
of limited spermatogenesis (Viville et al., 2000). Therefore, CFTR
mutations in CBAVD patients may cause dysfunction of sperm
and/or spermatids and finally disrupt ART outcomes. Although
there is a lack of research on the influence of other genetic
mutations in CBAVD on the ART outcome, genetic mutations
may affect the ART outcome by impairing sperm/spermatid
function. Therefore, inconsistencies in the genetic mutation
status may lead to different ART outcomes reported in
different CBAVD populations.

Genetic Mutation Types
The types of mutations in CBAVD patients also seem to be related
to ART outcomes. In a study of a European health population,
among three CFTR mutants related to CBAVD, Met470Val in
exon 10 and the (TG)m and polyT repeat polymorphisms in
intron 8, were counted, and only theMet470 allele was related to a
lower birth rate (Kosova et al., 2010). The different spectrum of
genetic mutants and the different types of genetic mutations in
different CBAVD populations explain the inconsistent ART
outcomes in some studies about CBAVD.

In short, the ART outcomes of CBAVD patients may not be
related to sperm retrieval technology but has important
relationships with other factors, including age gap,
spermatogenesis state, genetic mutation status and genetic
mutation types.

GENETIC COUNSELING

CFTR mutation is the main cause of CBAVD. Several CBAVD
family studies have found that when the fathers carries a CFTR
mutation, his offspring can inherit the mutation and suffer from
CF(Patrizio et al., 1993; Wong et al., 2004; Van Hoorenbeeck
et al., 2007; Yang et al., 2018; Gaikwad et al., 2020), indicating that
CFTR mutants in CBAVD patients have a certain risk of being
transmitted to offspring. It is worth mentioning that although
CFTR gene mutation is the main pathogenic factor underlying
CBAVD occurrence, not all CBAVD patients have CFTR gene
mutations (Patat et al., 2016; Yang et al., 2017). In CBAVD
patients with CFTRmutations, not all mutations can be passed on
to offspring, and not all mutations passed on to offspring can
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cause CBAVD or CF. Only pathogenic CFTR mutations are
transmitted to offspring can cause the diseases. Therefore, for
CBAVD patients, it is necessary to conduct genetic counseling
and detection to determine whether there is a pathogenic CFTR
mutation and the risk degree of passing it to offspring. Some
researchers have suggested that all CBAVD patients should be
tested for CFTR mutations (Cuppens and Cassiman, 2004).
However, considering the economic burden to each patient
and the limitations of regional medical resources, it is
impossible to perform CFTR mutation testing for all CBAVD
patients. Therefore, when a CBAVD patient has the following
clinical characteristics, we should highly suspect that this patient
may have a CFTR gene mutation, and CFTR mutation screening
for the following should be carried out before ART: 1.
manifestations related to CF (Samli et al., 2006); 2. family
history of CF (Cruger et al., 2003); and 3. concomitant renal
hypoplasia, semen volume ≤1.0 ml and pH < 7.0 (Daudin et al.,
2000).

Among studies on CFTR mutations in CBAVD, many
pathogenic CFTR mutants, such as p. Arg117His, I556V,
IVS9-5T allele and F508del, have been identified (Cuppens
et al., 1998; Uzun et al., 2005; Lu et al., 2013; Thauvin-Robinet
et al., 2013). However, due to differences in medical resources and
detection technology in various regions, CFTRmutants with high
frequency in the CBAVD patient’s region should be screened first
when the CBAVD patient is highly suspected of having a CFTR
mutation. If the first mutation detection result is negative, the
detection range of CFTR mutants should be expanded.
Additionally, we always detect only single CFTR mutations in
traditional detection methods (Giuliani et al., 2010). However,
screening for a mutation in both CFTR alleles is helpful to
calculate the risk of offspring with CF (Giuliani et al., 2010),
especially when the female partner is negative for the CFTR
mutation. Therefore, we recommend that both CFTR alleles be
screened for the mutation.

Previously, it was believed that CFTR mutants need to be
screened only in CBAVD patients because CBAVD patients
with severe CFTR mutations have a 50% probability of passing
the CFTR mutations on to their offspring (Cuppens and
Cassiman, 2004), suggesting that it is of great value to
detect CFTR mutations in CBAVD patients. If the CFTR
mutation screening result of the CBAVD patient is negative,
there is no need to screen the female partner for the CFTR
mutation. However, it has been found that CFTR mutations in
the female partner may not necessarily be accompanied by
significant clinical manifestations (Cuppens and Cassiman,
2004), making her status easy to ignore. However, CFTR
mutants in female partners can significantly disrupt ART
outcomes and increase the transmission risk of CFTR
mutations to offspring (Lewis-Jones et al., 2000). One study

showed that the presence of CFTR mutations in female
partners increased the risk of miscarriage (Peleg et al.,
2011). At the same time, under the premise that both the
CBAVD patient and his spouse have CFTR mutations, the risk
of CF in the offspring (1 in 25) is 25 times that of the normal
population (1 in 2,500) (Cuppens and Cassiman, 2004).
However, if the female is CF-negative or has no CFTR
mutations, the probability of children getting CF or
CBAVD will be reduced to 1 in 960 (Lewis-Jones et al.,
2000). Therefore, CFTR mutant screening in female
partners of CBAVD patients cannot be ignored. Ideally, if
conditions are sufficient, regardless of whether CF occurs, it is
recommended that the CBAVD patient and his spouse
undergo CFTR mutation screening to thoroughly assess the
risk of offspring with CF.

With in-depth research on the genetic etiology of CBAVD
patients, mutations in other genes, such as ADGRG2, may be
considered in addition to the CFTR gene because not all regions
are dominated by CFTR mutations in terms of their CBAVD
populations. Among CBAVD sequencing results reported in
different countries, ADGRG2 mutation in cases without CFTR
mutation may occur in addition to CFTR mutation (Patat et al.,
2016; Khan et al., 2018; Yuan et al., 2019; Pagin et al., 2020). In
short, for CBAVD patients and spouses, genetic counseling is
necessary to ensure the birth of healthy offspring.

CONCLUSION

CBAVD is a male infertility disease. Mutations in genes such as
CFTR and AGDRD2 are the main pathogenic factors of CBAVD.
Semen extraction technology and ART can enable CBAVD
patients to achieve fertility. Genetic mutations in CBAVD
patients can affect spermatogenic function and sperm quality,
thereby interfering with the ART outcome. In addition, there is a
risk of passing on pathogenic genetic mutations to offspring.
Therefore, genetic counseling for CBAVD patients and their
spouses is necessary to produce healthy offspring.
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