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The extensive spatial genomic intratumor heterogeneity (ITH) in liver cancer

hindered treatment development and limited biomarker design. Early events

that drive tumor malignant transformation in tumor founder cells are clonally

present in all tumor cell populations, which provide stable biomarkers for the

localization of tumor cells and patients’ prognosis. In the present study, we

identified the recurrently clonal somaticmutations and copy number alterations

(CNAs) (893 clonal somaticmutations and 6,617 clonal CNAs) in 353 liver cancer

patients from The Cancer Genome Atlas (TCGA) and evaluated their prognosis

potential. We showed that prognosis-related clonal alterations might play

essential roles in tumor evolution. We identified 32 prognosis related clonal

alterations differentially expressed between paired normal and tumor samples,

that their expression was cross-validated by three independent cohorts

(50 paired samples in TCGA, 149 paired samples in GSE76297, and 9 paired

samples in SUB6779164). These clonal expression alterations were also

significantly correlated with clinical phenotypes. Using stepwise regression,

we identified five (UCK2, EFNA4, KPAN2, UBE2T, and KIF14) and six (MCM10,

UCK2, IQGAP3, EFNA4, UBE2T, and KPNA2) clonal expression alterations for

recurrence and survival model construction, respectively. Furthermore, in

10 random repetitions, we showed strong applicability of the multivariate

Cox regression models constructed based on the clonal expression genes,

which significantly predicted the outcomes of the patients in all the training and

validation sets. Taken together, our work may provide a new avenue to

overcome spatial ITH and refine biomarker design across cancer types.
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Introduction

Liver cancer, especially hepatocellular carcinoma (HCC), is the leading cause of

cancer-related death worldwide (Bray et al., 2018), and thus an early prognostic evaluation

is an important measure to improve clinical management. Although multiple attempts

have been made to design an effective prognostic biomarker for liver cancer patients

(Villanueva et al., 2011; Cai et al., 2017), seldom of them have been adopted in clinical
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practice due to poor reproducibility or worse efficiency than the

clinic-pathological risk factors (Marques et al., 2020).

All cells within the tumor are unique and continue to acquire

new alterations in the evolution process (Lynch, 2010;

Martincorena and Campbell, 2015), resulting in considerable

genomic intratumor heterogeneity (ITH). The ITH may be the

leading cause of inefficient biomarker design. Previous studies

revealed that HCC tumors showed an extensively spatial ITH,

displaying a clear isolation-by-distance pattern where spatially

greater sectors are genetically more different (Zhai et al., 2017).

The particular isolated growth pattern results in significant

spatial ITH of the genome, epigenome, copy number

alterations (CNAs), and transcriptome, which will bring

significant sampling bias. Based on multi-region sequencing,

studies revealed the molecular biomarkers might be

confounded by sampling bias arising from ITH in

transcription level (Gerlinger et al., 2012; Gulati et al., 2014,

2015; Gyanchandani et al., 2016; Lee et al., 2018; Biswas et al.,

2019). Therefore, addressing the impact of ITH on biomarker

design is a fundamental challenge for precision medicine

(Barranco et al., 1994; Blackhall et al., 2004; Bachtiary et al.,

2006; Boutros, 2015).

In tumor evolution, early genomic alterations in tumor

founder cells are stably inherited in all tumor cell populations,

which present as clonal and overcome the spatial ITH. These

clonal alterations provide not only promising therapeutic targets

but also stable biomarkers. Evidence showed that some tumors

were born-to-be-bad, where the malignant potential is specified

early in colorectal cancer (Sottoriva et al., 2015; Ryser et al.,

2018). In HCC, early genomic divergence also demonstrated

early malignant characteristics (Zhai et al., 2017; Ding et al.,

2019). This evidence revealed that early clonal alterations that are

localized in all tumor cell populations have potential prognostic

value.

In the present study, we aimed to identify a set of prognosis-

related clonal biomarkers acquired at early tumor progression,

which kept prognosis potential both at genomic and

transcriptome levels and may overcome the spatial ITH. Our

research may bring a new avenue for the design of tumor

biomarkers.

Materials and methods

Data collection

The somatic mutation data (pipelines, “mutect2”; reference

genome, hg38) of liver cancer was downloaded by R (version,

4.0.5) package “TCGAbiolink” (Colaprico et al., 2016). The

GISTIC score of copy number alterations (CNAs), normalized

RNA expression, and clinical phenotype data were downloaded

at The Cancer Genome Atlas (TCGA, xenabrowser.net).

GSE76297 (149 paired normal and tumor HCC samples) and

GSE10141 (80 HCC samples with follow-up data) were

downloaded from the GEO database (https://www.ncbi.nlm.

nih.gov/geo/).

RNA sequencing

RNA sequencing was performed on nine liver tumor and

paired non-tumor samples (Zhang et al., 2020). A detailed

description of the pipeline for bioinformatics analysis has

been described previously (Ding et al., 2015; Zhang et al.,

2020). RNA sequencing data can be obtained from the

Sequence Read Archive (SRA) (https://submit.ncbi.nlm.nih.

gov/) (SUB6779164).

Identification of clonal altered genes

Using R (version, 4.0.5) package “DoAbsolute” (Carter et al.,

2012; Wang, 2021), we inferred the tumor’s purity, ploidy, and

the cancer cell fraction (CCF), and clonality of each genomic

alteration (including somatic mutations and CNAs). The

parameters were used as follows, the “primary.disease” was

“Hepatocellular Carcinoma,” “min.mut.af” was 0.05,

“max.as.seg.count” was 5,000, “copy.num.type” was “total,”

“platform” was “Illumina_WES,” and the remaining

parameters were used as recommended of the package. For

each alteration, it can be classified as a clone or subclone

according to its CCF. The clonal alterations are present in all

tumor cells and therefore have a higher CCF, whereas the

subclonal alterations are only present in some tumor cells and

therefore have a lower CCF. To obtain high-quality clonal

alterations, we set a strict threshold that 1) the mutation was

inferred as clonal mutation; 2) the lower confidence interval of

CCF was at least 0.5; and 3) the events occurred at least in five

patients.

Assessment of the prognostic potential of
each clonal alteration

According to the clonality of an alteration, the patients were

divided into two groups (with or without this clonal alteration).

We then evaluated the prognostic potential (overall and

recurrence-free survival) of each clonal alteration using

univariate Cox regression analysis in the “survival” package in

R (version, 4.0.5) (Therneau and Grambsch, 2000). All the clonal

alterations with a p-value < 0.05 were considered with prognostic

potential (recurrence and survival). Gene Ontology analysis was

performed to analyze the critical biological processes of these

clonal alterations using the ‘clusterProfile’ package (Yu et al.,

2012). Ten canonical oncogenic signaling pathways were

obtained from the previous study (Sanchez-Vega et al., 2018).
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Identification of clonal expression genes

Paired T test was used to identify the differentially expressed

genes (DEGs) between paired normal and tumor samples. All the

p-value were adjusted by the false discovery rate (FDR). The DEGs

that were cross-validated in the three cohorts (50 paired samples in

TCGA, 149 paired samples in GSE76297, and 9 paired samples in

our cohort) were considered significantDEGs. The prognosis related

clonal alterations that also wereDEGs in RNA level were selected for

further analysis. Using the expression data, we evaluated the

prognostic potential (overall and recurrence-free survival) of each

DEG using univariate Cox regression analysis in the ‘survival’

package (Therneau and Grambsch, 2000). The correlation

between GISTIC score and RNA expression was calculated by

Pearson’s correlation analysis. The DEGs that both showed

prognosis potential in clonal alterations and RNA expression

were selected as candidate genes. The log2 (fold change) and

log10 (hazard ratio) of each DEG was scaled by the formula:

X=(X-Xmin)/(Xmax-Xmin), where X was the value of the log2

(foldchange) or log10 (hazard ratio), Xmax and Xmin were the max

andmin value of X, respectively. Furthermore, using a student t-test,

we evaluated the difference of each candidate gene (RNA level) in

clinical phenotypes, e.g., age, gender, Child-Pugh grade, liver fibrosis,

histologic stage, American Joint Committee on Cancer (AJCC)

stage, family cancer history, recurrence, alcohol history, HBV and

HCV infection, and nonalcoholic fatty liver disease (NAFLD).

Protein-protein interaction network
construction and functional enrichment
analysis

The genes showed directly interact with clonal expression

genes in a high-quality interaction database (HINT) (Das and Yu,

2012) were selected for PPI network construction. Using the

“clusterProfile” package (Yu et al., 2012), functional enrichment

analysis was performed for these genes (KEGG pathways and

Gene Ontology analysis).

Multivariate cox regression model
construction

All the clonal expression genes were assessed by a

proportional hazard hypothesis test using the “survival”

package (Therneau and Grambsch, 2000). Time-dependent

variables were processed by constructing a function of time.

Then, the prognosis-related clonal expression genes were used

to construct a multivariate Cox regression model, and

stepwise regression was used to select the clonal expression

genes in the most minimalistic model. The best cutoff value

for dividing patients into high and low-risk groups was

calculated using the “ggrisk” package (Zhang and Jin,

2020). Furthermore, we randomly divided 70% of the

patients into the training set to build the Cox regression

model (using the selected clonal expression genes) and 30%

as the validation set to evaluate the prognostic potential of the

model. This process was repeated ten times in survival and

recurrence models, respectively. The receiver operating

characteristic (ROC) curve was used to evaluate the

accuracy of patients predicted to be high-risk and has a

poor prognosis. The Kaplan-Meier survival (KM) curve was

used to analyze the difference between high- and low-risk

groups.

Statistical analysis

All the statistical analyses and plotting in this work were

performed using R (version 4.0.5). p < 0.05 were considered

statistically significant, and all the multiple testing correction

used was performed using a false discovery rate (FDR).

Results

The clonality of each altered gene

We totally observed 12,684 specific non-silent somatic

mutated genes in 353 liver cancer patients (Figure 1A). In a

single patient, the number of non-silent somatic mutations

ranged from 11 to 1250 (median, 74) (Figure 1A). After

adjusting the effects of the tumor’s purity and ploidy, we

inferred the clonality of each mutation. Under a strict

threshold (see Methods), we identified 893 specific clonal

non-silent somatic mutated genes (ranged from 5 to 234 per

patient; median, 15) (Figure 1A), including the known frequent

liver cancer driver genes TP53 (Chasov et al., 2020) (occurred in

96 patients, 27.3%), CTNNB1 (76 patients, 21.6%), TTN

(72 patients, 20.1%), MUC16 (46 patients, 13.1%) and APOB

(28 patients, 8.0%) (Tate et al., 2019) (Figure 1B). In each patient,

we identified a considerable number of subclonal non-silent

mutations (ranging from 0 to 260; median, 15) (Figure 1A),

suggesting a continuous evolution after malignant

transformation. Under the same threshold, we identified

6,617 specific clonal altered genes with significant CNAs

(ranged from 2 to 2,346 per patient; median, 304)

(Figure 1C), and the frequently altered genes were FKSG62

(71 patients, 20.1%), ASH1L (64 patients, 18.1%), GON4L

(65 patients, 18.4%), TRAPPC9 (64 patients, 18.1%), ANXA13

(61 patients, 17.3%) and SYT11 (6 patients, 17.3%) (Figure 1D).

We observed a large number of clonal and a small number of

subclonal CNAs in most patients (Figure 1C), consistent with

previous studies that most of the CNAs occurred early during

tumor initiation (Navin et al., 2011;Wang et al., 2014; Duan et al.,

2018).
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The prognostic potential of the clonally
altered genes

The clonal altered genes come from the most recent common

ancestor (MRCA) of the diverse tumor cell populations in each

tumor and are the common markers in all the tumor cells. These

markers overcome the influence of ITH and are stably present in all

tumor cells, which not only provided promising therapeutic targets

but also stable prognostic biomarkers. Here, we assessed the power

of all the clonal altered genes (including non-silent somatic mutated

genes and CNAs) in predicting a patient’s survival and recurrence.

Results showed that 60 and 89 clonal non-silent somatic mutated

genes were related to overall and recurrence-free survival,

respectively (Figure 2A and Supplementary Tables S1, 2). In

addition, 544 and 505 clonal altered CNAs were related to

overall survival and recurrence-free survival, respectively

(Figure 2B and Supplementary Tables S3, 4). Gene Ontology

analysis showed these prognosis-related genes significantly

enriched in many tumor-related biological processes, e.g.,

regulation of the metabolic process, cell differentiation, cell

development, cell migration, cell cycle process, and regulation of

cell growth (Figure 2C). Furthermore, we found these altered clonal

genes were involved in regulating eight oncogenic pathways, among

which NOTCH, WNT, Hippo, and RTK-RAS enriched the most

clonal changes (Figure 2D). These results revealed that the clonal

altered genes play an important role in tumor development and

prognosis.

The prognosis-related genes in RNA
expression level

Using paired T-test, we identified the DEGs in paired normal

and tumor samples at RNA expression level in TCGA (n = 50),

GSE76297 (n= 149) and SUB6779164 (n= 9) (Figure 3A–C). All the

genes with adjusted p-value <0.05 and their expression trend has

been cross-validated in the three cohorts were selected for further

analysis. Among that, 499 were up-regulated and 746 were down-

regulated (Figure 3D). Furthermore, we evaluated the prognostic

potential of these genes at transcription level. Results showed that

529DEGswere significantly correlated with patients’ overall survival

time (Supplementary Table S5), and 531 DEGs were significantly

correlated with patients’ recurrence-free survival time

(Supplementary Table S6). Notably, only 3 of them were clonal

somatic mutations, and 29 of them showed a significantly positively

correlated with their GISTIC score (Figure 3E). Finally, these

FIGURE 1
Identification of clonal altered genes (A). The number of clonal and subclonal non-silent somaticmutations in each patient (B). The landscape of
the frequently clonal altered somatic mutations (C). The number of clonal and subclonal CNAs in each patient (D). The landscape of the frequently
clonal altered CNAs. CNAs, copy number alterations; Amp, Amplification; Del, Deletion.
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32 clonally altered genes both with prognosis potential in genomic

and transcription levels were selected as candidate genes (Figure 3F).

Functional enrichment analysis of the
clonal expression genes

Using HINT, we identified 460 specific genes which showed

direct protein-protein interaction (PPI) with these 32 clonal

expression genes (including 1,138 PPI pairs) and constructed a

PPI network (Figure 4A). Further analysis showed these genes

participated in multiple cancer-related pathways regulation, such

as AMPK, autophagy, cell cycle, DNA replication, FOXO, and Viral

carcinogenesis signaling pathways (Figure 4B). Gene Ontology

analysis showed these genes were significantly enriched in

biological process (Cell Cycle Checkpoint, Nik/Nf-Kappab

signaling, DNA replication initiation, regulation of DNA repair

and metabolic process), Cellular Component (atpase, histone

acetyltransferase, and DNA replication preinitiation complex)

and Molecular function (Histone binding, Cyclin-Dependent

protein kinase activity, and cadherin binding) (Supplementary

Table S7). All of that indicated that the clonal expression genes

play critical roles in tumor development (Figure 4C).

Clinicopathologic correlation analysis

Furthermore, we evaluated the correlation between these

32 genes and clinical phenotypes. Among that, three genes

(PRCC, PYGO2, and MSTO1) were related to Child-pugh grade;

15 genes were related to liver fibrosis; 31 genes were related to

histologic tumor grade; 10 genes were related to AJCC stage;

19 genes were related to family history of cancers; and 9 genes

were related to tumor recurrence (Figure 5A). In addition, we

FIGURE 2
The prognosis-related clonal altered genes (A). The prognosis potential of the top 10 clonal altered somatic mutations (B). The prognosis
potential of the top 10 clonal altered CNAs (C). Gene Ontology analysis of clonal altered genes (D). The clonal altered genes involved in oncogenic
pathways. CNA_rec, the clonal altered CNAs that related to recurrence; CAN_sur, the clonal altered CNAs that related to survival; CAN_rec_sur, the
clonal altered CNAs that both related to recurrence and survival; Mut_rec, the clonal altered somatic mutations that related to recurrence;
Mut_sur, the clonal altered somatic mutations that related to survival; Mut_rec_sur, the clonal altered somatic mutations that both related to
recurrence and survival; Mut_sur_CNA_rec, the clonal altered somatic mutations and CNAs that related to survival and recurrence, respectively.
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analyzed the correlation between these clonal expression genes and

risk factors for liver cancer. Results showed five genes (PIGC, PIGM,

UBAP2L, GRK6, and GMPS) were related to alcohol; 14 genes were

related to HBV infection; three genes were related to HCV infection;

and 12 genes were related to NAFLD (Figure 5A). All of the clonal

expression genes showed a significant correlation with overall

survival time (Figure 5B). 21 of clonal expression genes showed a

significant correlation with recurrence-free survival time

(Figure 5C). These results revealed that these candidate genes

were significantly correlated with clinical phenotypes.

Multivariate cox regression model for
predicting prognosis

The candidate genes that showed prognosis potential in

overall and recurrence-free survival were used to construct a

multivariate Cox regression model for survival and recurrence

predicting, respectively. Using stepwise regression, five

(UCK2, EFNA4, KPAN2, UBE2T, and KIF14) and six

(MCM10, UCK2, IQGAP3, EFNA4, UBE2T, and KPNA2)

clonal expression genes were finally selected for recurrence

FIGURE 3
The prognosis potential of clonal altered genes in RNA level. (A–C). The Volcano plot of DEGs in TCGA (50 paired tumor and normal samples),
GSE76297 (149 paired tumor and normal samples), and SUB6779164 (9 paired tumor and normal samples) (D). The Venn diagram of DEGs in TCGA,
GSE76297, and SUB6779164 (E). The Venn diagram of the selected DEGs, prognosis-related clonal somatic mutations, and CNAs (F). The correlation
between the genomic and transcriptomic levels of the candidate genes. Down, down-regulation; Up, up-regulation; No.sig, no significant
difference; DEGs, differentially expressed genes; Cor.r, the correlation between the GISTIC score and RNA expression of the candidate clonal CNAs.
LogFC, log2 (fold change) (which was scaled from −1 to 1); HR, hazard ratio (which was scaled from −1 to 1).
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and survival model construction, respectively (Figure 6A–C

and Figure 6E–G, respectively). In the recurrence model, the

KM plot showed that the time to recurrence in 50% of patients

was about one to 2 years in a high-risk group and five to

6 years in the low-risk group (Figure 6D). In the

survival model, the time to death of 50% of patients was

about one to 2 years in high-risk group and six to 7 years in the

low-risk group (Figure 6H). The formula was described as

follows:

H(t) = H0(t)exp (0.008*(KIF14*(t/365 +

1) −0.014*(UBE2T*(t/365 + 1) + 0.033*KPAN2 +

0.019*EFNA4 + 0.025*UCK2) (Recurrence module)

H(t) = H0(t)exp (0.034*(KPNA2+ln (t + e) −0.050 *(UBE2T

+ ln (t + e) + 0.027 * (EFNA4+ln (t + e) + 0.011*(IQGAP3+ln (t +

e)+ 0.030 * (UCK2+ln (t + e) + 0.031 * (MCM10 + ln (t + e))

(Survival module)

Where H (0) corresponds to the baseline risk; where t

corresponds to the time the event occurs; gene name

corresponds to its expression value; e corresponds to

natural constants; exp corresponds to the exponents of

natural constants; ln corresponds to the natural logarithm.

Then, using the selected clonal expression genes in the

stepwise regression, we constructed a multivariate Cox

regression model in randomly selected 70% samples of

TCGA, and the remaining 30% samples were used to

validate the accuracy of the models. In ten random

repetitions, the survival and recurrence models showed

high repeatability which significantly distinguished patients

FIGURE 4
Functional enrichment analysis (A). PPI network of the clonal alterations (B). KEGG pathway analysis (C). Gene Ontology analysis.
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with high or low risks in each train and validation cohort

(Figure 6I, J, Supplementary Table S8). In addition, we

constructed a multivariate Cox regression model in an

independent cohort by the clonal expression genes, which

significantly identified high- and low-risk patients

(Figure 6K). All of the results indicated that these

candidate clonal expression genes with advantages in

predicting patients’ outcomes.

Discussion

Liver cancer exhibits high levels of ITH (Zhai et al., 2017;

Ding et al., 2019; Xu et al., 2019), which not only brings

challenges to tumor treatment (Bruix et al., 2015; Kelley,

2015; Niu et al., 2017; Xu et al., 2019) but also significant

sampling bias in tumor research (Zhai et al., 2017; Ding et al.,

2019). Genomic alterations are the main factor regulating gene

expression. Therefore, the ITH at the transcription level cannot

be ignored. Studies have demonstrated significant heterogeneity

at the transcriptomic level (RNA-ITH) in multiple cancer types,

which has been shown to confuse existing expression-based

biomarkers (Gulati et al., 2014, 2015; Gyanchandani et al.,

2016; Lee et al., 2018; Biswas et al., 2019). In the present

study, we identified a set of clonally (i.e., present in all tumor

cell populations) altered genes and also expressed significantly,

which might be potential stable (i.e., overcoming spatial ITH)

biomarkers in prognosis.

Clonal altered genes have important prognostic value, due

to their founder roles in driving malignant transformation,

FIGURE 5
Clinical phenotype analysis (A). The correlation of the candidate genes and clinical phenotypes (B). The hazard ratio and p-value of the
candidate genes in overall survival predicting (C). The hazard ratio and p-value of the candidate genes in recurrence-free survival predicting.
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and without spatial ITH. Firstly, we identified 867 clonal

altered somatic mutations and 6,613 CNAs. Consistent with

previous studies that the prevalence of clonal altered CNAs

was significantly higher than subclonal altered CNAs in a

patient, indicating most of the CNAs occurred early during

tumor development (Navin et al., 2011; Wang et al., 2014;

Duan et al., 2018). Previously well-documented HCC drivers

(TP53, CTNNB1, TTN, MUC16, and APOB) were observed to

present as clonal alterations, consistent with their essential

role in tumor initiation. Then, we evaluated the prognosis

potential of these clonally altered genes. Results showed that

258 clonal somatic mutations and 1,477 clonal CNAs were

significantly related to patients’ prognosis. Gene Ontology

analysis revealed that these clonally altered genes participated

in important tumor-related biological processes, e.g.,

regulation of the metabolic process, cell differentiation, cell

development, cell migration, cell cycle process, and cell

growth. In addition, these genes are involved in the

disorder of eight key oncogenic pathways (Sanchez-Vega

et al., 2018). These findings highlight that clonally altered

genes play an important role in tumor progression. Accurate

identification of prognostic-related clonal altered genes may

bring new insights for tumor-targeted therapy and prognostic

evaluation.

A previous study revealed that the transcriptomic

biomarkers that overcome tumor sampling bias and

associate with survival independent of clinicopathological

risk factors are often clonal in somatic mutations or CNAs

(Biswas et al., 2019). Here, 32 clonal altered genes in genomic

(29 clonal CNAs and 3 clonal somatic mutations) also

significantly expressed in transcription level with strong

prognosis potential were the candidate markers for better

prognosis predicting. Functional enrichment analysis

revealed these clonal expression genes play crucial roles in

FIGURE 6
Cox regressionmodel construction (A–C). The cutoff value selection, patient stratification, and clonal gene expression in the recurrencemodel
(D). The Kaplan-Meier (KM) curve of patients’ recurrence-free survival (E–G). The cutoff value selection, patient stratification, and clonal gene
expression in the survival model (H). The Kaplan-Meier (KM) curve of patients’ overall survival (I,J). The ROC curve of ten random repetitions in
recurrence and survival models (K). The Kaplan-Meier (KM) curve of patients’ overall survival in an independent cohort.
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tumor development (e.g., cell cycle, DNA replication, and

metabolic process). Consistently, IQGAP3 was reported to

promote cell proliferation through Ras/ERK signaling

(Nojima et al., 2008) and predicts poor prognosis in

multiple cancer types (Shi et al., 2017; Cao et al., 2019;

Hua et al., 2021); UBE2T was reported as an oncogene,

which is involved in cell-cycle modulation and related to

poor prognosis (Ueki et al., 2009; Wang et al., 2016; Liu

et al., 2017; Zhang et al., 2019); SSR2 promote

tumorigenesis and metastasis through modulating EMT

(Hong et al., 2020). Further analysis revealed that these

clonal expressed genes were significantly correlated with

clinical phenotypes. Taken together, these findings

highlight that these candidate genes may promote a poor

prognosis through their important biological roles.

Furthermore, the multivariate Cox regression models

constructed by clonal expression genes showed a significant

power in prognosis prediction. In the survival model, the

survival rate of patients who were identified as high-risk

group dropped to 50% in about one to 2 years, while it took

six to 7 years in a low-risk group. Similarly, in the recurrence

model, the recurrence-free survival rate in the high-risk group

drop to 50% about one to 2 years, and 5 to 6 years in a low-risk

group. All of that suggested the high power of these clonal

expression genes in prognosis prediction. Notably, the models

constructed by the clonal expression genes kept high resolution

in each random repetition, which may be related to clonal

expression genes significantly reducing the misalignment of

predictions caused by sampling bias. Hence, the models

constructed based on clonal expression genes may have strong

general applicability.

Notably, limited by the number of samples of multi-region

sequencing in transcription level in liver cancer, whether these

candidate genes overcome the effects of RNA-ITH needs further

confirmation. Future work with a large cohort of multi-region

sequencing at transcriptome level in liver cancer may further

consolidate and extend the conclusions of our work. In addition,

although the clonal altered genes provide information for the

location of tumor cells, the acquired drug resistance caused by

subclonal alterations also needs attention.

Taken together, our work provides a set of biomarkers that

come from the tumor founder cell (i.e., clonal) in liver cancer

for the first time and provides new insights for the design of

prognostic markers that overcome the influence of

spatial ITH.
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