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Immune evasion (IEV) plays a critical role in the development and progression of colon
cancer. However, studies to predict the prognosis of colon cancer via IEV-related genes
are limited. Therefore, based on the 182 IEV-related genes, we used the univariate and
Lasso Cox regression model to construct the IEV-related genes signature (IEVSig) of
16 prognostic IEV-related genes using the Gene Expression Omnibus and The Cancer
Genome Atlas online databases. We found that IEVSig was an independent prognostic
factor, and patients with high IEVSig had higher TNM stage and shorter recurrence-free
survival than their counterparts. Kyoto Encyclopedia of Genes and Genomes and gene set
enrichment analyses revealed that patients with high and low IEVSig had significantly
different enrichment pathways. Immune cell infiltration analysis showed that nine immune
cells obviously increased in the high-IEVSig group, whereas five immune cells increased in
the low-IEVSig group. Immunotherapy cohort analysis revealed that patients with high
IEVSig had a higher proportion of progressive disease or stable disease after receiving
immunotherapy than patients with low IEVSig. Furthermore, patients with low IEVSig had
higher tumor mutation load and neoantigen burden, which indicated an improved
response to immunotherapy, than patients with high IEVSig. Thus, an IEV-related
prognostic signature was established to predict the prognosis of patients with colon
cancer and derive a prediction marker to offer insights into therapeutic strategies.

Keywords: colon cancer, immune evasion, prognosis, immunotherapy, signature

INTRODUCTION

Colon cancer is the third leading cancer in terms of incidence but second in terms of mortality
worldwide (Bray et al., 2018). Given the high mortality of colon cancer, searching for and establishing
effective biomarkers is a significant task. At present, the evaluation of prognosis includes the tumor
stage, tumor anatomical location, and microsatellite status of tumors (Dekker et al., 2019). However,
the complexity associations among biomarkers, patient prognosis, and treatment benefits make the
management of patients with colon cancer challenging (Sveen et al., 2020). Therefore, a novel and
effective prognostic assessment model must be urgently established.
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The tumor microenvironment (TME) plays a crucial role in
the development and progression of tumors. The TME is mainly
composed of tumor cells, immune cells, and stromal cells. In
tumor immune surveillance, the major cytotoxic lymphocytes,
CD8" T cells and natural killer (NK) cells, can direct perforin-
dependent tumor cell killing and release several inflammatory
cytokines, such as IFN-y and TNF, to promote antitumor
immunity through antigen presentation (Voskoboinik et al.,
2015; Kearney et al., 2017). Major histocompatibility complex
(MHC)-I-mediated antigen presentation facilitates the detection
of tumor cells through cytotoxic CD8" T cells. Therefore,
disruption of antigen presentation is a key mechanism of
tumor IEV (Kearney et al, 2018; Freeman et al, 2019). For
example, loss-of-function mutations in B2M, JAKI, and JAK2,
resulting in loss of MHC-I expression (B2M) or response to IFN-
y (JAK1 and JAK2), have been identified in patients who fail to
respond to immunotherapy (Restifo et al., 1996; Zaretsky et al.,
20165 Shin et al., 2017). In addition, the activation of other specific
gene expression programs can evade tumor immune recognition.
For instance, DUX4 expression blocks IFN-y-mediated induction
of MHC-I, demonstrating suppressed antigen presentation in
DUX4-mediated IEV (Chew et al., 2019). Moreover, activation of
B-catenin signaling promotes T cell exclusion from the melanoma
microenvironment (Spranger et al., 2015), and LSD1 expression
prevents antitumor immunity (Sheng et al., 2018). Several studies
recently revealed that the signatures based on gene expression of
tumor immune infiltration cells manifest potentially better
prognostic values (Wu et al., 2019; Bao et al., 2020; Giri, 2020;
Gao et al,, 2021; Wang et al,, 2022). However, studies to evaluate
the value of immune evasion-related genes (IEVGs) in the
prediction of the prognosis of patients with colon cancer are
lacking.

In this study, we evaluated the expression of 182 IEVGs and
identified 42 RFS-related IEVGs of patients with colon cancer
from the training cohort. The immune evasion-related genes
signature (IEVSig) was constructed by using 16 prognostic
IEVGs screened from the Lasso Cox regression model and
further validated in an external cohort. Functional enrichment
and immune cell infiltration analyses were conducted to
investigate the potential mechanism of IEV. Furthermore,
genomic alteration and somatic mutation analyses were
conducted to explore the relationship between genetic
variation and IEV. At last, we assessed the prognostic value of
IEVSig in response to cancer immunotherapy.

MATERIALS AND METHODS

Data Collection

The entire sets of 182 IEVGs of cytotoxic T lymphocytes by using the
genome-wide CRISPR screens across a panel of genetically diverse
mouse cancer cell lines were obtained from a previous study (Lawson
etal,, 2020). Thereafter, we matched them to the human genes, which
are listed in Supplemental Table S1. To observe IEV in colon cancer,
by checking the database from the Gene Expression Omnibus (GEO)
and The Cancer Genome Atlas (TCGA), the patients who met the
following criterion were reserved: 1) have overall/recurrence-free
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survival (RES) data and 2) have integral clinical data, such as
AJCC TNM stage, age, sex, and MSI status. As a result, the gene
expression profiling datasets of four cohorts, namely, GSE39582,
GSE33113, GSE38832, and GSE39084, were downloaded from the
GEO, whereas the TCGA-COAD cohort was obtained from TCGA
public databases (Supplemental Table S2). The clinical data of these
patients were collected, including TNM status, MSI status, stage, age,
and gender (Supplemental Table S3). Tumor mutation burden
(TMB), copy number variation (CNV) burden, loss of
heterozygosity (LOH) score, and somatic mutation analysis were
conducted between patients with low- and high-risk colon cancer of
the TCGA-COAD cohort. Among them, GSE39582 was the training
cohort, and others were validation cohorts.

Construction and Validation of Immune
Evasion-Related Genes Signature Based on
the Prognostic Immune Evasion-Related

Genes Signature

RFS rate was the primary endpoint in our study, so we screened
the targeted genes based on the RFS-related IEVGs (JHR| > 1, p <
0.05) using univariate Cox regression for the 182 IEVGs in the
GSE39582 training cohort. The RFS-related IEVGs were
subjected to Lasso Cox regression analysis to establish the
prognostic prediction model using the package of “glmnet”
(version 4.1-3) (Friedman et al., 2010; Tu et al., 2020). The
coefficients of the identified IEVGs in the Lasso Cox regression
model were used to calculate the IEVSig, with the penalty
parameter estimated via 10-fold cross-validation, and all the
patients were divided into the high- and low-risk groups based
on the median risk score. The formula was calculated as follows:

IEVSig = )" Bi *expi

where f3i is the coefficient of the identified IEVGs in the Lasso Cox
regression model and expi is the normalized expression of the
IEVGs.

Immune Cell Infiltration Analysis and Gene

Set Variation Analysis

To compare the differences in immune cell types between the
high- and low-risk IEVSig groups, we used the CIBERSORT
method, a deconvolution algorithm that uses support vector
regression for calculating the detailed immune cell types in
patients with colon cancer (Newman et al, 2015; Newman
et al,, 2019). For the current signatures with marker genes, we
used the single simple gene set enrichment analysis (ssGSEA)
method by the gene set variation analysis (GSVA) R package to
calculate the enrichment score to represent the activity of these
signatures in the patients with colon cancer.

Functional and Pathway Enrichment

Analyses
By using the “clusterProfiler” R package (version 4.2.2) (Yu et al,,
2012), the Kyoto Encyclopedia of Genes and Genomes (KEGG)
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enrichment analysis was conducted in our study. Gene set
enrichment analysis (GSEA) was used to explore the potential
function and signaling pathway enrichment associated with the
patients with high- and low-IEVSig colon cancer. Enrichment p
values were based on 1,000 permutations and subsequently
adjusted using the Benjamini-Hochberg (BH) method.

Immune Evasion-Related Genes Signature

in Cancer Immunotherapy

To further evaluate the potential value of IEVSig in cancer
immune therapy, an immune-related cohort of advanced
urothelial cancer with atezolizumab (n = 348) from the
“IMvigor210” cohort (Mariathasan et al., 2018) as the
immune-related validation cohort was utilized.

Statistical Analysis

The Kaplan-Meier method was conducted to evaluate RFS differences
between the high- and low-risk groups using “survminer” (version
0.4.9) and “survival” (version 3.2-13) packages. Then, we used the
“surv-cutpoint” function of the “survminer” package to divide patients
into two subgroups with the most significant statistical results. In
addition, the receiver operator characteristic (ROC) curve was used to
evaluate the accuracy of the prognostic prediction model using the R
package “timeROC” (version 0.4) (Blanche et al., 2013). The Wilcox

method was used to compare the differences in levels between two
subgroups. IEVSig was validated in the validation cohorts. All the
statistical analyses including univariate and multivariate Cox
regression analyses, Lasso Cox regression analysis, Kaplan-Meier
survival analysis, and ROC curve analysis were processed using R
software (version 3.6.1). All reported p values were two-sided, and
statistical significance was set at 0.05.

RESULTS

Identification of Prognostic Immune

Evasion-Related Genes Signature

The complete flowchart is shown in Figure 1. In our study, we used
the GEO dataset GSE39582 gene expression profiling as a training
cohort to identify prognostic IEVGs. Among 182 previously reported
IEVGs in cancer, 42 IEVGs associated with RFS were identified
through univariate Cox regression analysis in colon cancer
(Figure 2A). Then, Lasso Cox regression analysis was used to
establish the prognostic prediction model based on the 42 RFS-
related IEVGs. The coefficients of the identified IEVGs are shown in
Figure 2B. We calculated the partial likelihood deviance of IEVGs
included in the Lasso regression model (Figure 2C). At last, 16 RFS-
related IEVGs were identified, and the prognostic signature named
IEVSig was further constructed. The detailed coefficients of the
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FIGURE 2 | Establishment of the immune evasion-related genes (IEVG) signature model. (A) univariate Cox regression screening of the 42 recurrence-free survival-
related IEVGs screened from 182 IEVGs in the GSE39582 training cohort. (B) The coefficient profiles of the 42 prognostic IEVGs in the Lasso regression model from the
training cohort (GSE39582). (C) Partial likelihood deviance of IEVGs included in the Lasso regression model. (D) Coefficients of the 16 screened IEVGs in the Lasso Cox
regression model.

16 screened IEVGs in the Lasso Cox regression model and the BH
adjusted p value are shown in Figure 2D and Supplemental
Table $4.

Establishment and Validation of Immune
Evasion-Related Genes Signature

We calculated IEVSig according to the coefficients of the
16 IEVGs identified in the Lasso Cox regression model and
divided the patients into high- and low-risk groups based on

the median risk score (Supplemental Table S5). In the
GSE39582 training cohort, Kaplan-Meier curves and
distribution plots showed that patients with colon cancer and
high IEVSig had shorter RFS compared with patients with low
IEVSig (p = 8.28e-10). In addition, time-dependent ROC curves
were applied to estimate the signature, which indicated that the
values of area under curves (AUCs) for 1-, 3-, and 5-year survival
times were 0.657, 0.724, and 0.693, respectively (Figure 3A). In
similar, Kaplan-Meier curves and distribution plots all showed
that patients with colon cancer and high IEVSig had worse RES in
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TABLE 1 | Univariate and multivariate Cox regression analysis in the GSE39582 cohort.

Variable Univariate Cox Regression Multivariate Cox Regression

HR 95% low 95% up P HR 95% low 95% up P
Age (<60 vs. > 60) 1.010 0.997 1.023 0.131 1.012 0.999 1.026 0.081
Gender (Female vs. Male) 1.288 0.924 1.796 0.136 1.313 0.932 1.850 0.120
Stage (I + Il vs. IIl + V) 2.275 1.629 3.177 0.000 2.060 1.454 2919 0.000
MMR-status (P MMR vs. dMMR) 2.303 1.209 4.383 0.011 1.423 0.731 2.773 0.299
IEV Risk (Low vs. High) 2.936 2.050 4.206 0.000 2.771 1.883 4.077 0.000
TABLE 2 | Univariate and multivariate Cox regression analysis in the Cancer Genome Atlas-COAD cohort.
Variable Univariate Cox Regression Multivariate Cox Regression

HR 95% low 95% up P HR 95% low 95% up P

Gender (Female vs. Male) 0.779 0.330 1.841 0.569 0.965 0.369 2.521 0.941
Age (<60 vs. > 60) 0.393 0.152 1.012 0.053 0.307 0.099 0.951 0.041
Stage (I + Il vs. Il + V) 0.935 0.367 2.387 0.889 0.717 0.272 1.888 0.501
MSI-status (Non-MSI-H vs. MSI-H) 1.535 0.627 3.755 0.348 1.707 0.622 4.689 0.299
IEV Risk (Low vs. High) 3.758 1.375 10.268 0.010 4.412 1.385 14.055 0.012

the TCGA, GSE33113, GSE38832, and GSE39084 validation
cohorts (p < 0.05). In the TCGA cohort, ROC analysis showed
that the AUCs for 1-, 3-, and 5-year survival times were 0.611,
0.721, and 0.638, respectively. In GSE33133, the AUCs for 1-, 3-,
and 5-year survival times were 0.649, 0.783, and 0.769,
respectively. In GSE38832, the AUCs for 1-, 3-, and 5-year
survival times were 0.563, 0.607, and 0.580, respectively. In
GSE39084, the AUCs for 1-, 3-, and 5-year survival times
were 0.701, 0.716, and 0.679, respectively (Figures 3B-E). To
detect the prior of IEVSig, the classical 20 colon prognosis-related
signatures were collected from the MsigDB (http://www.gsea-
msigdb.org/) and calculated via GSVA. Results showed that
IEVSig had a higher ranking compared with other signatures
via Cox regression analysis and time-ROC analysis
(Supplemental Table S6).

In final, IEV Sig was significantly related to the prognosis of
17/30 cancers by using the pan-cancer cohorts (Supplemental
Table S7).

Comparison of Immune Evasion-Related
Genes Signature With Clinicopathological

Features of Patients With Colon Cancer
To further study the prognostic value of IEVSig and
clinicopathological ~features, we conducted univariate and
multivariate Cox regression analyses in the GSE39582 training
cohort.  Univariate Cox  analysis revealed that the
clinicopathological features, such as tumor stage and MMR
status, and IEVSig could affect the prognosis of patients with
colon cancer. Furthermore, multivariate Cox analysis indicated
that IEVSig remained an independent prognostic factor
(Table 1). In similar, IEVSig remained an independent
prognostic factor in the TCGA_COAD validation cohort (Table 2).
Then, we evaluated the relevance between IEVSig and
clinicopathological features of patients with colon cancer in

the TCGA-COAD cohort. As shown in Figure 4A, the
heatmap showed IEVSig ordered by the risk scores and the
distributions of clinicopathological features, including TNM
stage, MSI status, age, gender, and the expression levels of
the 16 genes. In detail, the violin plot revealed that young
patients had higher IEVSig than the old patients. In addition,
the patients with high IEVSig had higher T status, higher N
status, higher M status, and higher TNM stage than patients
with low IEVSig (Figures 4B-H). Patients with high IEVSig had
a more stable microsatellite status than those with low IEVSig
(all p < 0.05).

Functional Analysis of Immune

Evasion-Related Genes Signature

We conducted KEGG and GSEA analyses to assess the potential
function of the IEV-related gene signature in the training cohort
(GSE39582). KEGG analysis showed the top 30 enriched KEGG
pathways in patients with high-risk colon cancer compared with
patients with low-risk cancer in the training cohort, which included
neuroactive ligand-receptor interaction, calcium  signaling
pathway, cAMP signaling pathway, cell adhesion molecules, and
the Wnt signaling pathway (Figure 5A and Supplemental Table
§8). In addition, KEGG analysis showed that the enriched KEGG
pathways in patients with low-risk colon cancer compared with the
high-risk group were cytokine—cytokine receptor interaction, cell
cycle, chemokine signaling pathway, NK cell-mediated
cytotoxicity, and TNF signaling pathway (Figure 5B and
Supplemental Table S8). GSEA analysis was conducted to
analyze the pathways enriched in the patients with high-risk
colon cancer. “angiogenesis,” “response_dn,” “tgf beta_signaling,”
“notch_signaling,”  “coagulation,”  “wnt_beta_catenin_signaling,”
“hedgehog_signaling” AND  “epithelial mesenchymal_transition”
were obviously enriched in the patients with high-risk colon cancer
(Figure 5C).

Frontiers in Genetics | www.frontiersin.org

August 2022 | Volume 13 | Article 811660


http://www.gsea-msigdb.org/
http://www.gsea-msigdb.org/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Zhang et al. Immune Evasion for Colon Cancer

A
1 IEV score IEV score M
0 A W T Y EYS ! 4 High [ ]m0
U IR0 AT 0 0 AT 000 OO ARG [ OMI N status M1
AN Y RN M N IO 7 status MX
Inlllllllll-Iﬂ_mll-lm-\-lllImulllllmllllI-ll- MSIstatus 2 Low L_INA

LULIE R 00NN R0 R RO RUAL) Stege Stage N
00 0 0 0 SO W 0 1 llAge 0

| NO
Gender I NA
} | 0 A0 ||\ | ||H I |\|| ’HH H|| ||\’ |arrs =2 N2
H T N
H” W || \ || I HH |H H | { |} || waTeA o
wfr il !’I IR oo e T
H/ W |H ’| H {|| || IRF1 5Low 1
il HM H|‘| n‘u' | A L ™1
IFNGR2 Female
H 1l H | I / I H | |||} PSMGT l""""e B
\ H H UM A \‘ LI H I WM LA rere WS_status
‘ ] Il “ UBE2N “|Mss
\ I \| I H | Hw Il ]{ w ] saent s
LI ‘ | ’\ ‘ | IH‘ / LT \H | AcTB T INa
il \ O ERAE H \ L] ‘| | TNFRSF1A
|’|\“|{ HV| | } 1 \ HH Wl HW P
\H [ M } | |H A { IKBKG
[ I I TR TANN smemer
D E
Gender.FemaIe-MaIe Age =60 [[]<60 Stage 1 T 1 @NE NV TOTMET2ET3IET4
\ ns g - - - |
” e . -
gz gz . ns o ns
¢ . _0 0
-1 =4
Female Male 260 <60 | 1l 1] \% T T2 T3 T4
F N CINo EINT EIN2 G M Evo Mt WMX H e [ Msi-H [T Msi-L [T mMss
4 ns 4 ns
3 3
2, (P 2 :
0 0
-1 -1
NO N1 N2 MO M1 MX MSI-H MSI-L MSS

FIGURE 4 | Immune evasion-related genes signature (IEVSig) was correlated with clinicopathological features of CC patients. (A) heatmap of the IEVSig consisting
of 16 immune evasion-related genes ordered by the risk scores and its association with clinicopathological features including TNM status, MSI status, stage, age, and
gender. (B-H) the violin plot representation of the correlations of the IEVSig and gender (B), age (C), stage (D), T status (E), N status (F), M status (G), and MSI status (H).
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Immune Cell Infiltration Levels Between
Distinct Immune Evasion-Related Genes
Signature Groups

We estimated the relative proportion of the 28 immune cells for
each patient with colon cancer with high or low IEVSig using
CIBERSORT in the TCGA-COAD cohort. The infiltration levels
of 28 immune cells of patients with different risk scores are shown
in Figure 6A. CD56dim NK cell, central memory CD4 T cell,
central memory CD8 T cell, eosinophil, mast cell, monocyte, NK
cel, NK T cell, and plasmacytoid dendritic cell obviously
increased in the high-risk groups than in the low-risk groups.
However, the expression levels of type 2 T helper cells, activated
CD4 T cells, activated CD8 T cells, activated dendritic cells, and
type 17 T helper cells obviously decreased in the high-risk groups

(Figure 6B). The heatmap showed that the 16 IEVGs of IEVSig
were significantly correlated with the 28 immune cell infiltration
levels (Figure 6C).

Genomic Alteration and Somatic Mutation
of Immune Evasion-Related Genes

Signature Groups

We evaluated the genomic alteration and somatic mutation
status between patients with high and low IVESig in the
TCGA-COAD cohort. As shown in Figure 7A, patients
with high IVESig had higher TMB, CNV burden, and LOH
score than those with low IVESig. Moreover, the various types
of common gene mutations of the two IEVSig groups are
presented in Figure 7B.
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FIGURE 6 | orrelations between Immune evasion-related genes signature and immune cell infiltration levels of CC patients. (A) heatmap of the 28 immune cell
infiltration levels ordered by the risk scores and their association with clinicopathological features including TNM status, MSI status, stage, age, and gender in the Cancer
Genome Atlas (TCGA) cohort. (B) boxplot represents the 28 immune cell infiltration levels between low- and high-risk CC subgroups in the TCGA cohort. (C) the
group
heatmap shows the Spearman correlations between the 28 immune cell infiltration levels and 16 screened immune evasion-related genes in the TCGA cohort.
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Prediction of Imnmune Evasion-Related
Genes Signature in Guiding Cancer

Immunotherapy

To assess the potential values of IEVSig in guiding cancer
immunotherapy, we obtained the Kaplan-Meier curves and
immunotherapy response by using the
IMvigor210 immunotherapeutic cohort. The Kaplan-Meier
curves showed that patients with high IEVSig had shorter
survival (Figure 8A, p = 0.012) than those with low IEVSig.
In addition, patients with high IEVSig had a higher proportion of
progressive  disease or stable disease after receiving
immunotherapy than patients with low IEVSig (Figures 8B,
C). Furthermore, patients with low IEVSig had higher tumor
mutation load and neoantigen burden, which indicated an
improved immunotherapy response (Figures 8D, E).

DISCUSSION

Colon cancer has high mortality rates across the world, despite
significant advances in diagnosis and therapy (Bray et al., 2018;
Dekker et al, 2019). Besides genetic aberrations,

posttranscriptional alterations are also involved in the
regulation of colon cancer development (Garcia-Cardenas
et al, 2019; Gao et al, 2021). Given the heterogeneity of
cancer, patients with colon cancer manifest distinct prognoses
to various therapeutic approaches. IEV of TME plays a key role in
the development and progression of colon cancer, so analysis of
IEV-related genes will help us fully understand the pathogenicity
and accurately predict the prognosis of individual patients.

Increasing evidence has shown that the TME is intricately
related to cancer development and progression, guiding clinical
therapy (Fang and Declerck, 2013; Binnewies et al., 2018). Cancer
cells acquire phenotypic changes to evade recognition and
destruction by effector cells of the immune system to complete
IEV. Therefore, an IEV-related gene signature must be
constructed to predict the prognosis of patients with colon
cancer.

In this study, we constructed a novel prognostic model, named
IEVSig, which consisted of 16 IEV-related genes. This model
divided the patients into high- and low-risk groups according to
the survival outcome. Patients in the high-IEVSig group exhibited
poor prognosis, whereas patients in the low-IEVSig group
showed prolonged survival time. In total, 16 IEV-related genes
were identified in our study. TGFBR2 (transforming growth
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factor, beta receptor II) is a protein-coding gene that binds to
TGF-B. TGF- is a potent immunosuppressor that is associated
with tumor escape from the surveillance of the host immune, and
it promotes tumor progression. Therefore, blockade or
insensitivity of TGF-B would be a potential therapeutic
strategy to enhance antitumor immunotherapy (Zhang et al,
2006; Wang et al., 2010; Tauriello et al., 2018). Rachel A Burga
et al. (Burga et al, 2019) reported a new strategy to engineer
TGEFp receptors of NK cells, which enable inhibitory TGFp signals
to convert to activating signals and overcome TGFp-mediated
IEV. A previous study demonstrated that upregulation of
IRF1 inhibits the progression of CRC by regulating interferon-
induced proteins (Xu et al., 2021). Wang et al. (Wang et al., 2020)
also found that Mettl3 or Mettl14 loss promotes IFN-y-Statl-
Irfl signaling by stabilizing Statl and Irfl mRNA via Ythdf2 to
enhance the response to anti-PD-1 treatment. Another study
revealed that increased Arf6 activity can enhance cell migration

and invasion in vitro and increase metastasis of transplanted
tumor cells in mice (Liittgenau et al., 2021). The enhancement of
the ARF6-based pathway and its activation by external ligands
may promote tumor cell motility, PD-L1 dynamics, and IEV of
pancreatic cancer (Hashimoto et al., 2019). Another study found
that long noncoding RNA (IncRNA) DANCR binds with KAT6A
to affect the acetyltransferase activity of KAT6A, thereby
influencing the expression of KAT6A target genes to promote
the development and progression of colon cancer (Lian et al,
2020). All the abovementioned IEV-related genes demonstrated
that the IEVGs identified in our study were linked to the
pathogenesis and escape of the host immune system in colon
cancer.

Immune checkpoint blockade (ICB) treatment has emerged as
the new therapeutic strategy for metastatic tumors. Previous
research revealed that the high microsatellite instability (MSI-
H) status and elevated mutational load can elevate sensitivity to
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ICB treatment (Le et al., 2017). Therefore, we conducted immune
cell infiltration and genetic variation analyses to further evaluate
the characteristics of TME and the response to immunotherapy.
Immune cell infiltration analysis showed the significantly
different infiltrated immune cells between the high- and low-
IEVSig groups. Nine immune cells increased in the high-IEVSig
group, whereas five immune cells increased in the low-IEVSig
group. Genetic variation analysis showed that patients with low
IEVSig had higher tumor mutation load and neoantigen burden
and better response to immunotherapy than patients with high
IEVSig, which indicated the correlation between IEV-related
genes and TME.

Nevertheless, some limitations should be considered in our
study. First, the study was conducted based on the public datasets,
so several potential biases may exist. Second, the biological
functions and molecular mechanisms of 16 IEV-related genes
in CRC need to be further evaluated. At last, the identified
16 IEV-related genes require experimental verification and
validation in more cohorts.

CONCLUSION

In conclusion, we constructed an IEV-related signature IEVSig
to predict prognosis in patients with colon cancer. Results
showed that the high-IEVSig group had a significantly poor
RFS than the low-IEVSig group. We found that the immune
cell infiltration levels, tumor mutation load, neoantigen
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