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Negative regulatory elements (NREs) down-regulate gene expression by inhibiting the
activities of promoters or enhancers. The repressing activity of NREs can be measured
globally by massively parallel reporter assays (MPRAs). However, most existing algorithms
are designed for the statistical detection of positively enriched signals in MPRA datasets.
To identify reduced signals in MPRA experiments, we designed a NRE identification
program, fast-NR, by integrating the count and graphic features of sequenced reads to
detect NREs using datasets generated by experiments of self-transcribing active
regulatory region sequencing (STARR-seq). Fast-NR identified hundreds of silencers in
human K562 cells that can be validated by independent methods.
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INTRODUCTION

Eukaryotic gene expression is tightly controlled by various types of cis-regulatory elements (CREs)
that are different in regulatory function, genetic, and epigenetic characteristics (Maston et al., 2006).
Promoters and enhancers are positive CREs that initiate and enhance transcription, respectively.
Enhancers act locally or over long genomic distances through chromatin looping to regulate their
target genes (Shlyueva et al., 2014; Haberle and Stark, 2018; Schoenfelder and Fraser, 2019). In
contrast, silencers are negative regulatory elements (NRE) that suppress gene expression through
mechanisms that are not completely understood (Ogbourne and Antalis, 1998). Mutations in human
CREs associate frequently with tumorigenesis, neurodegeneration, and metabolic diseases (Maston
et al., 2006), highlighting the functional importance of transcription control in cells.

In eukaryotic genomes, silencers had not been as vigorously investigated as enhancers (Della Rosa
and Spivakov, 2020). Most silencers in the database of silencerDB are predicted (Zeng et al., 2021).
Potential silencers were also predicted in cell lines (Doni Jayavelu et al., 2020) by gkmSVM which
utilizes sequence features of known silencers (Ghandi et al., 2016). Different from enhancers, silencer
prediction is currently infeasible because that whether silencers carry ubiquitous epigenetic
signatures is unknown. Genome-wide characterization of functional silencers is thus critical to
unveil the genetic and epigenetic features of silencers. Genomic sequences of regulatory activity can
be systematically assessed by STARR-seq, a widely used MPRA method initially designed for
enhancer identification (Melnikov et al., 2012; Arnold et al., 2013; Crocker and Stern, 2013;
Gisselbrecht et al., 2013; Mogno et al., 2013; Vanhille et al., 2015; Wang et al., 2018; Sun et al.,
2019). Theoretically, STARR-seq measures silencer activity as well. Actually, Doni Jayavelu et al. had
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successfully used STARR-seq to measure the transcription-
repressing activity of silencers that were predicted by
epigenetic features (Doni Jayavelu et al., 2020). Recently,
several studies had reported catalogs of silencers that had been
predicted or identified by different methods in different model
systems at small scales (Petrykowska et al., 2008; Huang et al.,
2019; Doni Jayavelu et al., 2020; Pang and Snyder, 2020).

For MPRAs, a statistical method specially designed for silencer
identification is needed to facilitate the investigations into
silencers’ identity and their roles in transcription regulation.
To design a silencer identification program, developers need to
consider the functional differences between enhancers and
silencers (Zhang et al., 2008; Heinz et al., 2010; Lee et al.,
2020). Doni Jayavelu et al. measured silencer activities in
selected accessible chromatin regions by comparing the
sequenced reads of the reporter cDNA to the reads of the
input insert DNA using a one-tail t test (Doni Jayavelu et al.,
2020). While Pang et al. used a model-based method MAGeCK
(Li et al., 2014) after counting reads with the method of HTSeq
(Anders et al., 2015; Pang and Snyder, 2020). MAGeCK is similar
to edgeR (Robinson et al., 2010) and DESeq (Anders and Huber,
2010) in their design strategies, but it is different from the other
two methods in its intended usage. MAGeCK is originally used in
CRISPR/Cas9 knockout screen assays. Different from these
small-scale assays, genome-wide sequenced reads follow a
negative binomial distribution. Potentially, methods designed
for the detection of differentially methylated regions (DMRs)
or differential chromatin modifications (Shen et al., 2013;
Lienhard et al., 2014; Zhang et al., 2014; Lun and Smyth,
2016; Gaspar and Hart, 2017) can be used to identify silencers.
However, the specificity, robustness, accuracy, and resolution of
these programs have not been evaluated for silencer
identification. CRADLE, a recently published method, is
designed for enhancer identification (Kim et al., 2021).
Theoretically, CRADLE can detect silencers as well.
Nevertheless, a computational method designed specifically for
the identification of silencers has not been reported.

In this research, we provide a program Fast-NR that is
designed for the identification of silencers using STARR-seq-
generated datasets by integrating the sequenced read count and
signal shape features which are considered in the design of many
ChIP-seq peak callers including Polyapeak, PICS, and CLC
(Thomas et al., 2017; Hower et al., 2011; Cremona et al., 2019;
Yan et al., 2020) (Zhang et al., 2011; Wu and Ji, 2014; Strino and
Lappe, 2016). Fast-NR is available at https://github.com/Na-He/
Fast-NR. We tested this program on simulated and STARR-seq
datasets (Johnson et al., 2018; Doni Jayavelu et al., 2020),
compared the performance of Fast-NR with several other
programs, and show here that Fast-NR can detect NREs under
different conditions.

METHODS

Algorithm
DNA fragments of NRE activity reduce their own expression
levels in the STARR-seq reporter cDNA library. To identify

NREs, we first calculate p values for each nucleotide covered
by the reporter cDNA and the input insert DNA across the
genome. If a p value is below an arbitrary threshold, the
corresponding genomic region is considered as a potential
NRE. We then plot the numbers of the reporter cDNA and
input DNA reads as curves and measure the distances between
them to determine whether they are similar by using several
different methods. For NREs, the similarity scores are supposed
to be low. By integrating count number difference and curve
similarity features, we designed a computational method, Fast-
NR (Figure 1), and tested its NRE detection power on simulated
and real STARR-seq datasets, respectively. Basically, we first
screened nucleotides which had the number of reporter cDNA
reads smaller than the input insert reads by at least 12,
corresponding to the p value threshold (10−5) we set. We
calculate p values using cumulative density function (CDF) of
negative binomial distribution (NBD). Next, we use the single
nucleotides that pass the initial screen as anchors and extend the
genomic window to upstream and downstream to a total of
601 bp. We further examine the p values of each nucleotide in
each 601bp window and keep only windows in which 3/4 of all
nucleotides are with a p value below 10−5. If two windows overlap,
we keep the one in the shared region with smaller p values. Then,
we compare the similarity between the curves of reporter cDNA
and the input insert DNA reads, and discard any window with a
curve similarity score higher than the arbitrary threshold. Finally,
we correct p values for each window of identified NRE by
Benjamini–Hochberg (BH) test and keep only these with a
corrected p value smaller than 10−5.

p Value Calculation
We calculate p values by cumulative density function (CDF)
of the negative binomial distribution for the sequenced
reporter cDNA reads. The probability mass function of the
number of k times failure for a negative binomial
distribution is

CDF(m, n, p) � P(xn ≤m) � ∑m
i�0
(i + n − 1

n − 1
)pn(1 − p)i,

where CDF(m, n, p) returns the probability that is fewer than
m times failure before the n th times success, with a single
success probability p. Here, the m is treatCount which comes
from a negative binomial distribution, n is treatTotal-
treatCount, and p is (controlTotal-controlCount)/
controlTotal. treatTotal and controlTotal are the total
fragment numbers of the reporter cDNA and the input
insert DNA in the sequenced libraries, respectively.
treatCount and controlCount are the count numbers of
reporter cDNA and input insert DNA covering each
nucleotide, respectively.

Curve Similarity
We compare the shape of the curves of the reporter cDNA and
the input insert DNA reads. Cosine, Pearson, Euclidean, and an
in-house method gradient (linear slope correlation) are used to
calculate the curve similarity in this research.
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Cosine
The method of cosine computes the cosine distance between the
1-D arrays of u and v:

Cos (u, v) � 1 − ∑n
i�0uivi������∑n

i�0u
2
i

√ ������∑n
i�0v

2
i

√ ,

where ui and vi are the reporter cDNA and the input insert DNA
read count values in the u and v vectors.

Euclidean
Euclidean method computes the Euclidean distance between the
1-D arrays of u and v:

Euclidean(dis) �
����������∑n
i�0
(ui − vi)2

√
,

where ui and vi are the reporter cDNA and the input insert DNA
read count values in the u and v vectors.

Pearson
Pearson computes the Pearson correlation coefficient between the
1-D arrays of u and v:

cor � ∑n
i�0(ui − �u)(vi − �v)�����������∑n

i�0(ui − �u)2
√ �����������∑n

i�0(vi − �v)2
√ ,

where ui and vi are the reporter cDNA and the input insert DNA
read count values in the u and v vectors.

Gradient
This algorithm computes the Pearson correlation coefficients
between the gradients of the curves of the reporter cDNA and
the input insert DNA reads. The coverage and genomic location
values of each silencer form a 2-D array, represented by y and x,
respectively. We calculate the gradient between two adjacent
points in this array as in the following formula:

G(i) � (yi+1 − yi)
(xi+1 − xi),

FIGURE 1 | Negative regulatory element identification pipeline. BH, Benjamini–Hochberg correction.
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where yi is the coverage value and xi is the position value of the i
point in the 2D array. Gradient curve similarity index is the
Pearson correlation coefficient (as mentioned above) between the
cDNA and the input insert DNA G(i) arrays.

p Value Correction
Bonferroni and Benjamini–Hochberg (BH) adjustments are
applied to correct p values in our program.

Datasets
To test the performance of Fast-NR, we downloaded STARR-seq
datasets for silencer identification in human K562 (GSE142207)
(Doni Jayavelu et al., 2020) and for enhancer identification in
untreated A549 cells (GSE114063) (Johnson et al., 2018),
respectively. We downloaded histone modification datasets
(H3K4me1 GSE91306; H3K27ac GSE91337; H3K4me3
GSE91218; H3K9me3 GSE91335) from ENCODE
(Consortium, 2012). H3K27me3 (GSE75903) was downloaded
from NCBI (Sayers et al., 2022). We mapped reads to human
reference genome version hg19 (GRCh37) using bowtie2
(Langmead and Salzberg, 2012) with default parameters except
“-p 24 -X 2000 --sensitive,” then filtered and kept only reads with
a value of MAPQ ≥20 by using samtools (Danecek et al., 2021).
We kept only unique reads and discarded duplicates by using
picardtools (Broad Institute, 2019) except for K562 STARR-seq
datasets.

RESULTS

Performance of Fast-NR and Other
Potential NRE Identification Methods
Tested on Simulated Data
We simulated a pair of STARR-seq datasets to test the NRE
identification powers of Fast-NR and other methods including
csaw (Lun and Smyth, 2016), MEDIPS (Lienhard et al., 2014),
PePr (Zhang et al., 2014), and CRADLE (Kim et al., 2021) (see
Supplementary Table S1) using default parameters. We used the
input insert reads, which are acquired by sequencing plasmids
recovered from the transfected cells, and mapped them to
chromosome 22 in the enhancer-screening STARR-seq
experiment in A549 cells (GSE114063) as the simulation basis.
Chromosome 22 is scanned, binned into 400bp windows and
only genomic regions covered by at least 100 sequenced reads are
kept. We selected 1,000 regions as simulated silencers (true
positive silencers) by removing reads from these regions at
four different percentage levels (30, 50, 70, and 90%), thus
retained fraction of reads at 70, 50, 30, and 10% in the
simulated datasets, respectively. These four datasets are used
as the reporter cDNA libraries.

Program csaw detects differentially enriched regions in ChIP-
seq dataset by using a sliding window strategy. MEDIPS identifies
differentially methylated sites in the dataset generated by
methylated DNA immunoprecipitation sequencing (MeDIP-
seq). MEDIPS fails to detect any silencer at all from libraries
in which 30, 50, and 70% reads are retained for the simulated

silencers, while csaw identifies less than 100 silencers independent
of what percentages of reads are retained (Figure 2A). These
results suggest that MEDIPS and csaw may lack NRE
detection power.

Program PePr is similar to csaw in their differential signal
detection power for ChIP-seq datasets. PePr identifies most
simulated silencers when reads are retained at three different
levels (10, 30, and 50%) (Figure 2A), suggesting PePr could
potentially be a usable NRE identification method. Program
CRADLE calls both positive and negative regulatory elements
for STARR-seq datasets. This program identifies approximately
800 silencers (815, 819, 821, and 812, respectively) independent of
the percentages of reads retained (Figure 2A). Fast-NR detects
897, 871, 712, and 317 simulated silencers at 10, 30, 50, and 70%
retained read levels (Figure 2A), suggesting its NRE identification
power correlates positively with the read removal percentages.
These results together suggest that PePr, CRADLE, and Fast-NR
may all be usable NRE identification methods. Also, Fast-NR is
more sensitive to signal reduction levels than other programs.

The NRE detection power of PePr, CRADLE, and Fast-NR
may change when different p value thresholds are applied.
Indeed, all these three methods detect fewer silencers as the
p value threshold becomes more stringent (Figure 2B). Again,
CRADLE is insensitive to the read removal percentage.
Interestingly, though Fast-NR detects fewer silencers as p
value decreases, it identifies more silencers than CRADLE
when 10 and 30% of reads are retained. PePr is also sensitive
to the change of p value threshold, especially when the fraction
of reads retained is 70% (Figure 2B). These results show PePr
and Fast-NR are more sensitive to the read retained rates than
CRADLE. However, these results do not suggest which program
outperforms the others.

Performance of Fast-NR and Other
Potential NRE Identification Methods
Tested on Real STARR-Seq Datasets
Theoretically, a genomic region of repressing activity is supposed
to be transcribed less and underrepresented in the reporter cDNA
library of STARR-seq. We downloaded STARR-seq datasets for
silencer and enhancer identifications in human K562 (Doni
Jayavelu et al., 2020) and A549 (Johnson et al., 2018) cells,
respectively (Supplementary Table S2). STARR-seq in K562
measures the repressing activity of 7,430 sites in the accessible
regions that are predicted as potential silencers based on
epigenetic states. Differently, STARR-seq in A549 cells
measures enhancer activities genome wide. We tested the NRE
detection power of the five programs on the datasets generated by
these two STARR-seq experiments (Figure 3A). Both Fast-NR
and CRADLE identified hundreds and thousands NREs. Program
csaw identified 2,399 silencers in K562 and only 31 silencers in
A549. PePr identified 359 NREs in K562, but unbelievably,
475,797 NREs in A549. MEDIPS nearly failed to identify any
NREs in the two STARR-seq experiments. These results confirm
that MEDIPS lacks the NRE detection power for either simulated
or real experimental data. Programs csaw and PePr perform
differently on the two STARR-seq experiments, and their poor

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8183444

He et al. Novel Silencer Identification Method

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


consistency in performance compromised our confidence to use
them for NRE identification. After these comparisons, we kept
Fast-NR and CRADLE for more evaluation analyses.

We compared Fast-NR and CRADLE’s performance by
changing the p value threshold for NRE identification. For
K562 STARR-seq, Fast-NR identified silencers consistently at
high levels and was nearly not affected by the change in the p
value threshold (Figure 3B). In contrast, the number of silencers
identified by CRADLE dropped dramatically to only about 10%
(p < 1 × 10−8) of these identified at p < 0.01. These results provoked
us to examine the overlapping rates of silencers identified by Fast-
NR and CRADLE in K562. In fact, decent amounts of silencers
identified by these two methods overlapped in K562 but not in
A549 (Figure 3C). Silencers identified were expected to have lower
cDNA reads than the input insert DNA reads. We calculated the
ratios of (cDNA reads)/(insert reads) for CRADLE-specific and
Fast-NR-specific silencers in K562 and A549. The CRADLE-
specific silencers showed less reduction in cDNA reads than
Fast-NR-specific silencers (Figures 3D,E). Over 95% (1,320/
1,383) of Fast-NR identified silencers in K562 overlapped with
the reported silencers (Doni Jayavelu et al., 2020) (Figure 3F). In
contrast, only 56% silencers identified by CRADLE overlapped
with the reported silencers (Figure 3F). These results suggest that
many CRADLE-specific silencers were identified because of the
heavy correction procedures that are integral to CRADLE (Kim
et al., 2021). These CRADLE-specific silencers seemed to be “false-
positives” in terms of the reduction rate in the reporter
cDNA reads.

To reveal which transcription factors may bind to silencers, we
searched through the sequences of silencers and identified a few
DNA motifs enriched for transcription factors binding
(Supplementary Table S3). One of these motifs was the
silencing factor REST binding site (Chong et al., 1995), which
was particularly enriched in Fast-NR identified silencers. DNA
motif for transcription repressor PRDM6 was also enriched

(Davis et al., 2006). Histone H4K20 methylation is a mark
reported to be associated with silencers (Pang and Snyder,
2020). The binding motif (GC-box sequence) for the
transcription factor of Sp1-like factors was also enriched in
both Fast-NR and CRADLE silencers. Sp1-like factors activate
or repress transcription in response to different physiological and
pathological stimuli (Zhao and Meng, 2005). DNA motifs of
PAX5 and FOS were enriched at Faste-NR and CATDLE
silencers as well. Many transcription factors have dual
functional roles in gene regulation, and silencers have been
reported to be switchable to enhancers during development and
in different cell types (Bessis et al., 1997; Cavalli, 2014;
Gisselbrecht et al., 2020). Enrichment of any specific
transcription factor’s binding motif may not necessarily
correlate with the regulatory activity of a CRE in a specific
cell type. Nevertheless, silencers are indeed enriched with
certain DNA motifs for transcription repressors in our
analysis, suggesting that silencers identified by Fast-NR are
very likely to be biologically functional.

Curve Similarity Analyses in Fast-NR
Compared to the other four methods, Fast-NR is the only one that
takes into account the similarity between the curves of the
reporter cDNA and the input insert DNA signals. We
examined to what extent the similarity between the curves of
the reporter cDNA and the insert DNA reads could affect the
NRE identification. We calculated the similarity index values
(−log2CosineDistance) for the NREs identified in A549 and found
that the cosine distances between cDNA and plasmid curves are
much higher than the random chosen genomic control regions
(Figure 4A). Interestingly, the similarity index values correlate
negatively with the strengths of silencers (Figure 4B), suggesting
stronger silencers have low curve similarity. We obtained similar
results using other curve similarity calculation methods such as
Pearson, Euclidean, and gradient (Supplementary Figure S1A).

FIGURE 2 | Program performance comparison on simulated datasets. (A) The number of silencers identified by different programs. The fraction of reads retained to
simulate silencers is shown under x axis. p value <10−5. (B) The silencer detection power of different programs at different levels of confidence. Detection power is the
ratio between number of identified silencers over total number of simulated silencers.
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We removed the curve similarity requirement in Fast-NR and
identified more silencers (gray dots in Figure 4B). These “new”
silencers have high curve similarity index values and low silencer
strengths compared to the silencers identified with curve
similarity considered (blue dots in Figure 4B). Interestingly,
curve similarity correlated poorly with p values
(Supplementary Figure S1B), suggesting curve similarity in
Fast-NR is a feature independent from the ratio between the
reporter cDNA and the input insert DNA reads. The Pearson’s
correlation coefficients between the curve similarities and the

silencer activities could be positive or negative depending on the
method used (Supplementary Figure S1C). These results
together show that curve similarity comparison is also
important for the reliable identification of NREs.

DISCUSSION

In this study, we presented a program of Fast-NR, in which both
read counts and shape similarity are considered, for the detection

FIGURE 3 | Program performance comparison on STARR-seq datasets. (A) The number of silencers identified by different programs. p value <10−5. (B) The
percentage of silencers identified by CRADLE and Fast-NR at different confidence levels. The number of silencers identified at p < 10−2 is set at 100%. (C) Venn diagrams
of silencers identified by Fast-NR and CRADLE in K562 and A549, respectively. p value <10−5. (D) Reads ratio (reporter cDNA/input inserts) distribution for silencers
identified only by CRADLE or Fast-NR in K562 and A549, respectively. (E) Exemplary silencers identified only by CRADLE (left) or by Fast-NR (right). (F)
Percentages of Fast-NR- and CRADLE-identified silencers (p < 10−5) reported by Doni Jayavelu et al.
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of NREs using STARR-seq datasets and compare its performance
with other four programs of csaw (Lun and Smyth, 2016),
MEDIPS (Lienhard et al., 2014), PePr (Zhang et al., 2014),
and CRADLE (Kim et al., 2021). Among them, MEDIPS,
designed for DNA methylation analysis, shows worst
compatibility with silencer identification on either simulated
or experimentally generated datasets. Programs csaw and PePr
detect significantly differential regions in ChIP-seq data. Neither
of them performs consistently when being applied to different
types of datasets. Besides methods tested in this research, other
methods designed for the identification of differentially enriched
signals are not suitable for silencer identification either. For
example, DMRfinder (Gaspar and Hart, 2017), DSS (Park and
Wu, 2016), and HMST-Seq-Analyzer (Farooq et al., 2020) require
specific input data format that are not compatible with NRE
analysis.

Fast-NR and CRADLE seem to be good choices for both
simulated and experimentally generated datasets. However, many
silencers identified by CRADLE showed only small reduction in
the reporter cDNA signal than the input insert DNA, and curves
of these signals were highly similar. CRADLE uses the GLM
approach to correct four types of bias, the DNA structure
affecting shear force, Gibbs free-energy affecting PCR
efficiency, read sequences mappability, and G-quadruplex
affecting DNA polymerase processivity (Kim et al., 2021).
CRADLE treats the corrected signals as normal distribution
and uses Welch’s t-test to search for differences. As shown in
our analysis, these corrections lead to the detection of “silencers”
that cannot be identified based on the differences in the read
counts of the reporter cDNA and the input insert DNA.

Being different from methods using sliding window strategy,
Fast-NR detects the difference in the number of reporter cDNA

and input insert DNA reads at single base-resolution. It is
potentially possible to use Fast-NR to reveal the precise
locations of regulatory elements and the binding sites of
transcription factors.

STARR-seq tests silencers activity in episomal reporter
plasmids independent from the endogenous chromatin
environment. Ideally, regulatory activities of potential CREs
can be tested in their proper chromatin context. Methods for
endogenous CREs analysis, such as multiplexed editing
regulatory assay (MERA) (Rajagopal et al., 2016) and
thousands of reporters integrated in parallel (TRIP) (Akhtar
et al., 2013), can be used to measure the regulatory activities
of genomic regions in the native cellular context. However, these
methods are generally not applicable for unbiased genome-wide
analysis of CREs. Nevertheless, the combination of these methods
and STARR-seq will help to achieve a global identification, and at
the same time, a large scale endogenous validation of CREs.

Another issue we would like to point out is the promoter used
in the reporter plasmids. In STARR-seq and related methods,
promoter choice could affect the outcome because the promoter
used may be irresponsive to some CREs. We speculate that using
promoters of house-keeping genes and cell type-specific genes
may allow the identification of more CREs that may prefer to
regulate different types of promoters. To save the computation
time, we filtered potential NREs by applying thresholds on both
read counts and p values sequentially, which may also,
theoretically, reduce false positive rate. However, the
thresholds applied could be too strict and exclude some true
silencers. We recommend the users to test the threshold effects
and choose appropriate thresholds for their own analysis.

Though STARR-seq measures regulatory activity of tested
DNA fragment in episomal environment, it provides a

FIGURE 4 | Curve similarity effect on silencer identification. (A) The cosine distance distribution for silencers identified by Fast-NR with similarity considered,
similarity not considered, and controls of whole genome regions with 400 bp size and shuffled silencer regions. Distance negatively correlates with similarity. **p < 10−3,
***p < 10−4, Wilcoxon rank sum test. (B) The correlation between silencer strength and curve similarity. The X axis shows the value of −log2 (cDNA reads/insert DNA
reads). The Y axis shows the curve similarity index, −log2 (Cosine distance) of silencers calculated by the method of cosine. Blue dots are silencers that pass curve
similarity threshold of 0.9, and gray dots are silencers that do not pass curve similarity threshold.
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catalogue of CREs that can be further tested at their endogenous
loci by alternative methods. We did not take sequencing bias into
consideration because experimental data that can be used to
determine to what extent biases may affect NRE identification
were not available. In summary, by combining read count-based
negative binomial test and shape similarity comparison, we have
shown that Fast-NR is potentially usable for silencer
identification, thus providing a powerful and robust
computational method for NRE identification.

CONCLUSION

Silencers are negative regulatory elements that control the precise
gene expression during cell proliferation and differentiation. The
increasing needs for global silencer characterization require a
reliable and user-friendly computational method. Our method
Fast-NR integrates single nucleotide read count information and
graphic information to detect silencers genome widely. Fast-NR
identifies NREs at single base resolution. The wide application of
Fast-NR will accelerate the genetic and epigenetic studies of the
intriguing functional mechanisms of silencers.
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