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Background: There is increased prevalence of epilepsy in patients with Alzheimer’s
disease (AD). Although shared pathological and clinical features have been identified, the
underlying pathophysiology and cause-effect relationships are poorly understood. We
aimed to identify commonly dysregulated groups of genes between these two disorders.

Methods:Using publicly available transcriptomic data from hippocampal tissue of patients
with temporal lobe epilepsy (TLE), late onset AD and non-AD controls, we constructed
gene coexpression networks representing all three states. We then employed network
preservation statistics to compare the density and connectivity-based preservation of
functional gene modules between TLE, AD and controls and used the difference in
significance scores as a surrogate quantifier of module preservation.

Results: The majority (>90%) of functional gene modules were highly preserved between
all coexpression networks, however several modules identified in the TLE network showed
various degrees of preservation in the AD network compared to that of control. Of note,
two synaptic signalling-associated modules and two metabolic modules showed
substantial gain of preservation, while myelination and immune system-associated
modules showed significant loss of preservation. The genes SCN3B and EPHA4 were
identified as central regulatory hubs of the highly preserved synaptic signalling-associated
module. GABRB3 and SCN2A were identified as central regulatory hubs of a smaller
neurogenesis-associated module, which was enriched for multiple epileptic activity and
seizure-related human phenotype ontologies.

Conclusion:We conclude that these hubs and their downstream signalling pathways are
common modulators of synaptic activity in the setting of AD and TLE, and may play a
critical role in epileptogenesis in AD.
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INTRODUCTION

In the past 50 years, it has become apparent that there is increased
prevalence of epileptic seizures in patients with AD compared to
the general population (Hauser et al., 1986; McAreavey et al.,
1992; Volicer et al., 1995; Hesdorffer et al., 1996; Vossel et al.,
2013), but only recently have there been well-designed studies
attempting to understand this link (Miranda and Brucki, 2014;
Vossel et al., 2017). A 2006 study reported that patients with AD
have ~10-fold increased risk of developing seizures, with early
onset or familial AD patients having as high as 87-fold higher risk
(Amatniek et al., 2006). These patients show more severe
cognitive impairment (McAreavey et al., 1992) and rapid
disease progression (Volicer et al., 1995). Likewise, individuals
with epilepsy show higher risk of developing dementia when
compared to the general population (Forsgren et al., 1996; Pugh
et al., 2009). In AD patients, epileptiform activity is commonly
detected in temporal brain regions (Vossel et al., 2016), and
temporal lobe epilepsy (TLE) is generally recognized as the
subtype of epilepsy that has the most overlap in its
pathophysiology with AD (Scharfman, 2012). In addition to
electrical abnormalities and cognitive impairment, AD and
TLE share pathological features such as amyloid deposition
(Mackenzie and Miller, 1994), tau pathology (Thom et al.,
2011; Tai et al., 2016) and hippocampal sclerosis (Davidson
et al., 2011). Additionally, several transgenic animal models of
AD exhibit spontaneous seizures and have increased
susceptibility to epilepsy (Palop et al., 2007; Westmark et al.,
2008; Ziyatdinova et al., 2011; Chan et al., 2015; Ziyatdinova et al.,
2016; Reyes-Marin and Nuñez, 2017), suggesting the pathological
hallmarks of AD may directly cause seizures.

Diseases as dysfunctional states are associated with altered
gene expression, which can be detected by transcriptional analysis
of the mRNA in a given tissue. However, genes do not operate in
isolation, but rather interact cooperatively within and across
biological pathways. Thus, it is insufficient to identify one
differentially expressed group of genes in order to thoroughly
characterize a disease. A more comprehensive understanding of
the associated pathology requires capturing changes in biological
pathways and their interaction. Viewing disease as the result of an
elaborate interplay of cellular pathways - much like a network
-accounts for the intricacy and complexity of human biology, as it
assumes that perturbations in a single node of this network have
the potential to affect the entire community or module it belongs
to. This systems or network approach is proving to be powerful in
biomarker discovery (Tran et al., 2011; Clarke et al., 2013; Huan
et al., 2015; Sun et al., 2017) due to its multiple advantages over
the traditional linear association model approach, which fails to
fully account for the complex web of interactions of gene products
and key regulators.

Weighted gene coexpression network analysis (WGCNA) is a
widely used systems biology methodology that investigates the
correlation between genes based on their expression level across
all samples in the dataset (Zhang and Horvath, 2005). The genes
(nodes) in the network are connected by an edge if the two genes
have similar expression pattern, i.e., their expressions rise and fall
together (correlated) or when one rises the other falls

(anticorrelated) (Zhang and Horvath, 2005). The WGCNA
method has valuable advantages over knowledge-based
networks such as protein-protein interaction (PPI) networks as
it is not biased in favour of the known protein-protein
interactions of the member nodes. The resultant network is
constructed solely based on the pairwise expression correlation
pattern of all genes. These networks are then hierarchically
clustered into highly connected groups of genes called
modules, and further examined through functional enrichment
analysis. It has been shown previously that modularity is a
conserved property of biological systems and modules of
genes, proteins or metabolites have functional significance, i.e.
the cellular functions are carried out by these highly connected
modules of genes/proteins (Oldham et al., 2006; Oldham et al.,
2008). These functional modules tend to be extremely
heterogeneous, wherein the majority of the nodes have
relatively few connections (edges) with other nodes, thus
rendering them less relevant in the overall function of the
module, while a few “hub” nodes are highly connected and
therefore are considered important regulators of the given
module (Ravasz et al., 2002).

Once a healthy state and a dysfunctional state are defined in a
gene coexpression network graph, its architecture becomes a
comparable and quantifiable attribute that is representative of
the system. The topology of these networks can then be
investigated and compared in order to identify important gene
regulators and capture the differential connectivity and
preservation of modules, which in turn reflect the overlap in
biological pathways implicated in the conditions the networks are
associated with.

Recently, it has been proposed that disease phenotypes that
were previously thought of as distinct entities may share
common pathological mechanisms and have strong
molecular relationships (Barabási et al., 2011). Given the
correlated incidence and shared clinical symptoms between
TLE and AD, we hypothesized that the common
pathological features might be a result of a strong
molecular relationship between the two diseases in the
form of a shared set of perturbed cellular pathways and
dysregulated gene modules. Since the electrophysiological
and morphological symptoms common to TLE and AD
impact the hippocampus in the setting of both diseases,
we set out to compare the transcriptome of hippocampal
tissue affected by TLE and AD. To achieve this, we employed
the framework of WGCNA (Zhang and Horvath, 2005) to
construct signature gene networks representing TLE and
AD, and then employed network preservation statistics
methods (Langfelder et al., 2011) to compare and contrast
the signature gene networks by measuring the preservation
of TLE modules in the AD coexpression network.
Additionally, since functional gene modules have been
shown to be preserved even across different species
(Oldham et al., 2006; Miller et al., 2010), we also
examined the preservation of TLE modules in a non-
demented control (NDC) network to facilitate distinction
of homeostatic (common to all networks) and pathology-
specific (characteristic to disease state) features.
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MATERIALS AND METHODS

Data Pre-Processing, Normalization and
Covariate Adjustment
In an effort to increase the sample size while reducing the loss of
data due to variability of probe sets in different microarray
platforms, we selected and compiled three microarray datasets
with a total of 50 samples from late onset AD hippocampal tissue
(GSE28146, GSE5281, GSE48350) (Liang et al., 2008; Blalock
et al., 2011; Berchtold et al., 2013) and three microarray datasets
with a total of 87 hippocampal samples (GSE110298, GSE5281,
GSE48350) (Liang et al., 2008; Berchtold et al., 2013; Berchtold
et al., 2019) from non-demented individuals for the control
(NDC) coexpression network (Table 1, Supplementary Table
S1). These were the datasets that were generated using the same
microarray platform with largest total sample size from all
available sets. For the TLE gene coexpression network, we
acquired a publicly available microarray dataset of 129
samples from hippocampus of patients who had been
diagnosed with TLE and had undergone epilepsy resective
surgery (GSE63808) (Johnson et al., 2015). The datasets used
in this study are listed in Table 1, with a detailed list of sample
types/IDs in Supplementary Table S1. All expression sets were
acquired from NCBI Gene Expression Omnibus via GEOquery R
package (version 2.52.0) and the probe annotations were mapped
to Entrez IDs (Davis and Meltzer, 2007). Initial data visualization
was facilitated by NetworkAnalyst web tool (Zhou et al., 2019). In
the instances where multiple probes were mapped to the same
gene, the average of multiple probe intensities was used to
perform gene-level summarization. The expression sets were
then filtered for low abundancy genes (the fifth percentile of
all annotated genes with lowest relative abundance), log2
transformed and VSN normalized. The ComBat algorithm
within SVA R package (version 3.32.1) was employed for
batch effect correction (Figures 1A,B), followed by Principal
component analysis for visualization (Leek et al., 2012). An
Empirical Bayes-moderated linear regression function
(empiricalBayesLM) within WGCNA R package (version 1.67)
was used for covariate (age and sex) adjustment (Langfelder and
Horvath, 2008). The resultant filtered, normalized and covariate-
adjusted matrices with a total of 17,821 matched probes/genes
were used to generate coexpression networks for the three
conditions.

Weighted Gene Coexpression Network
Analysis (WGCNA)
Three weighted gene coexpression networks were constructed,
one for each condition: temporal lobe epilepsy (TLE),
Alzheimer’s Disease (AD) and non-demented controls (NDC).
First, a sample dendrogram was created for each condition via
hierarchical clustering of all samples in order to identify and
remove outliers (Supplementary Figures S1C, S2C, S3C). A
correlation matrix was constructed based on pair-wise Pearson
correlation coefficients of the expression level of all genes across
all samples in the set, reflecting the coexpression similarity
measure between all pairs of genes. A series of soft
thresholding powers were then used to determine the optimal
power at which the correlation matrices fit the scale-free topology
model, i.e., when the characteristics of the network become
independent of its size. The correlation matrix reached a 90%
fit to scale-free topology at ß = 5 for AD and NDC datasets, and ß
= 7 for TLE dataset (Supplementary Figures S1A,B, S2A,B,
3A,B). An adjacency matrix was then built for each condition by
raising the correlation coefficients to the determined soft power of
ß = 5 for AD and NDC, and ß = 7 for TLE. A correlation network
representing each condition was constructed based on the
respective adjacency matrix, where each node corresponds to a
single gene, and the edges are determined by the adjacency value
between each pair of nodes, reflecting the connection
strength and distance between them. All three networks
were constructed as “signed” and clustered into modules of
coexpressed genes through average linkage hierarchical
clustering via “dynamic tree cut” algorithm (Langfelder
et al., 2008). The minimum module size was set to 30
genes. The modules were then functionally annotated
through pathway enrichment analysis. Central hubs were
determined for each module by identifying the top 10
member genes with highest intramodular connectivity and
significant correlation to module eigengene—the first
principal component of the expression matrix of the
corresponding module. The final networks were visualized
in Cytoscape software version 3.6.9 (Shannon et al., 2003).

Given that the AD and NDC coexpression networks were
generated by combining data from multiple studies, in order to
capture any dataset-specific effects on the generation of specific
modules, the Pearson correlation was calculated between each
dataset and module in the given coexpression network.

TABLE 1 | List of the datasets used for this analysis. All raw microarray datasets were downloaded from NCBI Gene Expression Omnibus using the GEOquery R package.

Accession number Publication Sample type Condition Number of
samples

Coexpression network

GSE63808 Johnson et al. (2015) Hippocampus biopsy Temporal lobe epilepsy 129 TLE
GSE28146 Blalock et al. (2011) Hippocampus, laser capture CA1 neurons Alzheimer’s disease 21 AD
GSE110298 Berchtold et al. (2019) Hippocampus, homogenate control 34 NDC
GSE5281 Liang et al. (2008) Hippocampus, laser capture CA1 neurons Alzheimer’s disease 10 AD

control 13 NDC
GSE48350 Berchtold et al. (2013) Hippocampus, homogenate Alzheimer’s disease 19 AD

control 40 NDC
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Module Preservation Analysis
In order to understand the extent of preservation of TLE modules
in the AD and NDC networks, we used two approaches. The first
approach was cross-tabulation, which is a simpler method that
creates a contingency table reporting the number of overlapping
genes from each TLE module with each of the AD or NDC
module. The significance of the overlap is calculated through
Fisher’s exact test. The second, more complex approach utilizes
network separability, density and connectivity-based
preservation statistics available within the modulePreservation
function in the WGCNA R package (version 1.67) introduced by
Langfelder et al. (2011) and described in detail in Oldham et al.
(2006). This method requires adjacency matrices of both
reference (TLE) and test networks (AD and NDC) as input,
however module assignment is only necessary for the reference-
TLE network (Langfelder et al., 2011). The observed preservation
value for eachmodule detected in the TLE network was calculated
in the AD and NDC networks. We then employed a permutation
test (number of permutations = 500) which randomly permutes
the module assignment in the AD and NDC networks to assess if
the observed value of preservation statistic is higher than what is
expected by chance and assigns a permutation test p-value. The
observed preservation values were then standardized with regard
to the mean and variance and a significance Z score was defined
for each preservation statistic (Supplementary Tables S5, S6).
The overall significance of the observed statistics was assessed by
combining multiple preservation Z statistics into a single overall
measure of preservation defined as Zsummary. Thus, each module
identified in the TLE network has a pair of Zsummary scores which
describe the preservation of the given module in the AD
(ZAD

summary) and NDC (ZNDC
summary) networks, respectively.

Modules with Zsummary>10 are considered well-preserved
(Langfelder et al., 2011), thus the higher the Zsummary score,
the stronger the evidence of preservation of the given TLE
module in the two test networks. In order to compare the
degree of preservation of each TLE module between the AD
and NDC networks, we introduce a surrogate quantifier of
“differential module preservation”—ΔZsummary, which is the
arithmetic difference between the two preservation scores:

ΔZsummary � ZAD
summary − ZNDC

summary

Thus, the modules with a positive ΔZsummary value are more
preserved (show Gain Of Preservation, GOP) and the modules
with a negative ΔZsummary value are less preserved (show Loss Of
Preservation, LOP) in the AD network compared to the control-
NDC network.

Functional Annotation and Enrichment
Analysis
In order to determine the functional significance of the detected
modules, a pathway enrichment analysis of the genes constituting
each module was performed using the g:Profiler web tool
(Reimand et al., 2016). Since the Gene Ontology database has
a hierarchical order, in the instances of a large number
(hundreds) of enriched pathways, we clustered the GO terms

lower in hierarchy into their representative “parent” terms higher
in the hierarchy using a similarity threshold of 90% (Supek et al.,
2011).

RESULTS

Temporal Lobe Epilepsy Coexpression
Network
After filtering, probe annotation and removal of outliers, a total of
127 samples were included in the TLE coexpression network.
Hierarchical clustering identified 18 modules of highly
coexpressed genes, ranging from 27 to 999 nodes in size
(Figure 2A; Supplementary Table S2). The modules were
annotated based on the functional enrichment analysis of
member genes, with the most enriched pathways in the top
hierarchy levels being used as functional labels. Functional
annotation of member genes from all modules rendered
significantly enriched Gene Ontology terms and KEGG
pathways, ranging from a few dozen to several hundreds of
pathways (Supplementary Table S2). Interestingly, the largest
module (Turquoise, 999 nodes) which is enriched for genes
involved in synaptic signalling and neurotransmission
processes in the GO biological process category, also identified
“Pathways of neurodegeneration” and “Alzheimer Disease” as
some of the most significantly enriched KEGG pathways (FDR =
1.04 × 10−8, FDR = 6.15 × 10−7, Supplementary Table S2). This
finding suggests that in TLE, the genes responsible for
neurotransmission and signal transduction behave in a
manner characteristic to Alzheimer’s Disease pathology. A
smaller module (Tan, 84 nodes) which is enriched for
neurogenesis and GABAergic signalling pathways was
identified as enriched for 35 terms from the human phenotype
ontology database, all indicating seizure or epilepsy-related
ontologies (Supplementary Table S2).

Alzheimer’sDisease Coexpression Network
After filtering and removal of outliers, a total of 49 samples were
included in the AD coexpression network. WGCNA identified 10
modules of highly coexpressed genes, ranging from 32 to 708
nodes in size (Figure 2B; Supplementary Table S3). The largest
module (also labelled as Turquoise) is enriched for
neurotransmission and synaptic signalling-related processes
such as “chemical synaptic transmission” (FDR = 1.1 × 10−34),
“voltage gated channel activity” (FDR = 4.25 × 10−8), “ion
transmembrane transport” (FDR = 1.02 × 10−21) and
“neurotransmitter transport” (FDR = 2.18 × 10−14,
Supplementary Table S3). No significant correlation (Padj <
0.05) between specific datasets and modules were detected
(Supplementary Figure S4A).

Non-Demented Control Coexpression
Network
After filtering and removal of outliers, a total of 84 samples were
included in the NDC coexpression network. WGCNA identified
11 modules of highly coexpressed genes which were substantially
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FIGURE 1 | Principal component analysis of expression distribution of all datasets (A) before batch effect adjustment and (B) after batch effect adjustment with
ComBat algorithm.

FIGURE 2 | Hierarchical cluster dendrogram of (A) TLE (B) AD and (C) NDC gene coexpression networks. Each black branch (vertical line) corresponds to one
gene. The colour rows below the dendrogram indicate module membership. The modules are functionally annotated and named based on the enriched GO/KEGG
pathways of the member genes. The grey module contains genes that have no specific module assignment i.e., the expression pattern of these genes does not show
sufficient variability.
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larger in size (ranging from 160 to 2,836 nodes) than those
identified in the TLE and AD coexpression networks. The two
largest modules (Blue and Turquoise) were enriched for processes
involved in gene expression and metabolism, respectively. Three
smaller modules (Yellow, Black and Greenyellow) were functionally
enriched for synaptic signalling processes and voltage gated channel
activity (Figure 2C; Supplementary Table S4). Similar to what was
observed in the AD network, no significant correlation (Padj < .05)
between specific datasets and modules were detected in the NDC
network (Supplementary Figure S4B).

TLE Modules are Preserved to Various
Degrees in AD and NDC Networks
In order to capture any similarities within the module
composition and network architecture of the two pathological
gene networks, while allowing for discrimination between
unperturbed (homeostatic) and perturbed (dysregulated)
modules, two pairs of comparisons were made [TLE vs. AD]
and [TLE vs. NDC]. Several large modules showed significant
overlap in member genes between both pairs of networks as
measured by cross-tabulation of every module from TLE network

FIGURE 3 | Cross-tabulation of TLE modules (in Y axis) against (A) AD and (B) NDCmodules (in X axis). Each axis is labelled by the corresponding module colour.
Each block in the table shows the number of overlapping genes in the intersection of corresponding (A) TLE and AD and (B) TLE and NDCmodules. The table is colour-
coded with -log10 of the p value associated with the Fisher exact test.

FIGURE 4 | Comparison of density and connectivity-based preservation of TLE modules in AD and NDC networks. (A) The overall significance of the observed
preservation statistics was assessed for each TLE module (Y axis) by combining density and connectivity-based preservation Z statistics into a single overall measure of
preservation defined as Zsummary shown in pairs on X axis for NDC (blue bars) and AD (orange bars) networks. (B) The arithmetic difference of preservation Zsummary

values, ΔZsummary in X axis between NDC and AD networks for each of the TLE modules in Y axis. Positive ΔZsummary indicates gain of preservation (GOP, more
preserved) and negative ΔZsummary indicates loss of preservation (LOP, less preserved) of the given TLE module in the AD network compared to NDC network.
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with those fromAD (Figure 3A) and NDC (Figure 3B) networks.
The most significant (P ≈ 0) overlap was observed between the
two Turquoise modules in the TLE and AD networks, both of
which are enriched for synaptic signalling pathways (Figure 3A).
The density and connectivity-based preservation scores as
calculated by the modulePreservation function are shown in
Figure 4A for each of the TLE modules. The arithmetic
difference between the two preservation scores titled ΔZsummary

was used to define modules which show Gain Of Preservation or
Loss Of Preservation in the AD network when compared to the
NDC network (Figure 4B). In the following sections, we
characterise the overlap and preservation of TLE modules in
AD and NDC networks based on the biological pathways they
represent.

Synaptic Signalling
The largest GOP (by ~60%, ΔZsummary = 40.7) was observed in the
Turquoise module, which functionally annotates to synaptic
signalling processes. With a Zsummary of 109.5, this module is
extremely well preserved between TLE and AD coexpression
networks (Figure 3A). The corresponding preservation score
for this module between TLE and NDC coexpression networks
is Zsummary = 68.8. With voltage-gated sodium channel 3 subunit
B (SCN3B) as a hub gene, this module is enriched for voltage-
gated ion channel activity, synaptic signalling and
neurotransmission pathways. There is significant (p = 2 ×
10−310) overlap between the genes constituting the TLE
Turquoise module with the corresponding neurotransmission-
associated module in the AD network (also labelled Turquoise,
Figure 3A). In the NDC network, the TLE Turquoise module
appears to split into three distinct modules (Figure 3B), two of
which (Black and Yellow) functionally annotate to synaptic
signalling pathways, while the third, Green module is enriched
for mitochondrial-based processes (Figure 2C). These results
suggest homologous restructuring and perhaps perturbation of
synaptic signalling pathways in TLE and AD-affected
hippocampus compared to NDC.

The WGCNA clustering algorithm identified another smaller
module (Tan) in the TLE coexpression network, which
functionally annotates to synaptic signalling and neurogenesis-
related pathways. The Tan module shows GOP (ΔZsummary =
10.2) and contains a GABA receptor subunit (GABRB3) and an
alpha subunit of VGSC (SCN2A) as it’s top regulatory hub genes.
Although this module is enriched for GO terms that are similar to
Turquoise module, according to the gene correlation dendrogram
(Figure 2A), these modules branch off from each other at a high
hierarchy level, and are therefore two distinct, independent
modules. There is similar overlap of genes between the TLE
Tan module with corresponding neurotransmission-associated
modules in both AD and NDC networks (Figures 3A,B).

Metabolism
There are two distinct TLE modules (Blue and Yellow) with
member genes that are enriched for metabolic processes
(Figure 2A), both of which show GOP (ΔZsummary = 10.2 for
Blue and ΔZsummary = 4.8 for Yellow, Figure 4B). The larger, Blue
module has 989 member genes, with thyroid hormone receptor

interactor 6 (TRIP6) as its top regulatory hub gene and
functionally annotates to metabolic, cellular organization,
transport, and other homeostatic processes. The smaller,
Yellow module functionally annotates to more specific
mitochondrial functions such as “oxidative phosphorylation,”
“ATP synthesis coupled proton transport” and “oxidoreductase
activity” as well as multiple mitochondrion organization
pathways. The hub gene for this module is Acid phosphatase
1 (ACP1), the main function of which is hydrolysis of tyrosine
and its phosphates. When cross referencing the KEGG database,
the genes comprising the Yellow module rendered “Alzheimer’s
Disease” as one of the most enriched KEGG pathways (Padj = 8.54
× 10−6, Supplementary Table S2).

Another small metabolic TLE module (Lightcyan) with 53
member genes shows LOP (ΔZsummary = −4.0, Figure 4B)
between AD and NDC networks. The Lightcyan module is
highly enriched for mitochondrial-based processes and has
YWHAG as a central hub gene. YWHAG codes for the
Tyrosine 3-Monooxygenase activation protein Gamma, also
known as Protein Phosphatase 1, regulatory subunit 170,
which belongs to a family of proteins that mediate signal
transduction and are involved in many vital cellular processes
such as metabolism, apoptosis and cell cycle regulation. The top
enriched pathways of this module include “TCA cycle and
respiratory electron transport,” “mitochondrial ATP synthesis
coupled electron transport,” “ATP metabolic process” and other
oxidative phosphorylation-related pathways.

Myelination
Another module of interest showing substantial LOP is the Red
module, with 206 member genes and ΔZsummary of −31.9
(Figure 4B). This module is enriched for genes involved in
myelination and axon ensheathment pathways, and as a
central hub gene has NK6 homeobox 2 (NKX6-2), which is a
transcription factor involved in axon-glial interactions at nodes of
Ranvier. The Red module shows significant overlap of member
genes with the corresponding myelination-associated module in
the AD coexpression network (labelled Blue, Figures 3A) and a
large, metabolic module (labelled Turquoise, Figure 3B) in the
NDC coexpression network.

Immune System
The final TLE module of interest showing LOP (ΔZsummary =
−13.3) is the immune system-associated Purple module, with 107
member genes and transmembrane immune signalling adaptor
(TYROBP) as a central regulatory hub gene. This module is
enriched for immune system processes such as leukocyte
activation, cytokine production and signalling, antigen
processing and presentation, interferon signalling and other
inflammatory pathways. With 97 out of 107 genes in
common, there is significant overlap (p = 2.1 × 10−97) between
the genes constituting the Purple module in the TLE network and
the Brown immune system-associated module in the NDC
network (Figures 2C, 3B). The same 97 genes from TLE
Purple module overlap with the unassigned (Grey) module in
the AD network (Figure 3A), indicating that immune signalling
involving these genes may be dysregulated in AD.
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DISCUSSION

Epilepsy and Alzheimer’s disease often co-occur and are thought
to have a bi-directional relationship, however, there are
significant gaps in knowledge regarding the pathophysiological
mechanisms and cause-effect relationships between the two
conditions. This is due to the lack of comprehensive
population-based studies (Subota et al., 2017) as well as
scarcity (or absence) of clinical and electroencephalographic
data accompanying the gene expression profiling datasets.

The aim of this study was to characterize the shared molecular
signature of AD and TLE and identify commonly dysregulated
pathology-specific gene modules which could explain the
correlated incidence of the two diseases.

Given that the electrophysiological and morphological
symptoms common to TLE and AD severely impact the
hippocampus, we selected publicly available transcriptomic
datasets from hippocampal tissue of relevant pathological and
control states. In order to generate a reliable and robust gene
coexpression signature of a disease, it is imperative to have
datasets with a large number of samples. At the time of our
analysis, there was no single publicly available transcriptomic
dataset profiling the hippocampus of AD patients that had more
than 25 samples for each group, therefore, we employed a
common strategy to combine multiple datasets together. While
increasing statistical power, combining samples from different
datasets usually introduces artificial variance, due to the
differences in microarray platforms and sample types. In order
to correct for these artefact differences between the AD and NDC
groups, we undertook several strategies: first, we selected datasets
that were generated using the samemicroarray platform (GPL570
[HG-U133]). Second, where possible, we included AD and
control samples from the same dataset (GSE5281 and
GSE48350), to account for variation introduced by sample
type differences (laser-capture micro dissected neurons vs.
homogenate). Lastly, we used robust statistical methodology to
adjust the expression sets for batch effects and covariates (Figure
1, detailed in Methods).

According to our findings, AD and TLE show similar rewiring
of synaptic transmission and metabolism-related gene networks.
Perturbed synaptic transmission is not surprising, considering
that circuit dysfunction and hyperexcitability are common
features of both pathologies. The SCN3B gene which codes for
a beta subunit of voltage gated sodium channel NaV1.1 was
identified as the main regulatory hub gene of the synaptic
transmission-associated Turquoise module identified in the
TLE network, which shows the highest preservation score and
largest GOP in AD coexpression network. As the most connected
node of the Turquoise module, SCN3B is an interesting regulatory
hub candidate. The beta subunits of voltage gated (VG) ion
channels carry a multitude of essential functions. In addition
to being VG channel modulators, the beta subunits also function
as cell adhesion molecules and regulators for voltage-gated
sodium channel (VGSC) alpha subunit gene expression, due to
being substrates for sequential cleavage by beta secretase
(BACE1) (Wong et al., 2005). The expression of BACE1 is
reportedly increased in AD pathology, resulting in abnormal

VGSC beta subunit cleavage, which has been shown to result
in reduced levels of functional Nav1.1 channels on the surface of
GABAergic interneurons, leading to network disinhibition and
higher susceptibility to seizures in mouse models of AD (Kim
et al., 2007; Kim et al., 2011; Corbett et al., 2013).

Mutations in the genes that code for both alpha and beta
subunits of VGSC are implicated in various neuropathologies
(O’Malley and Isom, 2015). Pathological levels (both increase and
decrease) of SCN3B mRNA have been implicated in multiple
neurodegenerative diseases such as amyotrophic lateral sclerosis
and Alzheimer’s disease as well as cancer (Adachi et al., 2004;
Dunckley et al., 2006; Nutini et al., 2011). Another central hub
gene of this module, Ephrin type A receptor 4 (EPHA4), belongs
to the protein-tyrosine kinase family and has been implicated in
various synaptic dysfunction-related pathologies, including AD
and TLE (Fu et al., 2014; Shu et al., 2016). Under homeostatic
conditions, the EphA4 acts as a negative regulator of
neurotransmission and synaptic plasticity in the hippocampus
(Murai and Pasquale, 2011). It has been shown to become
deregulated and overactivated, resulting in synaptic failure, in
mouse models of AD (Fu et al., 2014) and TLE (Shu et al., 2016)
pathology. In these models, blockade/knockdown of the receptor
rescues the synaptic impairment. It is therefore conceivable that
deregulation and downstream signalling of EphA4 is one of the
shared pathological mechanisms between AD and TLE, which
leads to abnormal neurogenesis and impairments in synaptic
signalling.

The second notable module of interest is the neurogenesis-
associated Tan module. Despite the small size of this module, the
expression pattern of its 84 member genes is closely correlated in
TLE and AD networks, resulting in formation of an independent
module that is highly preserved and shows substantial GOP in the
AD network compared to NDC. The Tan module also appears to
be a seizure-associated module. Central hub genes among the top
10 most connected nodes centrally located in this module include
GABRB3 (gamma-aminobutyric acid type A receptor subunit
beta3), SCN2A (sodium voltage-gated channel alpha subunit 2),
PRICKLE1 (Prickle planar cell polarity protein 1) and FRMPD4
(FERM and PDZ domain containing 4). These genes have been
shown to be associated with various types of seizures and EEG
abnormalities (Corbett et al., 2010; Polan et al., 2014;
EuroEPINOMICS-RES Consortium, 2014). Notably, all 35
significantly enriched (Padj < .05) phenotypes associated with
the Tan module from human phenotype ontology database
implicate EEG abnormalities and epileptiform activity
(Supplementary Table S2). These phenotypes have been
observed in patients with AD and various epilepsy disorders
(Vossel et al., 2012; Vossel et al., 2013; Vossel et al., 2016) and
reported in animal models of AD (Ziyatdinova et al., 2011;
Bezzina et al., 2015; Kam et al., 2016; Ziyatdinova et al., 2016;
Drinkenburg et al., 2017). Epileptiform activity is one of the
major clinical features shared between AD and TLE, and is
thought to contribute to more rapid disease progression and
cognitive decline (Volicer et al., 1995; Vossel et al., 2013; Vossel
et al., 2016), therefore, further investigation of this distinct disease
module has the potential of facilitating more targeted treatment
options. Specifically, large scale transcriptomic studies which
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include detailed clinical and electroencephalographic (EEG) data
from the patients who donated the brain tissue would be
instrumental in assessing the correlation between the
neurogenesis-related gene module and specific abnormalities
seen in the EEG.

The second largest difference in TLE module preservation
scores was observed for the Red module (ΔZsummary = −31.9),
which annotates to myelination and axon ensheathment
processes. While a Zsummary score of 41.8 is still indicative of
very strong preservation (Langfelder et al., 2011) in the AD
network, the large difference in the preservation score of the
corresponding module in the NDC network (Zsummary = 73.7)
suggests that the operation of myelination and axon
ensheathment processes is at least partially altered in the
setting of AD compared to TLE and NDC. Indeed, it has been
reported before that myelination-associated gene modules are
severely perturbed in the prefrontal cortex of AD (Zhang et al.,
2013). Impairment in cholesterol metabolism which is detected in
AD brain (Martins et al., 2009; Sodero et al., 2012) could lead to
alterations in the myelination processes, since 25% of the total
cholesterol in the human body is allocated to the brain, where it is
mostly localized to the plasma membranes of neurons and glia,
and myelin sheaths covering the axons (Björkhem and Meaney,
2004). This may explain why the myelination module from TLE
coexpression network is less preserved in the AD network
compared to NDC.

Given the evidence of strong neuroinflammatory presence in
both AD and TLE pathologies (Akiyama et al., 2000; Glass et al.,
2010; Maroso et al., 2010; Maroso et al., 2011; Vezzani et al.,
2011), it is somewhat surprising that the Purple immune system-
associated module is substantially less preserved between TLE
and AD, compared to TLE and NDC networks. The central
regulatory hub gene of the Purple module is TYROBP, which has
been previously identified as a causal regulatory hub within a
microglia-associated module generated from prefrontal cortex
samples from late onset AD patients (Zhang et al., 2013). Several
studies investigating gene regulatory networks of AD showed
disruption of normal microglial gene modules (Zhang et al., 2013;
Efthymiou and Goate, 2017; Mukherjee et al., 2019). We therefore
speculate that in the AD-affected hippocampus, there is rewiring
of microglial gene networks that is distinct from TLE and NDC.

When considering the periodic increase in neuronal energy
demand to sustain seizures, it is not surprising that metabolic
pathways are among the primary characteristics of the molecular
signature of TLE. A relatively new but growing hypothesis is that
neurodegenerative disorders, including late onset AD and several
types of acquired epilepsy arise from metabolic dysfunction and
are aggravated by oxidative stress and mitochondrial dysfunction
(Mattson, 2004; Lin and Beal, 2006; Dejakaisaya et al., 2021).
Indeed, the majority of genes and proteins associated with the
term “Alzheimer’s Disease” in various biological pathway
databases belong to metabolic pathways (Ogata et al., 1999;
Thomas et al., 2003; Harris et al., 2004; Joshi-Tope et al.,
2005). A large number of these pathways were significantly
enriched (FDR < 0.05) in both metabolic modules (Blue and
Yellow) of the TLE network and the Yellow metabolic module in
the AD network. This suggests that perturbations in redox

balance, oxidative phosphorylation and other mitochondrial
processes are important players in epileptogenesis and should
be studied further.

The results of our analysis suggest that in addition to clinical
and morphological features, Alzheimer’s Disease and temporal
lobe epilepsy share specific defects in the molecular mechanisms
that regulate excitability, synaptic signalling, neurogenesis and
mitochondrial pathways. Perturbed metabolism and
mitochondrial dysfunction may contribute to impairment in
neurotransmission and consequently lead to the
electrophysiological abnormalities and cognitive symptoms
seen in both AD and epilepsy disorders. As the pathology
progresses, accumulation of reactive oxygen species could
increase epilepsy sensitivity and result in seizure development.
On the other hand, epileptic activity may aggravate the cognitive
decline and neurodegeneration in AD, thus putting the patients in
a vicious cycle of debilitating symptoms and fast progression of
disease. In the absence of a clear causal mechanism such as
traumatic brain injury or genetic mutation, it is challenging to
determine which factor is the metaphorical “chicken” and which
is the “egg” due to the enormous variation in immune and
metabolic profiles, vast variety of lifestyles, environmental
circumstances and combinations of life events. The difficulties
of recognizing ictal events (the most common type of seizures
experienced by AD patients are nonconvulsive or complex-partial
seizures, which are easily missed) and differentiating between
seizure-related and dementia-related symptoms present
further challenges to our understanding of the mechanisms
driving the pathology in these conditions (Vossel et al., 2013;
Miranda and Brucki, 2014). As shown here, a systems level
network-based approach wherein gene modules represent
emergent global properties of biological function, provides
a useful tool for hypothesis generation, which then would be
subject to experimental validation. We demonstrate that gene
coexpression network analysis and network preservation
statistics methods can be used for a holistic, hypothesis-
free, systems-level examination and comparison of two
pathological states, solely based on the gene coexpression
network architecture of each state. Additionally, we present a
list of central hub genes that have the potential of influencing
the larger molecular network they regulate. The identification
of pathology-related modules which are associated with the
clinical features and phenotypes observed in the context of
both diseases and the implication of these modules in the
published epilepsy and dementia literature highlights the
validity of our approach. However, our findings should be
interpreted with two limitations in mind. Phenotypic
classification is compromised by a lack of epilepsy-specific
information on AD patients and vice versa and tissue-based
samples do not allow cell-type specific effects to be identified.
Further experimental evidence by means of large-scale
transcriptomic profiling of hippocampal tissue from
patients with consistent clinical history and
electroencephalographic (EEG) data is necessary to
establish the identified regulatory hub genes and
implicated cellular pathways as causal agents of
epileptogenesis.
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