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Since the inception of the theory and conceptual framework of genomic selection (GS),
extensive research has been done on evaluating its efficiency for utilization in crop
improvement. Though, the marker-assisted selection has proven its potential for
improvement of qualitative traits controlled by one to few genes with large effects. Its
role in improving quantitative traits controlled by several genes with small effects is limited.
In this regard, GS that utilizes genomic-estimated breeding values of individuals obtained
from genome-wide markers to choose candidates for the next breeding cycle is a powerful
approach to improve quantitative traits. In the last two decades, GS has been widely
adopted in animal breeding programs globally because of its potential to improve selection
accuracy, minimize phenotyping, reduce cycle time, and increase genetic gains. In
addition, given the promising initial evaluation outcomes of GS for the improvement of
yield, biotic and abiotic stress tolerance, and quality in cereal crops like wheat, maize, and
rice, prospects of integrating it in breeding crops are also being explored. Improved
statistical models that leverage the genomic information to increase the prediction
accuracies are critical for the effectiveness of GS-enabled breeding programs. Study
on genetic architecture under drought and heat stress helps in developing production
markers that can significantly accelerate the development of stress-resilient crop varieties
through GS. This review focuses on the transition from traditional selection methods to GS,
underlying statistical methods and tools used for this purpose, current status of GS studies
in crop plants, and perspectives for its successful implementation in the development of
climate-resilient crops.
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INTRODUCTION

Sustainable food production is the utmost requirement for food and nutritional security. Based on
reports, 821 million people are point below nourishment level; i.e., 151 million children under 5 years
are stunted; in terms of micronutrients, two billion people are not able to meet the requirement for
living a healthy life, globally. To meet these demands, the production and supply system has to be
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sound. It has been projected that production has to be increased
by 60% by 2050, amid different challenges related to the
production system posed by climate change (WHO/FAO,
2015), which is further projected to worsen by an increase in
the price of food to the extent of 1–29% by 2050. The
development of climate-resilient varieties through conventional
approaches of hybridization and selection is input-intensive
(labor, land, and time), limiting the realized genetic gain.
Improvement in the genetic gain as per the Lush equation
(Lush, 1943) can be secured through i) better intensity of
selection via accurate and high-throughput phenotyping and
ii) having a broad genetic base representing diverse eco-
geography in breeding program. The advancement in
genomics approaches leads to the availability of huge resources
like genome sequence information, transcriptome, and proteome
that have paved the way to hasten the identification of target
genes mitigating the effects of climate change (Varshney et al.,
2018). This sequence of information also leads to the
identification of several mutant loci at the nucleotide level
which might be associated with characters of complex nature
like yield in general and under different circumstances of stress,
which are otherwise very difficult to decipher. Genomic selection
emerged as an important tool which can utilize such information
for modeling the crop yield for effective and rapid selection under
different environmental conditions to meet the production
challenges in a climate-changing world.

Changes brought about by climate change have affected the
phenology of different crop species leading to a detrimental effect
on production and productivity. Different stresses, viz., heat, cold,
drought, and flood, are specific manifestations of climate change.
Genetic improvement of crops based on phenotypic selection has
been successfully achieved through traditional breeding.
However, in recent past, genomics led to the identification of
several underlying genes/QTLs providing tolerance to these
specific conditions, which have been utilized in marker-
assisted selection (MAS). MAS is an indirect selection process,
where individuals for a particular trait of interest are selected
based on the known markers linked to it (Fernando and
Grossman, 1989). This method has been efficiently used in the
past for selection of individuals in plant breeding to increase the
selection accuracy compared to the traditional phenotype-based
selection process (Mohan et al., 1997). In cereals, MAS resulted in
a number of varieties, viz., Improved Pusa Basmati1
(Gopalakrishnan et al., 2008), Pusa Basmati 1728 (Singh et al.,
2017a), Pusa Basmati 1637 (Singh et al., 2017b), Pusa Samba 1850
(Krishnan et al., 2019), Improved SambaMahsuri (Madhavi et al.,
2016), and Swarna-Sub1 (Neeraja et al., 2007) in rice, HUW510 in
wheat (Vasistha et al., 2017), and HHB67-Improved in pearl
millet (Rai et al., 2008). C214 in chickpea (Varshney et al., 2014a),
JTN5503 and DS880 in soybean (Arelli et al., 2006, 2009), and
JL24 and TAG24 in groundnut (Varshney et al., 2014b) have been
derived using MAS. However, MAS is practically feasible only if
the trait of interest is associated with one or very few major genes,
and it is impractical or irrelevant for quantitative traits
(i.e., polygenic traits that are governed by few hundreds of
minor genes) (Bernardo, 2008), which most of the stress
tolerance–related traits are based on. To overcome this issue, a

new selection tool called genomic selection (GS) was proposed
that can facilitate selection for such traits, by means of net genetic
merit of an individual obtained using the effects of dense markers
distributed across the genome (Meuwissen et al., 2001). In this
approach, the individual effect of each marker is estimated, and
the additive sum of all the marker effects is used for calculation of
the genomic-estimated breeding values (GEBV) of each
individual. In the current scenario of climate change, GS is a
promising tool for improving the genetic gain of individuals
under the breeding program (Yuan et al., 2019). The basic process
of any genomic selection process starts with the creation of
training population, i.e., individuals having both genotypic and
phenotypic information, and this information is used to build a
model, where the phenotype is used as a response and genotype as
a predictor. The information from the developed model is later
used to estimate the GEBV of breeding population,
i.e., individuals having only genotypic information. The basic
process of GS is also explained in Figure 1.

The major advantage of using GS is that it allows for a drastic
reduction in the duration of the breeding cycle as compared to
traditional breeding and also minimizes the cost associated with
extensive phenotyping, thereby subsequently accelerating genetic
gains and ensuring food and nutritional security (Heffner et al.,
2010). However, there are certain factors such as the size of
training and breeding populations, genetic diversity of breeding
population, heritability of the underlying trait, influence of
genotype–environment (GxE) interaction, density of markers,
and genetic relationship between training population and
breeding population or selection candidates, which may
influence the genomic prediction’s accuracy (De Roos et al.,
2009; Lorenzana and Bernardo, 2009; Luan et al., 2009;
Daetwyler et al., 2010; Clark et al., 2011; Howard et al., 2014).
Hence, successful implementation of GS in breeding programs
requires careful consideration of all these factors. Apart from
these factors, there are certain limitations of genomic selection.
Changes in gene frequencies and epistatic interactions drastically
affect the estimates of GEBV. Most of the models used to estimate
GEBV ignore the effect of epistasis which plays a prime role

FIGURE 1 | Basic schema of the genomic selection process.
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especially in cross pollinated plants (Heffner et al., 2009). The rate
of declination of selection response is more in GS than pedigree
based selection, which can be minimized through the addition of
new markers to the model (Nakaya and Isobe, 2012). However,
the cost of implementation of GS is more than that of the
traditional breeding program.

The choice of models is an important factor in implementing
GS, and several parametric and non-parametric genomic
prediction models are available for this purpose. One of the
most common and widely used parametric genomic selection
model is the best linear unbiased prediction (BLUP). It is a
mixed model–based whole-genome regression approach that is
used to estimate the marker effects, and the same has been
successfully applied to predict complex traits (Habier et al.,
2009, 2013; de los Campos et al., 2013). In general, it was
observed that the performance of parametric models found to be
efficient only for traits with additive genetic architectures. For
traits that are highly affected by epistatic or non-additive
interactions, it becomes challenging to use parametric models
(Moore and Williams, 2009). Epistatic interactions play a key
role in explaining genetic variation for quantitative traits.
Hence, ignoring such type of information in the prediction
model might result in lower genomic prediction accuracies
(Cooper et al., 2002). Due to these factors, it is not always
advisable to practice simple linear or parametric models.
Gianola et al. (2006) first used non-parametric and
semiparametric methods for modeling the complex genetic
architecture. Subsequently, several statistical methods were
implemented to model both additive and epistatic effects for
genomic selection (Xu, 2007; Cai et al., 2011). For a detailed
comparison of various parametric, non-parametric and
semiparametric methods in different settings of population
size and trait heritability, one can refer to Howard et al.
(2014) and Budhlakoti et al. (2020c). Recently, some
semiparametric (Legarra and Reverter, 2018) and advanced
approaches (Tanaka, 2018; Budhlakoti et al., 2020a, 2020b;
Majumdar et al., 2020; Sehgal et al., 2020; Tanaka, 2020;
Mishra et al., 2021) have also been proposed and
implemented in context to genomic selection. In the next
section, few most commonly used methods for genomic
selection studies have been discussed.

STATISTICAL MODEL FOR GENOMIC
SELECTION

The process of selecting the suitable individuals in GS starts with a
simple linear model sometimes also called least-squares
regression or ordinary least-squares regression (OLS):

Y � 1nµ +Xβ + ε

where Y � n × 1 vectors of observations, µ is the mean, β � p × 1
vectors of marker effects, ε � n × 1 vectors of random residual
effects, X = design matrix of order n × p (where each row
represents the genotype/individuals/lines (n) and each column
corresponds to the marker (p)), and ε

˜

N(0, σ2e).

One major problem in linear models using several thousands
of genome-wide markers is that the number of markers (p)
exceeds the number of observations (n), i.e., genotype/
individuals/lines, and this creates the problem of over-
parameterization (large “p” and small “n” problem (p >> n)).
Using a subset of significant markers can be an alternative for
dealing with the large “p” and small “n” problem.Meuwissen et al.
(2001) used a modification of the least-squares regression for GS.
They performed least-squares regression analysis on each marker
separately with the following model:

Y � Xjβj + ε

whereXj � jth column of the designmatrix of the markers and βj
= genetic effect of the jth marker.

Markers with significant effects are selected using the log
likelihood of this model, and those are further used for
estimation of breeding values. However, it has to be noted that
some key informationmay be lost by selection based on the subset
of markers.

Hence, an efficient solution for the over-parameterization
problem in linear models is using ridge regression (RR), which
is a penalized regression–based approach (Meuwissen et al.,
2001). It also solves the problems of multicollinearity at the
same time (i.e., correlated predictors, e.g., SNP, or markers).
RR shrinks the coefficients of correlated predictors equally
toward zero and solves the regression problem using ℓ2
penalized least squares. Here, the goal is to derive an estimator
of parameter β with a smaller variance than the least-squares
estimator. Similar to RR, the least absolute shrinkage and
selection operator (LASSO) (Tibshirani, 1996; Usai et al.,
2009) is another variant of penalized regression, which uses
the ℓ1 penalized least-squares criterion to obtain a sparse
solution. However, sometimes LASSO may not work well with
highly correlated predictors (e.g., SNPs in high linkage
disequilibrium) (Ogutu et al., 2012). The elastic net (ENET) is
an extension of the LASSO that is robust to extreme correlations
among the predictors (Friedman et al., 2010), and it is a
compromise between ℓ1 penalty (LASSO) and ℓ2 penalty (RR)
(Zou and Hastie, 2005).

The RRmodel considers that each marker contributes to equal
variance, which is not the case for all traits. Therefore, the
variance of the markers based on the trait’s genetic
architecture has to be modeled. For this purpose, several
Bayesian models have been proposed where it is assumed that
there is some prior distribution of marker effects. Furthermore,
inferences about model parameters are obtained on the basis of
posterior distributions of marker effects. There are several
variants of Bayesian models for genomic prediction such as
Bayes A, Bayes B, Bayes Cπ, and Bayes Dπ (Meuwissen et al.,
2001; Habier et al., 2011) and other derivatives, e.g., Bayesian
LASSO and Bayesian ridge regression (BRR). Besides the marker-
based models, the best linear unbiased prediction (BLUP)
(Henderson et al., 1959) is one of the most commonly used
genomic prediction methods. There are many variants of BLUP
available for this purpose, e.g., genomic BLUP (GBLUP), single-
step GBLUP (ssGBLUP), ridge regression BLUP (RRBLUP), and
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GBLUP with linear ridge kernel regression (rrGBLUP), of which
GBLUP is very frequently used. The GBLUP uses the genomic
relationships calculated using markers instead of the
conventional BLUP which uses the pedigree relationships to
obtain the GEBV of the lines or individuals (Meuwissen et al.,
2001).

The genomic prediction models discussed so far perform well
for traits with additive genetic architecture, but their performance
becomes very poor in case of epistatic genetic architectures.
Hence, Gianola et al. (2006) first used non-parametric and
semiparametric methods for modeling the complex genetic
architecture. Subsequently, several statistical methods were
implemented to model both additive and epistatic effects for
genomic selection (Xu, 2007; Cai et al., 2011; Legarra and
Reverter, 2018). There are several non-parametric methods
that have been studied in relation to genomic selection, e.g.,
NW (Nadaraya–Watson) estimator (Gianola et al., 2006), RKHS
(reproductive kernel Hilbert space) (Gianola et al., 2006), SVM
(support vector machine) (Maenhout et al., 2007; Long et al.,
2011), ANN (artificial neural network) (Gianola et al., 2011), and
RF (random forest) (Holliday et al., 2012), among them SVM,
NN, and RF are based on the machine learning approach.

Methods discussed earlier in this section are based on genomic
information where information is available for a single trait,
i.e., single-trait genomic selection (STGS). As the performance
of STGS-based methods may be affected significantly in case of
pleiotropy, i.e., one gene linked to multiple traits, a mutation in a
pleiotropic gene may have an effect on several traits
simultaneously. It was observed that low heritability traits can
borrow information from correlated traits and consequently
achieve higher prediction accuracy. However, STGS-based
methods consider the information of each trait independently.
Hence, we may lose crucial information which may ultimately
result in poor genomic prediction accuracy. Nowadays, as we are
receiving data on multiple traits, so multi-trait genomic selection
(MTGS)-based methods may provide more accurate GEBV and
subsequently a higher prediction accuracy. Several MTGS-based
methods have been studied in relation to GS, e.g., multivariate

mixed model approach (Jia and Jannink, 2012; Klápště et al.,
2020), Bayesian multi-trait model (Jia and Jannink, 2012; Cheng
et al., 2018), MRCE (multivariate regression with covariance
estimation) (Rothman et al., 2010), and cGGM (conditional
Gaussian graphical model) (Chiquet et al., 2017). Jia and
Jannink (2012) presented three multivariate linear models
(i.e., GBLUP, Bayes A, and Bayes Cπ) and compared them to
univariate models, and a detailed comparison of various STGS-
and MTGS-based methods has also been studied by Budhlakoti
et al. (2019c). A brief structure of different STGS- and MTGS-
based methods used in GS studies is given in Figure 2.

GS: IMPLICATIONS IN CROP
IMPROVEMENT

GS in Cereals
Cereals are an important part of our daily diet as they contribute
about 50% of the total dietary energy supply (WHO/FAO, 2003).
Wheat, rice, maize, and barley are the major cereal crops, which
are being grown on arable land all over the world amounting to a
total of 2,817 million tonnes of production (FAO). Production of
these crops is being challenged by calamities created by a change
in climatic pattern (Reynolds, 2010), and over that, it is being
complicated by the rising demand of increasing population
(Tester and Langridge, 2010; Furbank and Tester, 2011). To
meet the challenges, the production system has to be efficient
and sustainable with lower pressure on the ecosystem. High-
yielding, resource-efficient crop varieties are an integral
component of such production systems which can address the
challenges. But the development of such variety is a painstaking
endeavor as most of the crop productivity traits are under the
control of a complex genetic system (most genes are of minor
effect) with the complication of low heritability and high order of
epitasis (Mackay, 2001). Though conventional selection methods
have resulted in a number of varieties but the genetic gain per unit
time is not as much rewarding as GS, it provides an opportunity
to hasten the cycle of selection (Bernardo and Yu, 2007; Lorenz

FIGURE 2 | Overall summary of the most commonly used models in genomic selection.
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et al., 2011). The potential of GS can be assessed from the fact that
it has the ability to select high breeding value individuals rapidly
from early-generation populations without the need of extensive
phenotyping. This has been shown effectively in cereal crops in
the recent past. Wheat, rice, maize, and barley are the first
candidate crops where the effectiveness of GS has been
studied. GS in these crops leads to the identification of
different models which were able to efficiently predict the
performance of traits under question and filter out the
important breeding material. In the following section, the role
of GS in cereal crops has been discussed.

Grain Yield and Related Traits’ Improvement
Grain yield is a major trait which is affected directly or indirectly
by other traits including thousand grain weight, number of tillers
bearing panicle, number of grains per panicle, number of filled
grains per panicle etc. Genomic prediction for these traits
utilizing different types of training populations and models
have been evaluated. The variations in the accuracies of
genomic prediction have been attributed to the heritability of
the trait, training population, and models used. The genomic
prediction accuracy for a very complex and physiological
trait–like distribution of weight to the individual grain in the
panicle in rice (Yabe et al., 2018) ranged from 0.28 to 0.78 for
grain yield in maize (Rio et al., 2019). For the improvement of
accuracy, the role of training population also has a significant
effect, and it has been reported that prediction based on the
training set developed using North Carolina mating design II
(0.60) was found at par with that of full diallel matings (0.58) and
superior to that of test cross (0.10) (Fristche-Neto et al., 2018).
Similarly, better prediction accuracies for grain yield were
observed in recombinant inbred lines and doubled haploid
populations compared to natural populations (Liu et al., 2018).
The accuracy of GS for grain yield is also highly influenced by the
size of training populations and genetic relationships between the
training and breeding populations (Lozada et al., 2019; Lozada
and Carter, 2020). Longin et al. (2014) reported that GS followed
by one cycle of phenotypic selection has been reported to facilitate
identification of superior parental lines with better combining
ability and high annual genetic gain for grain yield in wheat than
simple phenotypic selection. However scheme had not
considered the cost and time involved in production and
nursery screening of these lines, and thus, additional schemes
like GSrapid have been proposed which have better selection gain
and have been recommended for utilization in a hybrid breeding
program of different cereal crops (Marulanda et al., 2016). GS
could also be potentially used in the prediction of the
performance of a large number of hybrid combinations
(VanRaden, 2008; Crossa et al., 2017). The earlier GS studies
on cereals started with wheat where the DArT marker system was
used (Crossa et al., 2010, 2011; Heffner et al., 2011; Burgueño
et al., 2012; Pérez-Rodríguez et al., 2012). However, later, other
genome-wide SNP platforms became the routine marker in
genomic selection owing to their own advantages (Poland
et al., 2012; Zhao et al., 2012). Detailed information on GS
studies for grain yield and related traits in major cereals,
pulses, oilseeds, and horticultural crops with the details of

statistical models, marker platforms, types of populations used,
and the prediction accuracies of statistical models are listed in
Table 1.

Biotic Stress Tolerance
With the change in weather patterns, emergence/resurgence of
new races and biotypes of pathogens and insects is being reported
globally (Juarez et al., 2013; Váry et al., 2015; Fones et al., 2020).
Hence, identification of resistance genes in the germplasm and
their incorporation into the breeding program are required to
develop biotic stress–tolerant varieties. MAS has proved to be
efficient in breeding for qualitative resistance, but for quantitative
resistance which is governed by many genes with smaller effects,
MAS has not been so effective. GS has proved its role in
improving tolerance against biotic stresses in cereals which are
quantitatively controlled, though it has been applied to a very
limited extent. Most of the studies on the utility of GS for biotic
stress tolerance have been reported from wheat, for a wide array
of diseases including three types of rusts, Fusarium head blight,
septoria tritici blotch, powdery mildew, tan spot, and
Stagonospora nodorum blotch. The genomic prediction
accuracies for these diseases ranged from 0.14 to 0.85
(Rutkoski et al., 2012; Daetwyler et al., 2014; Mirdita et al.,
2015; Juliana et al., 2017; Sarinelli et al., 2019). In rice, GS has
been utilized to identify blast-tolerant lines (Huang et al., 2019).
In maize, GS has been successfully utilized to select lines from
natural populations for tolerance to Stenocarpella maydis causing
ear rot (dos Santos et al., 2016) and from biparental populations
for superior yield under heavy infestation of Striga (Badu-Apraku
et al., 2019). In case of barley, markers and prediction models
were utilized for Fusarium head blight severity, and the
prediction accuracy was quite higher, i.e., 0.72, than that of
conventional phenotyping (Lorenz et al., 2012; Sallam and
Smith, 2016).

Abiotic Stress Tolerance
The occurrence of drought, high-temperature stress during crop
growth stages, flood, etc., is at surge due to climate change,
causing significant crop losses (Qin et al., 2011). With the 1°C
increase in global temperature, yield reduction has been predicted
up to 6.4% in wheat (Liu et al., 2016). The sustainable and
economic options under such situations to cover the losses are
changing cropping patterns or developing abiotic stress–tolerant
varieties. Identification of tolerant genotypes from the germplasm
and their utilization in the breeding program become a prime
requirement for development of such varieties (Baenziger, 2016).
The major issue in breeding for abiotic stress tolerance is their
complex inheritance, low heritability, and high environmental
effect on them (Bernardo, 2008).

Conventional breeding methods for abiotic stresses suffer
from limitations of accuracy and reproducibility. Though
molecular markers have been utilized to identify and transfer
yield QTLs under abiotic stress conditions (Ribaut and Ragot,
2007; Almeida et al., 2013), but it may not be effective as QTL
from limited genetic resources explain little variation for grain
yield under stress and are also highly influenced by the genetic
background (Semagn et al., 2013) as well as the environment and
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TABLE 1 | Genomic prediction for grain yield and related traits in different crops (i.e. Cereals, Pulses, Oilseeds and Horticultural crops).

Crop Model Genotyping Techniques Population type Trait Prediction accuracy (PA) Reference

A. Cereals
i) Maize GBLUP Taqman (ABI 2002) F1 from half diallel and test crosses Grain yield (GY) 0.58 Zhao et al. (2012)

GBLUP Affymetrix® F1 from test crosses (TC), North Carolina design II
(NCII), and full diallel (FD)

GY 0.10 (TC) Fristche-Neto et al.
(2018)0.58(NCII)

0.60(FD)
RRBLUP 55 K SNP array Natural population (NP), recombinant inbred line (RIL),

double haploid (DH), and F2:3
GY RIL&DH (0.41) > F2:3 (0.36)

> NP(0.40)
Liu et al. (2018)

GBLUP 100 kernel weight F2:3 (0.77) > RIL&DH (0.65)
> NP(0.48)

Bayes A, Bayes B, Bayes C, LASSO, and RKHS ()
GBLUP and multigroup GBLUP Genotyping by

sequencing (GBS)
TC GY 0.78 Rio et al. (2019)

50 K Illumina® Yield index (YI) 0.73
600 K and Affymetrix® Axiom

RRBLUP and BSSV (Bayesian stochastic search
variable)

DArTSeq™ and Illumina
HiSeq2000

Inbred lines Ear rot Proportion of rotten
kernel

0.87 dos Santos et al. (2016)

Ear rot incidence 0.24–0.56
BLUP Kompetitive Allele Specific

PCR (KASP)
Inbred lines and test cross progenies Striga resistance 0.58 Badu-Apraku et al.

(2019)Drought tolerance 0.42–0.65
GBLUP GBS Breeding lines Drought tolerance 0.37–0.38 Beyene et al. (2015)
RRBLUP and GBLUP KASP Inbred lines and half diallel population Water-logging tolerance 0.53–0.84 Das et al. (2020)
BLUP KASP Asian and African inbred lines Drought

tolerance
GY 0.71–0.75 Vivek et al. (2017)
Anthesis–silking
interval (ASI)

0.35–0.43

RRBLUP Infinium Maize SNP50 Bead
Chip

Subtropical maize lines Drought
tolerance

ASI 0.93 Shikha et al. (2017)
Bayes A, Bayes B, and LASSO 100 kernel weight 0.92

ii) Wheat RRBLUP, RKHS, and Bayesian LASSO Diversity Arrays Technology
(DArT)

Advanced breeding and germplasm lines GY 0.49–0.61 Crossa et al. (2010)

Bayesian LASSO and RKHS DArT Breeding lines GY 0.43–0.79 Crossa et al. (2011)
Bayes A, Bayes B, Bayes C, and RRBLUP DArT Breeding lines GY 0.48 Heffner et al. (2011)
Bayesian LASSO DArT Breeding lines GY 0.5–0.6 Burgueño et al. (2012)
RRBLUP, Bayes A, Bayes B, Bayes C, LASSO, NN, and
RKHS

DArT Breeding lines GY 0.6–0.7 Pérez-Rodríguez et al.
(2012)

GBLUP DArT Breeding lines GY 0.2–0.4 Poland et al. (2012)
RRBLUP, Bayes A, Bayes B, and Bayes C 9 K Illumina® Infinium F1s GY 0.3–0.6 Zhao et al. (2013)
RRBLUP 9 K Illumina® and 90 K iSelect Red winter wheat breeding lines GY 0.14–0.43 Lozada et al. (2019)
GBLUP DArT and KASP F4:6 population GY 0.75 Michel et al. (2019)
GBLUP GBS Breeding lines GY 0.42–0.56 Juliana et al. (2019)
GBLUP GBS Breeding population GY 0.12–0.34 Sun et al. (2019)
GBLUP and IBCF:MTME (item-based collaborative
filtering: multi-trait multi-environment)

Illumina® 90 K Winter wheat lines GY -0.21 to 0.42 Lozada and Carter
(2020)

GBLUP and BRR Infinium iSelect 9 K Germplasm Leaf rust resistance (LRR) 0.35 Daetwyler et al. (2014)
Stem rust resistance (SRR) 0.27
Yellow rust resistance (YRR) 0.44

RR DArT Breeding lines Fusarium head blight (FHB) resistance 0.006–0.463 Rutkoski et al. (2012)
RKHS 0.118–0.575
RF Deoxynivalenol (DON) resistance
Bayesian LASSO and multiple linear regression
RRBLUP Illumina Infinium 9 K and 90 K Winter wheat breeding lines FHB resistance 0.6 Mirdita et al. (2015)
Bayes Cπ and RKHS Septoria leaf blotch resistance 0.5
RRBLUP GBS Winter wheat breeding lines Powdery mildew resistance 0.60 Sarinelli et al. (2019)

GY 0.64
Test weight 0.71

RKHS and GBLUP GBS Lines from International Bread Wheat Screening
Nursery

LRR Seedling 0.31–0.74 Juliana et al. (2017)
Adult 0.12–0.56

YRR Seedling 0.70–0.78
Adult 0.34–0.71

SRR 0.31–0.65
(Continued on following page)
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TABLE 1 | (Continued) Genomic prediction for grain yield and related traits in different crops (i.e. Cereals, Pulses, Oilseeds and Horticultural crops).

Crop Model Genotyping Techniques Population type Trait Prediction accuracy (PA) Reference

iii) Rice Bayesian LASSO DArT Inter-related synthetic population GY 0.309 Grenier et al. (2015)
Panicle weight 0.327

RRBLUP GBS Tropical rice breeding lines GY 0.31 Spindel et al. (2015)
GBLUP Illumina HiSeq 2000 128 Japanese rice varieties Field grain 0.30 Yabe et al. (2018)

Field grain weight 0.28
Illumina HiSeq 4000 and
HiSeqX

Variance of field grain 0.53

GBLUP, SVM, LASSO, and PLS GBS North Carolina design II population GY ~0.5 Xu et al. (2018)
Thousand grain weight (TGW) ~0.28

GBLUP Illumina® HiSeq 2000 Hybrid population GY 0.54 Cui et al. (2020)
Grain length 0.92

GBLUP, RKHS, and Bayes B GBS Breeding lines Panicle weight 0.30 Hassen et al. (2018)
Nitrogen balance index 0.21

GBLUP SNP Breeding lines GY 0.39 Wang et al. (2018)
TGW 0.88

RRBLUP and GBLUP GBS Rice population Blast resistance 0.17–0.73 Huang et al. (2019)
GBLUP and RKHS 962 K Core SNP dataset Germplasm Drought tolerance 0.226–0.809 Bhandari et al. (2019)

iv) Barley RRBLUP Illumina GoldenGate Breeding lines GY 0.57 Sallam et al. (2015)
DON 0.72
FHB 0.74

GBLUP and RKHS GBS Breeding lines Thousand kernel weight (TKW) 0.67 Abed et al. (2018)
GBLUP Illumina Breeding lines GY 0.362 Tiede and Smith (2018)

DON resistance 0.367
B. Pulses
i) Lentil RRBLUP Exome capture Lentil diversity panel, RIL Maturity duration 0.58–0.84 Haile et al. (2020)

GBLUP
Bayes A
Bayes B
Bayes Cπ
Bayesian LASSO
BRR and RKHS

ii) Common
bean

GBLUP GBS RIL, multi-parent advanced generation inter-cross
(MAGIC), germplasm

Cooking time 0.22–0.55 Diaz et al. (2021)
Bayes A
Bayes B
Bayes C
Bayesian LASSO and BRR
RKHS GBS Breeding lines Root rot

resistance
Fusarium 0.52 Diaz et al. (2021)
Pythium 0.72–0.79

iii) Chickpea RRBLUP Whole-genome re-sequencing
(WGRS)

Breeding lines Drought tolerance 0.56–0.61 Li et al. (2018)
Bayesian LASSO and BRR

C. Oilseeds
i) Groundnut Bayesian generalized linear regression Affymetrix GeneTitan® Breeding lines Yield 0.49–0.60 Pandey et al. (2020)

Protein 0.41–0.46
Rust resistance 0.74–0.75
Late leaf spot resistance 0.57–0.65

ii) Brassica
napus

RRBLUP Infinium Array 60 K Test cross F1s Seed yield 0.45 Jan et al., 2016
Oil content 0.81
Lodging resistance 0.39

GBLUP Transcriptome GBSt assay Spring canola lines Seed yield 0.69 Fikere et al. (2020)
Oil content 0.64

GBLUP Illumina Infinium 60 K Double haploid population Seed yield 0.27–0.55 Xiong et al. (2020)
LASSO

iii) Sunflower and multi-kernel BLUP GBS F1s from factorial mating design Oil content 0.783 Mangin et al. (2017)
iv) Soybean RRBLUP iSelect Bead Chip RILs from interspecific cross Yield 0.68 Beche et al. (2021)

Oil content 0.76
Bayes B and Bayesian LASSO BARCSoySNP6K Protein content 0.76
RRBLUP iSelect Bead Chip Breeding lines Oil content 0.30 Stewart-Brown et al.

(2019)BARCSoySNP6K Protein content 0.55
(Continued on following page)
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there interactions. GS is superior to MAS, and the prediction
efficiency is also higher for abiotic stress tolerance (Cerrudo et al.,
2018). The usefulness of GS has been shown in wheat, maize, and
rice for drought and heat tolerance.

Beyene et al. (2015) have reported a gain of 0.086 t/ha for grain
yield, following the rapid cycling GS strategy in eight biparental
populations of maize under drought conditions, and a final gain
of 0.176 t/ha after three cycles of selection. This increased the
genetic gain as the time required for selection was reduced
significantly as compared to that of the conventional breeding
scheme, where it was three times higher with phenotypic
selection. Similarly, Das et al. (2020) reported a genetic gain of
0.110 and 0.135 t/ha/yr for grain yield under drought and 0.038
and 0.113 t/ha/yr under water logging in two maize populations,
viz., Maize Yellow Synthetic 1 and Maize Yellow Synthetic 2,
respectively, following rapid cycling genomic selection. Vivek
et al. (2017) compared the performances of second cycle selection
through phenotypic and rapid cycle genomic selection and found
10–20% superiority using the latter. Genomic prediction
accuracies using multi-environment models for drought stress
tolerance were higher than those using single-environment
models in rice and wheat (Sukumaran et al., 2018; Bhandari
et al., 2019). Prediction accuracies were higher for heat and
drought stress in case of wheat when secondary traits
contributing to yield were considered under stress rather than
yield per se using genomic prediction (Rutkoski et al., 2016).
Comparative analysis among different models leads to the
conclusion that multi-trait models are superior when selection
is carried out in severe drought conditions, while the random
regression model was better than the repeatability model and
multi-trait model under normal drought conditions and also use
of secondary high-throughput traits in genomic prediction
improved accuracies by ~70% (Sun et al., 2017).

Quality Improvement
Quality traits have varied genetic architectures, some being
controlled oligogenically like grain color, while others are
polygenic in nature, viz., grain size and protein content
(Battenfield et al., 2016). GS has been carried out in wheat
extensively for quality-related traits, viz., milling and flour
quality, and when prediction accuracies were compared in
biparental and multi-family populations, it was concluded that
the prediction accuracies in multi-family populations were better
(Heffner et al., 2011).

Protein content is known to be negatively correlated with yield
due to physiological compensation (Lam et al., 1996). Michel et al.
(2019) employed multi-trait genomic selection for grain yield,
protein content, and dough rheological traits for efficient
selection with optimized yield and protein content with better
quality. The prediction accuracy for the quality traits depends on
variability in the germplasm, the relationship among training and
prediction populations, etc. (Crossa et al., 2014; Zhao et al., 2015).
Joukhadar et al. (2021) used Bayesian regression and BRR for
rapid improvement of grain yield as well as mineral content to
biofortify wheat and reported Bayesian regression was better in
predicting mineral content with an accuracy of 0.55. In rice, grain
length and width are important quality parameters, and theT
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prediction accuracy for these traits ranged from 0.35 to 0.45 and
0.5 to 0.7, respectively, in 110 Japanese rice cultivars employing
various GS models (Onogi et al., 2015). In barley, the prediction
for quality traits like malting quality (prediction accuracy:
0.4–0.8) has shown the prospects of GS for screening large
populations without the need of cost-intensive phenotyping
(Schmidt et al., 2016).

GS in Oilseeds
Oilseeds are a source of livelihood to the smallholder farmers in
developing countries of Asia and Africa. The yield potential is still
to be realized by bridging the yield gap via inducing tolerance to
biotic and abiotic stresses and improvement in quality (Janila
et al., 2016). Different traits related to biotic and abiotic stresses
have been mapped, but most of them are qualitative in nature,
and the report of GS is limited in such potential crops. Oil quality
and yield traits are influenced by the environment and GxE
interactions (Patil et al., 2020). Hence, it is important to use the
appropriate GS models to account for the GxE effects for accurate
selection. Pandey et al. (2020) employed GS in groundnut with
different models and validation schemes to account for GxE
interaction effects. The model having genomic information
generated from the SNP (G), genotypic effect of the line (L),
environment effect (E), and their interactions (LxE and GxE) had
better mean accuracy (0.58) for all the traits compared to other
models. Jan et al. (2016) employed the RRBLUP model for GS in
Brassica using 950 cross combinations derived from utilizing 475
lines and two testers, for the improvement of oil-specific traits,
and the accuracy for oil content and oil yield was 0.81 and 0.75,
respectively. Hence, they concluded that the GS model is helpful
in pre-selecting superior cross combinations before extensive
field evaluation over location and years saving resources.
Fikere et al. (2020) employed GS for 22 traits related to yield,
disease resistance, and quality in B. napus and reported prediction
accuracy was highest for yield (0.69) followed by oil content
(0.64) using GBLUP. They also evaluated genomic prediction for
compositional fatty acid estimated under rainfed and irrigated
conditions and concluded that the prediction accuracies for these
traits were lower under non-irrigated conditions. Xiong et al.
(2020) employed various prediction models, viz., LASSO,
GBLUP, OLS, and OLS post-LASSO, for different traits in B.
napus and reported the two-stage method OLS post-LASSO to be
the most accurate (0.90 and 0.55 for oil content and single plant
yield, respectively) with the provision of incorporating GxE
interactions. For oil content in sunflower which is highly
heritable and additive in nature, Mangin et al. (2017) reported
that accuracy based on general combining ability (GCA) and GS
were on par, and in case if there is no knowledge about one of the
parents of hybrid combination, GS excels the GCA-based
predictions. Similar inferences had been made by Reif et al.
(2013) for the prediction of hybrid performance in sunflower.

From a cross between cultivated and wild progenitors of
soybean (G. max X G. sojae), Beche et al. (2021) reported that
the yield-related alleles were associated with the cultivated elite
line, but the protein content alleles were from the wild
progenitor. The difference in the distribution of trait-
contributing alleles in such crosses has a greater impact on

their predictive accuracy. When each allele is distributed equally
in the population, the predictive accuracy for both the alleles is
the same. In such cases, it is obvious that the less frequent allele’s
prediction is biased downward. Contiguous breeding programs
are very common where new cross combinations are added each
year. In such cases, using nested association mapping (NAM)
population is better in terms of prediction accuracy (for yield
0.68 and oil and for protein content 0.76) than biparental
population, showing the potential of NAM where
connectedness is there among the population on the basis of
the common parent (Beche et al., 2021). Similarly, Stewart-
Brown et al. (2019) have reported that, for better predictions in
soybean, it is important to have good relatedness among
training and breeding populations. They have observed that
the size of the training population has a larger effect on the
prediction accuracy, compared to the marker density, but
increasing the training population sizes beyond a limit had a
diminishing return on the prediction accuracy. Hu et al. (2011)
applied GS for biological process, i.e., embryogenesis capacity in
soybean, and reported a good prediction accuracy (0.78).

GS in Pulses
In lentil, Haile et al. (2020) showed that if large-effect QTLs were
present in the population, multi-trait–based Bayes B is the best
GS model, while single-trait GS (STGS) is suitable in their
absence. They also reported that, for low heritable traits with
GxE interactions, MTGS improves predictability. Considering
quality traits in Phaseolus, i.e., cooking time for screening of fast
culinary genotypes, Diaz et al. (2021) evaluated GS using different
populations (RIL, MAGIC, Andean, and Mesoamerican breeding
lines). The trait was highly heritable (0.64–0.89), and genomic
prediction accuracies for cooking time using MAGIC population
were promising and high (0.55) compared to those of
Mesoamerican genotypes (0.22).

Under the circumstance of less connectedness in the training
and prediction populations, markers generated using the whole
genome re-sequencing (WGRS) platform increase the
prediction accuracy; however, Li et al. (2018) proposed first
identifying causal variants and then utilizing them into the
prediction. The prediction accuracy was 0.148–0.186 for yield
under drought when using all the SNP from WGRS, but when
filtered yield-related causal SNPs were employed, it was
observed that prediction accuracy significantly improved
(0.56–0.61). Diaz et al. (2021) employed GS for root rot
resistance and reported high prediction accuracies (0.7–0.8)
for both rots (Pythium and Fusarium) in Phaseolus and
proposed it to be promising for improving quantitative
tolerance.

GS in Horticultural Crops
Fruit and vegetables are indispensable in achieving nutritional
security. However, the problem associated with their breeding,
especially of fruits, has its own limitations, viz., long juvenile
phase and highly heterozygous nature. Therefore, genetic gain is
not much as per the Lush equation. In such crops, GS can be a
perfect tool where prediction of performance for quality- and
yield-related traits which are under a complex genetic system can
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be utilized to improve selection accuracy and efficiency in
developing varieties. The success of GS in annual crops has
led the horticultural crop breeder to utilize its potential in
perennial fruit as well as annual fruit and vegetable crops.
Roth et al. (2020) evaluated 537 genotypes in apple for fruit
texture traits and performed GS and reported the accuracy up to
0.81. It was suggested to have a large training population from
which a tailored training population with a priori genetic
relatedness information and ample variation can be formed
and utilized to predict the performance of population under
consideration. Kumar et al. (2012) have shown high prediction
accuracy in apple for different quality traits utilizing a factorial
mating design (0.70–0.90). Imai et al. (2019) reported that
ssGBLUP predicts with higher accuracy (0.650, 0.519, and
0.666) than GBLUP (0.642, 0.432, and 0.655) for quality traits
in citrus, viz., fruit weight, sugar content, and acid content from
population where some individuals are not genotyped using
information from genotyped related individuals, hence
reducing the cost at hand.

As fruits are perishable produce and the post-harvest
attribute of the fruits plays an important role in storability,
attempts have been made to employ GS for such traits. In
apricot, Nsibi et al. (2020) reported prediction accuracy
ranging from 0.31 to 0.78 for glucose content and ethylene
production. Minamikawa et al. (2017) compared different
models of GS for fruit weight distribution among two groups
of fruit sizes and reported that, among a large fruit size group,
rrGBLUP (0.89) was superior to GBLUP (0.74) and the same
was in the case of a small fruit size group, i.e., rrGBLUP (0.32)
and GBLUP (0.30). Also, it was proposed to have breeding
population or combined parental and breeding population as
training population to have better accuracy than only having
parental as training population which was consistent for all the
quality-related traits. Kumar et al. (2019) employed GS in pear
for various fruit quality traits ranging from texture to taste and
observed the prediction accuracy ranged from 0.32 to 0.62
averaging to 0.42 and also suggested that training population
should be multi-generational and evaluated rigorously over
location and time, to have better prediction accuracy.
Various GS models have been evaluated for different fruit-
related traits in capsicum and reported that RKHS had better
accuracy ranging from 0.75 to 0.82 and positively correlated
with the number of markers (Hong et al., 2020). GS is also
performed to evaluate the accuracy of prediction of different
biochemical parameters important for fruit quality in tomato
which ranged from 0.13 to 0.70 for aspartate content and also
for other traits, viz., fruit weight (0.81), firmness (0.61), soluble
solids (0.71), sugar content (0.65), and acidity (0.62) (Duangjit
et al., 2016).

STATISTICAL TOOLS FOR IMPLEMENTING
GENOMIC SELECTION

Several tools and packages have been developed for the evaluation
of genomic prediction and implementation of GS, some of which
are discussed below.

GMStool
It is a genome-wide association study (GWAS)-based tool for
genomic prediction using genome-wide marker data. It searches
for the optimum number of markers for prediction using
appropriate statistical and machine learning/deep
learning–based models and chooses the best prediction model
(Jeong et al., 2020). Furthermore, it identifies SNP markers with
the lowest p-values (e.g., top 100 markers) in the GWAS and then
chooses the relevant markers set to be included in the final
prediction model. GMStool is R-based and freely available
through the GitHub repository at https://github.com/
JaeYoonKim72/GMStool. The whole process or its algorithm is
basically divided into three steps: data preparation, marker
selection, and final prediction model. The detailed procedure
of GMStool is discussed below.

Step 1: Input data are divided into training and test sets (user
defined)

Step 2: The training set is further divided into small datasets
for performing cross validation (i.e., k-folds, for example, five or
ten folds) followed by marker selection in each group or fold. The
process of marker selection is performed in each fold/group
simultaneously.

Step 3: The selected marker from each fold is integrated into
the final marker set for updating the model. Appropriate
statistical and machine learning–based models are then used
for genomic prediction.

solGS
It is an open-source tool based on the Linux operating system.
The workflow of the tool is broadly divided into two steps,
i.e., training of the prediction model and obtaining GEBV.
However, there are three approaches available for training the
prediction model, i.e., trait-based approach, trial approach, and
custom lists approach. Here, model input and output could be
visualized graphically and can be interactively explored or
downloaded. It is designed to store a large amount of
genotypic, phenotypic, and experimental data. In the
background, it basically uses two R-based packages, i.e., nlme
(Pinheiro et al., 2017) for data preprocessing and rrBLUP
(Endelman, 2011) for statistical modeling. solGS was earlier
used by the NEXTGEN Cassava project (http://nextgencassava.
org) and implemented at the Cassavabase website (http://
cassavabase.org/solgs).

rrBLUP
It is an R package based on BLUP, which is a mixed linear model
framework (Endelman, 2011). It is one of the most widely used
packages for genomic prediction in animal and plant breeding.
This package estimates the marker effects from training datasets
and ultimately estimates the GEBV for the selection candidates.
The mixed.solve function, a linear mixed model equation which
estimates marker effects and GEBV, is one of the most commonly
used functions of this package. An additive relationship matrix of
individuals can be calculated using genotypic data for the
estimation of GEBV using GBLUP. rrBLUP is an open-source
package and can be accessed at https://CRAN.R-project.org/
package=rrBLUP.
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BWGS
It is an integrated pipeline based on R and freely available at
https://CRAN.R-project.org/package=BWGS. The BWGS
(i.e., BreedWheat Genomic Selection) pipeline (Charmet
et al., 2020) basically consists of three modules: i) missing
data imputation, ii) dimension reduction, i.e., reducing the
number of markers as it could enhance the speed of
computation on large datasets, and iii) estimation of GEBV.
It has a wide choice of totally 15 parametric and non-
parametric statistical models for estimation of GEBV for
selection candidates. It could be used for estimation of
GEBV for a wide range of genetic architectures. This tool
comprises mainly two functions: bwgs.cv and bwgs.predict. The
former is used for missing value imputation, dimension
reduction, and cross validation, while the later is used for
model calibration and estimation of GEBV for selection
candidates.

BGLR
This package is basically an extension of the BLR package (Perez
and Campos, 2014). It can be used to implement several Bayesian
models and also provides flexibility in terms of prior density
distribution. Here, the response to be considered could be
continuous or categorical (either binary or ordinal). It is freely
available in the public domain through the CRAN mirror at
https://CRAN.R-project.org/package=BGLR.

GenSel
The GenSel software program was developed and implemented
under the BIGS (Bioinformatics to Implement Genomic
Selection) project (Fernando and Garrick, 2009). It is used for
estimation of molecular marker–based breeding values of animals
for the trait of interest. This can serve the purpose through the
command line (MAC or Linux) interface or as a user-friendly
tool. The jobs are submitted and assigned in the queue for
analysis. The software uses the Bayesian approach in the
background for estimation of marker effects from the training
data and further for estimation of GEBV for breeding candidates.
This software program can be accessed at https://github.com/
austin-putz/GenSel.

GSelection
This is an R-based package and is freely available at https://
CRAN.R-project.org/package=GSelection. The package
comprises of a set of functions to select the important markers
and estimates the GEBV of selection candidates using an
integrated model framework (Majumdar et al., 2019). The
motivation behind this package is that not a single method
performs best in case of all crop plants or animal breeding
programs as they may have diverse genetic architectures,
i.e., additive and non-additive genetic effects. This package has
been developed by integrating the best performing model from
each category of additive and non-additive genetic models.

lme4GS
lme4GS is an R-based package freely available and can be
accessed through the GitHub repository at https://github.

com/perpdgo/lme4GS. It is an extension of the lme4 R
package, which is the standard package for fitting linear
mixed models. lme4GS package is basically motivated from
existing R packages pedigreemm (Vazquez et al., 2010) and
lme4qtl (Ziyatdinov et al., 2018). lme4GS package can also be
considered an extension of the rrBLUP (Endelman, 2011)
package. Further, lme4GS package can be used for fitting
mixed models with covariance structures defined by the
user, bandwidth selection, and genomic prediction.

STGS
It is an R-based package developed for genomic predictions by
estimating marker effects, and the same is further used for
calculation of genotypic merit of individuals, i.e., GEBV. GS
may be based on single-trait or multi-trait information. This
package performs genomic selection only for a single trait,
hence named STGS, i.e., single-trait genomic selection
(Budhlakoti et al., 2019a). STGS is a comprehensive
package which gives a single-step solution for genomic
selection based on most commonly used statistical methods
(i.e., RR, BLUP, LASSO, SVM, ANN, and RF). It is freely
available through the CRAN server at https://CRAN.R-
project.org/package=STGS.

MTGS
It is an R-based package developed for genomic predictions by
estimating marker effects based on information available on
multiple traits. Currently, STGS methods could not utilize
additional information available when using multi-trait data.
The package MTGS performs genomic selection using multi-
trait information (Budhlakoti et al., 2019b). MTGS is a
comprehensive package which gives a single-step solution for
genomic selection using various MTGS-based methods (MRCE,
MLASSO, i.e., multivariate LASSO, and KMLASSO,
i.e., kernelized multivariate LASSO). It is freely available
through the CRAN server at https://CRAN.R-project.org/
package=MTGS.

FACTORS AFFECTING GENOMIC
PREDICTION: EFFECTS OF MARKER
DENSITY, POPULATION SIZE, TRAIT
ARCHITECTURE, AND HERITABILITY

In general, increased marker density enhances the prediction
accuracy using most of the GS models such as BLUP, LASSO,
machine learning–based, or deep learning–based methods.
However, there may be a chance of slow convergence in
methods like Bayesian (Bayes A, Bayes B, Bayes Cπ, and
Bayes Dπ), where convergence in terms of MCMC
(i.e., Markov chain Monte Carlo) iteration is required
(Arruda et al., 2016; Zhang et al., 2017; Norman et al.,
2018; Zhang et al., 2019). Sometimes, low-density markers
of a few hundreds to thousands also enable high prediction
accuracies in breeding populations provided that there is a
strong LD among the markers; however, it may be trait specific
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and may vary with the architecture and heritability of studied
traits (Lorenz et al., 2011; Werner et al., 2018). Also sometimes
keeping a very high density of markers may have economic
constraints as incorporation of such aspects into evaluation of
GS strategies is also necessary for a profitable and efficient GS.
Therefore, it is always difficult to give a benchmark for the
number of markers to be used in such genomic studies;
however, it is advisable to keep a moderate density, at least
2000 SNPs, so that prediction accuracy could not be
significantly hampered (Abed et al., 2018). However, the
cost of genotyping can also be significantly reduced by
increasing the level of multiplexing without paying any
penalty in terms of genomic prediction accuracy (e.g.,
genotyping a single line by GBS (96-plex) can cost 3.75 and
4.25 times less than using 9 K and 50 K arrays, respectively, in
barley) (Abed et al., 2018). The position of SNPs and how they
are placed in genomic arrangements over the chromosome
may have a key role, for example, SNPs located in the
intergenic space are slightly better at capturing the
underlying haplotype diversity related to SNPs located in
the genic space as the intergenic space is a playground of
many important regulatory sequences, such as promoters and
enhancers (Barrett et al., 2012; Abed et al., 2018). The use of
high-quality SNP genotyping data (i.e., minor allele frequency
(MAF)>0.1) could also be suggested to achieve a good
prediction accuracy.

Population size has a significant role in the prediction
accuracy whether it is conventional MAS or genomic
selection, especially training population. If the population
size or training population size is small, it is obvious that a
decrease in accuracy is expected because the model will poorly
estimate the marker effects and hence prediction accuracy.
However, as an idea or estimate for the size of training
population as 2*Ne*L (where Ne is the effective population
size and L is the genome size in Morgan) and the number of
markers as 10*Ne*L to achieve a prediction accuracy of 0.9 and
reducing the size of the training population to 1*Ne*L results in
a prediction accuracy of 0.7, provided that training population
and breeding population are unrelated or both separated by
many generations (Meuwissen, 2009). However, for most of the
cases, training population and breeding population are related,
so high genomic prediction accuracy could be achieved with a
training population size much smaller than that referred above
(Meuwissen, 2009).

Apart from these factors, prediction accuracy can also be
affected by trait heritability especially for lower heritability
(h2 < 0.4) (Hayes et al., 2009). Numerous studies up-to-date
showed that genomic selection accuracy is strongly influenced
by trait heritability, i.e., the fraction of the phenotypic
variance to the genetic variance of studied traits. Generally,
it is assumed that the target trait with high heritability has
good prediction accuracies and vice versa. However, as most
of the agricultural traits have low to moderate heritability, it
poses a challenge to genomic selection studies, especially in
plants. However, low heritability traits would require a larger
training population in order to attain the same prediction

accuracy as in the case of traits with moderate to high
heritability. However, to achieve this goal, sometimes cost
may be a limiting factor, especially in developing countries.
Moreover, it could be observed from the available literature
that even for low heritable and complex traits, the
performance of BLUP and its derivatives (e.g., GBLUP and
RRBLUP), Bayesian methods (Bayes A, Bayes B, Bayes Cπ,
and Bayes Dπ), and RKHS seems to be robust as compared to
their counterparts (Crossa et al., 2010; Crossa et al., 2011;
Heffner et al., 2011; Poland et al., 2012; Zhao et al., 2013;
Spindel et al., 2015; Crossa et al., 2017; Wang et al., 2018; Xu
et al., 2018; Juliana et al., 2019; Lozada et al., 2019; Michel
et al., 2019), and at the same time, most of the models work
fine with highly heritable traits, although the most suitable
method is usually case-dependent. Sometimes missing
observations also poses a challenge in estimating GEBV.
However, the issue of low heritable trait and missing
observation could be handled simultaneously, provided that
data are available on multiple traits. In multiple traits, if we
have few traits with low heritability and at the same time we
have a good correlation with other highly heritable traits,
i.e., by using the appropriate MTGS-based model, we can
borrow information from other traits. In such scenarios, by
using the MTGS model, we can estimate the GEBV more
precisely and accurately.

CONCLUSION AND PROSPECTS

Genomic selection has shown its potential in plant and
animal breeding research by increasing genetic gains in the
last two decades. Revolution in terms of cheaper NGS
technologies has made it possible to sequence the crop and
animal genomes at a relatively low cost. It resulted in a
number of completely sequenced crop and animal genomes
with high-density SNP genotyping chips and their availability
in the public domain, which may further boost the predictive
ability of a GS model. Even after more than a decade in the
field of genomic selection studies, still there is a lot of scope
for improvement in this area. Methodological refinements
(such as imputation of missing genotypic value,
implementation of GxE interaction, information on
epigenetic regulation, haplotypes, and including multi-trait
information into prediction models) will be definitely helpful
for a successful implementation of GS in plant and animal
breeding programs. Consistent updation of the training set
for GS is highly desirable by including the new markers in
each generation. Evaluation of the training populations
should be done in controlled and well-managed conditions
as it significantly affects the performance of prediction
models. There is a need for a structured program in the
field of genomic selection including human resource
development, advanced data recording methodologies, and
trait phenotyping in order to come out with fruitful
outcomes.
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