
Integration of Single-Cell RNA
Sequencing andBulk RNASequencing
Data to Establish and Validate a
Prognostic Model for Patients With
Lung Adenocarcinoma
Aimin Jiang, Jingjing Wang, Na Liu, Xiaoqiang Zheng, Yimeng Li, Yuyan Ma, Haoran Zheng,
Xue Chen, Chaoxin Fan, Rui Zhang, Xiao Fu* and Yu Yao*

Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China

Background: Lung adenocarcinoma (LUAD) remains a lethal disease worldwide, with
numerous studies exploring its potential prognostic markers using traditional RNA
sequencing (RNA-seq) data. However, it cannot detect the exact cellular and
molecular changes in tumor cells. This study aimed to construct a prognostic model
for LUAD using single-cell RNA-seq (scRNA-seq) and traditional RNA-seq data.

Methods: Bulk RNA-seq data were downloaded from The Cancer Genome Atlas (TCGA)
database. LUAD scRNA-seq data were acquired from Gene Expression Omnibus (GEO)
database. The uniform manifold approximation and projection (UMAP) was used for
dimensionality reduction and cluster identification. Weighted Gene Correlation Network
Analysis (WGCNA) was utilized to identify key modules and differentially expressed genes
(DEGs). The non-negative Matrix Factorization (NMF) algorithm was used to identify
different subtypes based on DEGs. The Cox regression analysis was used to develop
the prognostic model. The characteristics of mutation landscape, immune status, and
immune checkpoint inhibitors (ICIs) related genes between different risk groups were also
investigated.

Results: scRNA-seq data of four samples were integrated to identify 13 clusters and 9cell
types. After applying differential analysis, NK cells, bladder epithelial cells, and bronchial
epithelial cells were identified as significant cell types. Overall, 329 DEGs were selected for
prognostic model construction through differential analysis and WGCNA. Besides, NMF
identified two clusters based on DEGs in the TCGA cohort, with distinct prognosis and
immune characteristics being observed. We developed a prognostic model based on the
expression levels of six DEGs. A higher risk score was significantly correlated with poor
survival outcomes but was associated with a more frequent TP53 mutation rate, higher
tumor mutation burden (TMB), and up-regulation of PD-L1. Two independent external
validation cohorts were also adopted to verify our results, with consistent results observed
in them.
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Conclusion: This study constructed and validated a prognostic model for LUAD by
integrating 10× scRNA-seq and bulk RNA-seq data. Besides, we observed two distinct
subtypes in this population, with different prognosis and immune characteristics.

Keywords: ScRNA-seq, prognosis, prognostic model, NMF, lung adenocarcinoma

INTRODUCTION

Lung cancer is one of the most common incident cancers and the
leading cause of cancer-related death worldwide (Chen et al.,
2016). As the most predominant pathological subtype, lung
adenocarcinoma (LUAD) makes up more than 40% of lung
cancer cases (Travis et al., 2015; Neal et al., 2019). Although
promizing progress has been made in the screening, diagnosis,
and management of LUAD patients in recent decades, it remains
a lethal disease because a significant fraction of patients is
diagnosed at the advanced disease stage (Denisenko et al.,
2018; Lurienne et al., 2020). It is reported that more than 60%
of newly diagnosed patients present locoregional or distant
metastases at the time of detection (Brozos-Vázquez et al.,
2021), with overall survival (OS) less than 5 years (Denisenko
et al., 2018). With the rapid development of cancer genomics in
recent decades, more andmore gene alteration has been identified
as an effective treatment target for LUAD. The majority of LUAD
patients with driver gene mutation can benefit from molecular
targeted therapy, such as epidermal growth factor receptor
(EGFR)- tyrosine kinase inhibitors (TKIs), anaplastic
lymphoma kinase (ALK)-TKIs (Yi et al., 2021a), and recently
KRAS (Uras et al., 2020) and c-MET (Zhang et al., 2018)
inhibitors. However, there is still part of patients who cannot
get rid of the fate of resistance to these drugs due to secondary
mutation in tumors. Recently, immune checkpoint inhibitors
(ICIs) that target cytotoxic T lymphocyte-associated protein 4
(CTLA4), programmed death 1 (PD1), and programmed death-
ligand 1 (PD-L1) have shown promising effects in various
malignancies, including LUAD (Chen Y. et al., 2021; Huang
et al., 2021). Unfortunately, not all patients can benefit from
ICIs intervention, with a lower overall response rate observed in
clinical practice. Therefore, there is an urgent need to identify
potential prognostic and predictive biomarkers that could
precisely stratify patients and recognize patients who will
respond to treatment.

In recent decades, a growing body of studies explored potential
prognostic markers of LUAD using traditional RNA sequencing
(RNA-seq) data and have improved our understanding of tumor
occurrence and development (Chen et al., 2020). For instance, Yi
et al. developed a prognostic model to predict LUAD patients’
survival and response to immunotherapy based on 17 immune-
related genes (Yi et al.). Liang et al. also constructed a prognostic
model for these patients based on seven ferroptosis-related genes
(Liang et al.). Besides, our previous study also identified an
autophagy-related long non-coding RNA signature as a
prognostic biomarker for LUAD patients (Jiang et al., 2021).
Despite the promising predictive power has been observed in the
above studies, these prognostic signatures are based on traditional
RNA-seq, which cannot detect the exact cellular and molecular

changes in tumor cells because it mainly concentrates on the
“average” expression of all cells in a sample (Chen et al., 2020).

Recently, single-cell RNA-seq (scRNA-seq) has been used to
investigate the transcriptome of different cell types as an
innovative technology (Chen et al., 2020). It uses optimized
next-generation sequencing technologies to define the global
gene expression profiles of single cells, thus facilitating
dissection of the previously hidden heterogeneity in cell
populations (Liang et al., 2021). Given this advantage,
numerous studies have focused on identifying novel
biomarkers for malignancies by integrating scRNA-seq and
traditional RNA-seq (Zhang et al., 2019; Chen et al., 2020;
Liang et al., 2021). This study aimed to construct a prognostic
model for patients with LUAD by integrating scRNA-seq and
traditional RNA-seq data, with two external validation cohorts
being adopted to verify its risk stratification ability. Besides, we
also identified two different population subtypes using non-
negative matrix factorization (NMF), with distinct prognosis
and immune characteristics observed. We believe our findings
will provide potential prognostic biomarkers and therapeutic
targets for LUAD.

MATERIALS AND METHODS

Raw Data Acquisition
10× scRNA-seq data of two LUAD samples (T1 and T2) and two
normal samples (N1 and N2) were downloaded from the
GSE149655 series, which included 2,642 cells, 3,203 cells,
4,243 cells, and 2,466 cells for each sample. LUAD bulk RNA-
seq data, mutation data, and clinicopathological characteristics
were downloaded from the TCGA database. Besides, we also
downloaded progression-free survival (PFS) records of these
patients from UCSC Xena (https://xena.ucsc.edu/). The
human. gtf file was adopted to raw matrix annotation.
Furthermore, GSE31210 and GSE13213 cohorts were also
acquired from the Gene Expression Omnibus (GEO) (https://
www.ncbi.nlm.nih.gov/) database to serve as independent
external cohorts for risk model validation. The detailed clinical
characteristics of patients in the TCGA and GEO cohorts are
summarized in Supplementary Table S1.

scRNA-Seq Data Processing and Analysis
The 10× scRNA-seq data were processed according to the
following steps: 1) R software, “Seurat” package (Macosko
et al., 2015) was adopted to convert 10× scRNA-seq data as a
Seurat object; 2) quality control (QC) of the raw counts by
calculating the percentage of mitochondrial or ribosomal genes
and excluding low-quality cells; 3) the “FindVariableFeatures”
function was adopted to filter the top 2000 highly variable genes
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after QC; 4) principal component analysis (PCA) was performed
based on the 2000 genes, and uniform manifold approximation
and projection (UMAP) (Becht et al., 2018) was used for
dimensionality reduction and cluster identification; 5) the
“Find All Markers” function was exploited to identify
significant marker genes for different clusters by setting log2
[Foldchange (FC)] as 0.3 and min.pct as 0.25; and 6) R software,
“SingleR” package (Aran et al., 2019) was applied to cluster
annotation to recognize different cell types. Next, we
performed Fisher’s exact test to identify potential significant
cell types between tumor and normal samples. We calculated
the FC value of each cell type in tumor and normal samples and
determined the cell types with FC> 4 or FC <0.25, p-value < 0.05
as the key cell types. Furthermore, we performed functional
enrichment analysis for the identified hub cell types using R
software, “ReactomeGSA” package (Griss et al., 2020). We used
the “analyze_sc_clusters” function for enrichment analysis and
extracted the results through the “pathways” function. R software,
“monocle” package (Borcherding et al., 2019) was adopted to cell
trajectory and pseudo-time analysis, with the method “DDRTree”
being used for dimensionality reduction. Subsequently, the
statistical method “BEAM” was used to calculate the
contribution of genes during cell development, and the top
100 genes were selected for visualization. Ultimately, R
software, “CellChat” (Jin S. et al., 2021) and “patchwork”
packages were adopted for cell-cell communication analysis
and network visualization.

Differentially Expressed Genes
Identification and Functional Enrichment
Analysis
Differential expression analysis was performed to filter
differentially expressed genes (DEGs) in the TCGA cohort by
using the R software, “limma” package, with |log2FC| >1.0 and
false discovery rate (FDR) < 0.05 being used as cut-off value. The
volcano plot was generated to visualize the distribution of the
identified DEGs. Subsequently, Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) analyses were
exploited to investigate the most significantly enriched
pathways and biological processes of the DEGs using R
software, “clusterProfiler” package.

Weighted Gene Correlation Network
Analysis
Weighted Gene Correlation Network Analysis (WGCNA) was
utilized to filter hub genes in DEGs via R software, “WGCNA”
package. WGCNA is divided into expression cluster and
phenotypic correlation analyses (Langfelder and Horvath,
2008). It mainly includes four steps: calculation of correlation
coefficient between genes, determination of gene modules, co-
expression network, and correlation between modules and traits
(Langfelder and Horvath, 2008). In the process of co-expression
network construction, soft thresholding power β was selected as
the lowest power with which fit index of scale-free topology
reached 0.90. The modules were presented together via

dendrogram after the process of clustering. Subsequently,
the module-trait heatmap was generated to further identify
the most significant DEGs in LUAD development by
comparing their correlation coefficients and p values.
Ultimately, we selected the intersection genes among the
marker genes and DEGs found in WGCNA for further
analysis.

Sample Clustering Using Non-Negative
Matrix Factorization Algorithm
Non-negative matrix factorization (NMF) was carried to divide
patients into different subtypes according to the following steps:
1) the univariate Cox regression analysis was performed to
identify potential prognostic DEGs via R software, “survival”
package; 2) sample clustering through “brunet” method in R
software, “NMF” package; 3) according to parameters such as
cophenetic, dispersion, and silhouette, the optimal number of the
cluster was identified to classify patients into different subtypes;
and 4) the consensus heatmap was generated in accordance with
the above optimal cluster number to view the distribution
characteristic among different subtypes. Then, we also
explored the relationship between different clusters and OS
and PFS. Besides, the MCPcounter algorithm was adopted to
estimate the infiltration of the immune cells between different
clusters.We also investigated the association between clusters and
six immune subtypes identified in a previously published study
(Tamborero et al., 2018).

Prognostic Model Construction and
Validation
First, the univariate Cox regression analysis was performed to
identify potential prognostic DEGs. Variables with a p-value <
0.01 were selected into the Least Absolute Shrinkage and
Selection Operator (LASSO) regression analysis to reduce the
number of genes in the final risk model through R software,
“glmnet” package. Ultimately, genes in the LASSO regression
were selected into the multivariate Cox regression analysis and
therefore constructed the prognostic model according to the
following formula:

risk score � ∑k

i�1βipexpi (1)
In the formula, “βi” represents the coefficient of the selected

genes in the multivariate Cox analysis and “expi” refers to its
expression value. All patients were divided into high- and low-
risk groups according to the median value of risk score. Survival
curves and risk plots were generated to visualize the survival
difference and status for each patient via R software,
“survminer” and “ggrisk” packages. Besides, we used R
software, “timeROC” package to draw the receiver operating
characteristic (ROC) curves to evaluate the performance of risk
score in predicting 1-, 3-, and 5 years OS of LUAD patients.
Additionally, GSE31210 and GSE13213 cohorts were used as
independent external cohorts to validate the utility of the
prognostic model.
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FIGURE 1 | Different clusters annotation and cell types identification in LUAD 10× scRNA-seq data. (A–C) Clusters annotation and cell types identification via
UMAP; (D) Functional enrichment analysis for the identified hub cell types using “ReactomeGSA” package; (E–G) Cell trajectory and pseudo-time analysis for the
identified hub cell types. LUAD, lung adenocarcinoma; scRNA-seq, single-cell RNA sequencing; UMAP, uniform manifold approximation and projection.
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Clinical Relevance, Mutation Landscape,
and Enrichment Analysis Between High-
and Low-Risk Groups
Next, we investigated the association between the risk score and
clinicopathological characteristics of patients in the TCGA
cohort. Furthermore, we adopted Cox regression analysis to
determine whether the risk score could be an independent
prognostic factor for LUAD patients via R software,
“survcomp” package. At the same time, R software,
“forestplot” package was used to draw forest plots of the
univariate and multivariate Cox regression analyses. Gene set
enrichment analysis (GSEA) was then performed to identify the
most significantly enriched pathways between high- and low-risk
groups through R software, “org.Hs.eg.db,” “clusterProfiler,” and
“enrichplot” packages. In addition, two waterfall plots were
generated to explore the detailed gene mutation characteristics
between high- and low-risk groups via “oncoplot” function in R
software, “maftools” package.

Immune Cells Infiltration and Immune
Function Status Between High- and
Low-Risk Groups
Then, single-sample gene set enrichment analysis (ssGSEA)
(Rooney et al., 2015) was adopted to estimate the infiltrating
score of immune cells and the activity of immune-related
pathways using R software, “GSVA” and “GSEABase”
packages. The Wilcoxon rank-sum test was used to compare
the statistical difference between high- and low-risk groups.
Besides, we also investigated the correlation between risk score
and immune checkpoint inhibitors (ICIs) related genes
expression levels and tumor mutation burden (TMB), with R
software, “ggplot2” package being adopted for visualization.

Statistical Analysis
The non-parameterWilcoxon rank-sum test was used to examine
the relationship of continuous variables between the two groups.
The LASSO regression and Cox regression analyses were used for
predictive model development. Kaplan-Meier survival analysis
was used to test the survival difference between different risk
groups. A log-rank test was adopted to examine the statistical
difference. A two-sided p-value < 0.05 was considered significant.
All analyses were conducted in R software (version 4.1.1) for
windows 64.0.

RESULTS

scRNA-Seq and Cell Typing of Normal and
Lung Adenocarcinoma Lung Samples
10× scRNA-seq data of two LUAD and two normal samples were
downloaded from the GSE149655 dataset. A total of 8,170 cells
were identified after QC, as shown in Supplementary Figure
S1A. We visualized the top 20 highly variable genes in
Supplementary Figure S1B. Thirteen distinct clusters were
identified after PCA and UMAP analysis (Figures 1A,B).

Then “SingleR” package was adopted to cluster annotation,
with UMAP being used to visualize the cell types after
dimensionality reduction. Overall, we identified nine cell types
in this step, including bladder epithelial cells, CD4+ effector
memory T cell, lymphatic endothelial cells, alveolar
macrophage, bronchial epithelial cells, tissue stem cells,
monocyte, NK cells, and memory B cell (Figure 1C). Of these,
NK cells, bladder epithelial cells, and bronchial epithelial cells
were identified as significant cell types. ReactomeGSA functional
enrichment analysis suggested that these cell types mainly are
involved in intracellular oxygen transport, FGFR1c and Klotho
ligand binding and activation, and synthesis of cardiolipin (CL)
(Figure 1D). Then, “monocle” package was exploited to analyze
the cell trajectory and pseudo-time of the identified three
significant cell types. We observed that NK cell only
corresponds to state 4, while bronchial epithelial cells occurred
in the whole state (Figures 1E–G). We then calculated the
contribution of genes during cell development, and the top
100 genes were selected for visualization (Supplementary
Figure S2A). We investigated the cell-cell communication
network by calculating communication probability
(Supplementary Figure S2B). Furthermore, we inferred the
cell-cell communication network based on specific pathways
and ligand-receptors. We identified that SEMA4D—PLXNB2
(Figure 2A), HLA−DPA1—CD4 (Figure 2B), and
C3—C3AR1 (Figure 2C) play crucial roles in the
communication network.

Identification of Differentially Expressed
Genes in Bulk RNA-Seq Data
A total of 1971 genes were identified as DEGs after differential
expression analysis (Figure 2D). Of these, 902 were up-regulated
genes, while 1,069 were down-regulated (Figure 2D). GO analysis
revealed that the DEGs were mainly enriched in the biological
processes of the humoral immune response, complement
activation, and protein activation (Figure 2E). KEGG analysis
indicated that the DEGs were mainly enriched in cell adhesion
molecules, cell cycle, and complement and coagulation cascades
(Figure 2F). Next, we performed WGCNA to identify DEGs
involved in LUAD development and progression. In the process
of co-expression network construction, we observed that the soft
thresholding power β was 5 when the fit index of scale-free
topology reached 0.90 (Figure 3A). Nine modules were identified
based on the average linkage hierarchical clustering and the soft
thresholding power (Figure 3B). We observed that the turquoise
module was significantly correlated with LUAD development
according to the correlation coefficient and p-value (Figure 3C).
Ultimately, 329 common genes, which are both marker genes and
WGCNA module genes, were selected to construct an expression
matrix for further analysis.

Different Molecular Subtypes Identification
All patients were divided into two clusters according to relevant
parameters after NMF (Figure 4A; Supplementary Figure S3). It
showed that patients in cluster 2 were correlated with poor OS
and PFS than patients in cluster 1 (Figure 4B). The MCPcounter
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algorithm was used to estimate the infiltration of the immune
cells in different clusters. We found that the infiltration levels of
endothelial cells, myeloid dendritic cells, and neutrophils were

significantly higher in cluster 1 (Figure 4C). However, cluster 2
had higher infiltration levels of B lineage, cytotoxic lymphocytes,
fibroblasts, and NK cells (Figure 4C). Besides, the Sankey plot

FIGURE 2 | Cell-cell communication network and identification of DEGs in TCGA cohort. (A–C) Cell-cell communication network identified that
SEMA4D—PLXNB2, HLA−DPA1—CD4, and C3—C3AR1 play crucial roles in the communication network; (D) The volcano plot to show the up-regulated and down-
regulated DEGs in TCGA cohort; (E,F) GO and KEGG enrichment analysis of the identified DEGs. DEGs, differentially expressed genes; TCGA, The Cancer Genome
Atlas; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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was also applied to investigate the relationship between different
immune subtypes and clusters. It showed that patients in cluster 1
are mainly classified into Immune C3 (inflammatory) subtype
(Figure 4D). However, patients in cluster 2 are mainly classified
into Immune C1 (wound healing), Immune C2 (IFN-gamma
dominant), and Immune C6 (TGF-beta dominant) subtypes
(Figure 4D).

Prognostic Model Construction and
Validation
We performed univariate Cox regression analysis to identify
potential prognostic DEGs for LUAD in the TCGA cohort.
Seven genes were identified as prognostic DEGs. Then, LASSO
regression analysis was performed to reduce the number of DEGs
in the final risk model, with six genes were identified through this
step (Figure 5A). Ultimately, six genes were recognized as
independent prognostic DEGs via multivariate Cox analysis,
including CP, GOLM1, CYP4B1, DAPK2, NFIX, and FHL2.
According to their coefficients, we calculated the risk score
according to the following formula: risk score= expression
level of CP * 0.088 + expression level of GOLM1* 0.15 +
expression level of CYP4B1 * (−0.064) + expression level of
DAPK2 * (−0.082) + expression level of NFIX *(−0.059) +
expression level of FHL2 * 0.086. All patients were divided
into high- and low-risk groups according to the median value
of risk score. The survival curve showed that patients in the high-

risk group were associated with the worse OS when compared
with patients in the low-risk group (Figure 5B). Besides, it
revealed that the risk score had good performance in
predicting the OS in these individuals in the TCGA cohort
(AUC for 1-, 3-, and 5 years OS: 0.669, 0.674, and 0.642;
Figure 5B). Consistently, we observed similar results in the
GSE31210 cohort and GSE13213 cohort (Figures 5C,D). The
risk plots were generated to show detailed survival outcomes of
each patient in the TCGA cohort and external validation cohorts
(Figures 5E–G).

Clinical Relevance, Enrichment Analysis,
and Mutation Landscape Between High-
and Low-Risk Groups
Next, we investigated the relationship between the risk score and
clinicopathological characteristics, suggesting that younger
patients, males, current smokers, and positive lymph nodes
status were correlated with higher risk scores (Figure 5H). We
also performed single factor and multi-factor Cox analyses to
determine whether the risk score could be an independent
prognostic factor for LUAD patients compared with other
common clinicopathological parameters. We observed that the
risk score could serve as an independent prognostic factor for
these individuals (Figures 6A,B). Furthermore, we performed
GSEA analysis to identify the most significantly enriched
pathways between the two groups. We found that genes in the

FIGURE 3 | Identification of hub DEGs that participate in LUAD development through WGCNA. (A) The scale-free fit index for soft thresholding powers. The soft
thresholding power β in the WGCNA was determined based on a scale-free R2 (R2 = 0.90). The left panel illustrates the relationship between β and R2. The right panel
illustrates the relationship between β andmean connectivity. (B) A dendrogram of the DEGs clustered based on different metrics. (C) A heatmap illustrates the correlation
between different gene modules and clinical traits (normal vs. tumor); (D) The Venn plot to identify common DEGs between WGCNA module genes and marker
genes. DEGs, differentially expressed genes; LUAD, lung adenocarcinoma; WGCNA, Weighted Gene Correlation Network Analysis.
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high-risk group significantly enriched in cell cycle and DNA
replication (Figure 6C). However, genes in the low-risk group
significantly enriched in arachidonic acid metabolism
(Figure 6D). Afterward, we generated two waterfall plots to
explore the detailed gene mutation characteristics between
high- and low-risk groups. We identified that TP53, TTN, and
MUC16 were the most frequently mutated genes in high- and
low-risk groups (Figures 6E,F). Besides, we also observed that the
high-risk group harbored a more frequent TP53 mutation rate
than the low-risk group (Figures 6E,F).

The Immune Function Between High- and
Low-Risk Groups
We then adopted ssGSEA to estimate the infiltrating score of
immune cells and the activity of immune-related pathways in
different risk groups. The results demonstrated that the
infiltration levels of DCs, B cells, Mast cells, NK cells, T helper
cells, and TIL were significantly different in the two groups
(Figure 7A). Meanwhile, the two groups also had different
scores of MHC class I, parainflammation, and Type II IFN
response (Figure 7A). Subsequently, we investigated the

FIGURE 4 | Different subtype identification and clinical relevance analysis. (A) Two different subtypes were identified via the NMF algorithm. (B,C) The relationship
between different subtypes and OS and PFS of LUAD. (D) TME composition between different subtypes. (E) Sankey plot to show the association between different
subtypes and immune subtypes. NMF, non-negative Matrix Factorization; OS, overall survival; PFS, progression-free survival; LUAD, lung adenocarcinoma; TME, tumor
microenvironment.
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FIGURE 5 | Prognostic model establishment and validation for patients with LUAD. (A) Six DEGs were selected for multivariate analysis via LASSO regression
analysis. (B–D) Survival curves and ROC curves evaluate the risk stratification ability and predictive ability of the constructed risk model in the TCGA, GSE31210, and
GSE13213 cohorts. (E–G) Risk plots to illustrate the survival status of each sample in the TCGA,GSE31210, and GSE13213 cohorts. (H) The relationship between risk
score and common clinicopathological characteristics of LUAD. LUAD, lung adenocarcinoma; DEGs, differentially expressed genes; LASSO, Least Absolute
Shrinkage and Selection Operator; ROC, receiver operating characteristic curve; TCGA, The Cancer Genome Atlas.
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correlation between the risk score and the expression level of
common ICIs related genes. The results revealed that a higher risk
score was significantly associated with up-regulation of CD274
(PD-L1) (Figure 7B). Nevertheless, there was no significant
statistical difference between the risk score and PDCD1
(Figure 7C), CTLA4 (Figure 7D), LAG3 (Figure 7E), and
TIGIT (Figure 7F) expression. Besides, we also observed that a
higher risk score was positively correlated with a higher TMB
value (Figure 7G).

DISCUSSION

This study developed a prognostic model for LUAD patients by
integrating 10× scRNA-seq and bulk RNA-seq data. We found
that the constructed prognostic model can effectively stratify
patients into high- and low-risk groups in the TCGA and
GEO cohorts. Furthermore, we also explored the clinical
relevance, mutation landscape, and tumor immune
microenvironment (TME) in different groups. We noticed that

FIGURE 6 | Independent prognostic ability evaluation, pathway enrichment analysis, and gene mutation landscape analysis. (A,B) The univariate and multivariate
Cox regression analysis demonstrates the risk score’s independent prognostic ability. (C,D) GSEA to investigate the biological processes and pathways enriched in
high- and low-risk groups. (E,F) Waterfall plots summarize the gene mutation landscape in high- and low-risk groups. GSEA, Gene Set Enrichment Analysis.
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a higher risk score was significantly correlated with a more
frequent TP53 mutation rate, up-regulation of PD-L1, and
higher TMB value. These results support that patients with
higher risk scores could have potential clinical benefits from
immunotherapy. Moreover, we identified two distinct subtypes
using the NMF algorithm. We observed that different clusters
have distinct prognoses and TME components. Cluster 2 was
correlated with worse clinical outcomes and high infiltration
levels of fibroblasts. Accumulating studies have shown that
cancer-associated fibroblasts (CAFs) could transfer lipid to the
TME to support cancer cell growth (Lopes-Coelho et al., 2018;
Gong et al., 2020; Ma and Zhang, 2021). Recently, Gong et al.
elucidated that reprogramming of lipid metabolism in CAFs
potentiates migration of colorectal cancer cells through in vivo
and in vitro experiments (Gong et al., 2020). Furthermore, we
found that patients in cluster 2 are mainly classified into Immune
C1, Immune C2, and Immune C6 subtypes, which are correlated
with more aggressive immune infiltrates and worse prognosis
(Tamborero et al., 2018; Zhang et al., 2020). On the contrary,
patients in cluster 1 are mainly classified into the Immune C3

subtype, associated with a more favorable immune composition
and better clinical outcomes (Tamborero et al., 2018; Zhang et al.,
2020).

We identified six hub genes to develop the prognostic model
through LASSO and Cox regression analyses, including CP,
GOLM1, CYP4B1, DAPK2, NFIX, and FHL2. Ceruloplasmin
(CP) is a multicopper ferroxidase that mainly utilizes the
redox activity of copper to oxidize ferrous iron, facilitating
iron efflux via FPN1 (Chen F. et al., 2021). A previous study
reported that CP is up-regulated in LUAD samples and correlated
with poor clinical stage and survival outcome in these patients
(Matsuoka et al., 2018). GOLM1 belongs to the Golgi-associated
protein and is a crucial promoter of liver cancer growth and
metastasis (Mao et al., 2010). Numerous studies indicated that
GOLM1 is up-regulated in LUAD and can serve as an unfavorable
prognostic factor (Liu et al., 2018; Yang et al., 2018; ZhaoM. et al.,
2021; Song et al., 2021). Song et al. reported that overexpression
GOLM1 enhances lung cancer aggressiveness via inhibiting the
formation of P53 tetramer (Song et al., 2021). Although GOLM1
has been previously regarded as a diagnostic marker of liver

FIGURE 7 | Immune function, ICIs related genes expression pattern, and TMB between different risk groups. (A) Immune cells infiltration score and immune-related
pathways activity in the low- and high-risk groups estimated by ssGSEA. (B–F) The correlation between the risk score and the expression level of CD274, PDCD1,
CTLA4, LAG3, and TIGIT. (G) The relationship between the risk score and TMB. ICIs, immune checkpoint inhibitors; TMB, tumor mutation burden, ssGSEA, single-
sample gene set enrichment analysis.
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cancer, it is an independent prognostic factor for liver cancer
(Mao et al., 2010). In a recent study, Ye et al. revealed that
GOLM1 could drive hepatocellular carcinoma metastasis by
modulating EGFR /growth-factor-responsive receptor tyrosine
kinase (RTK) cell-surface recycling (Ye et al., 2016). CYP4B1 is a
drug-metabolizing enzyme gene. Several studies detected the
mRNA expression level of CYP4B1 in lung cancer samples
and its corresponding paraneoplastic samples (Czerwinski
et al., 1994; Tamaki et al., 2011). Tamaki et al. indicated that
CYP4B1 polymorphism is not correlated with lung cancer risk.
Therefore, further studies need to be performed to evaluate the
expression level of CYP4B1 in LUAD and its prognostic
significance. Death-associated protein kinase (DAPK) is the
Ser/Thr kinases family member. It has been reported that
DAPK family proteins play vital roles in mediating apoptosis
and function as tumor suppressors in various malignancies (Chen
et al., 2014; Jin M. et al., 2021). Interestingly, Jin et al. elucidated
that cigarette smoking induces aberrant N6-methyladenosine of
DAPK2 to promote lung cancer progression by activating NF-κB
pathway (Jin M. et al., 2021). Nuclear factor IX (NFIX) serves as a
master regulator, and its expression is associated with 17 genes
involved in the migration and invasion pathways, including
interleukin-6 receptor subunit β (IL6ST), metalloproteinase
inhibitor 1 (TIMP1), and integrin β-1 (ITGB1) (Rahman et al.,
2017). In a recent study, Zhao et al. indicated that long non-
coding RNA SNHG3 promotes the development of lung cancer
via the miR-1343-3p/NFIX pathway (Zhao L. et al., 2021). The
four and a half LIM domains 2 (FHL2) is a multifunctional
scaffolding protein regulating signaling cascades and gene
transcription (Wang et al., 2020). Numerous studies have
revealed that FHL2 is an adverse prognostic factor of
gynecological malignancies (Wang et al., 2020). However, no
study reported the expression level and prognostic significance of
FHL2 in lung cancer.

Subsequently, all patients were divided into low- and high-
risk groups by integrating the six hub genes. Two external
validation cohorts were also used to verify its predictive
ability, with consistent results were observed in these two
cohorts. Besides, we identified that the constructed prognostic
model has independent predictive ability in predicting the OS
of LUAD patients. We then investigated the gene mutation
landscape and immune function in different risk groups. We
identified that the high-risk group harbored a more frequent
TP53 mutation rate than the low-risk group. Numerous
studies identified that TP53 mutation is closely correlated
with treatment resistance and terminal prognosis in lung
cancer (Steels et al., 2001; Viktorsson et al., 2005; Xu et al.,
2020). However, many studies revealed that TP53 mutation
was significantly correlated with remarkable clinical benefit
from PD-1 inhibitors for patients with LUAD since it
increases TMB, up-regulates PD-L1 expression, and
remodels TME (Dong et al., 2017; Skoulidis and Heymach,
2019; Xu et al., 2020). Hence, we investigated the relationship
between the risk score and TMB value and PD-L1 expression
level. Not surprisingly, it indicated that a higher risk score was
significantly correlated with higher TMB value and PD-L1
expression level. Recently, Yi et al. investigated the regulation

of PD-L1 expression in the TME, suggesting that the
expression of PD-L1 is regulated by numerous factors,
including inflammatory stimuli and oncogenic pathways at
the levels of transcription, post-transcription, and post-
translation (Yi et al., 2021b). Besides, they indicated that a
comprehensive framework containing multiple surrogate
markers such as TMB would be valuable for selecting
patients and predicting outcomes (Yi et al., 2021b). Taken
together, patients with higher risk scores could have a potential
survival benefit from immune checkpoint blockades treatment.
The constructed prognostic model might be a potential
predictive biomarker for patients who received
immunotherapy. To our knowledge, this is the first study
that constructed and validated a prognostic model for LUAD
by integrating 10× scRNA-seq and bulk RNA-seq data. Besides,
two external validation cohorts were also used to verify its
performance in predicting the OS of these patients.
Nevertheless, there are several inevitable shortcomings in our
study. First, all these results were obtained from the
bioinformatic analysis, and experimental validation needs to
be performed in the future. Second, searching for effective
prognostic and predictive biomarkers for patients with
malignancy is an arduous task for us and needs a long way
to go. Our study developed a novel biomarker and provided
potential insights in this area. However, well-designed
prospective studies are warranted in the future to address
this issue.

CONCLUSION

This study constructed and validated a prognostic model for
LUAD by integrating 10× scRNA-seq and bulk RNA-seq data.
Besides, we identified two distinct subtypes in this population,
with different prognosis and immune characteristics being
observed in them. The higher risk score was correlated with
poor survival outcomes but associated with a more frequent TP53
mutation rate, higher TMB value, and up-regulation of PD-L1.
Our prognostic model might be a potential biomarker for LUAD
patients’ risk stratification and treatment response prediction.
Well-designed prospective studies are warranted in the future to
verify our findings.
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