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Biological systems contain a large number of molecules that have diverse interactions. A
fruitful path to understanding these systems is to represent themwith interaction networks,
and then describe flow processes in the network with a dynamic model. Boolean
modeling, the simplest discrete dynamic modeling framework for biological networks,
has proven its value in recapitulating experimental results and making predictions. A first
step and major roadblock to the widespread use of Boolean networks in biology is the
laborious network inference and construction process. Here we present a streamlined
network inference method that combines the discovery of a parsimonious network
structure and the identification of Boolean functions that determine the dynamics of
the system. This inference method is based on a causal logic analysis method that
associates a logic type (sufficient or necessary) to node-pair relationships (whether
promoting or inhibitory). We use the causal logic framework to assimilate indirect
information obtained from perturbation experiments and infer relationships that have
not yet been documented experimentally. We apply this inference method to a well-
studied process of hormone signaling in plants, the signaling underlying abscisic acid
(ABA)—induced stomatal closure. Applying the causal logic inference method significantly
reduces the manual work typically required for network and Boolean model construction.
The inferred model agrees with the manually curated model. We also test this method by
re-inferring a network representing epithelial to mesenchymal transition based on a subset
of the information that was initially used to construct the model. We find that the inference
method performs well for various likely scenarios of inference input information. We
conclude that our method is an effective approach toward inference of biological
networks and can become an efficient step in the iterative process between
experiments and computations.

Keywords: Boolean network inference, Boolean model, network inference, network construction, stomatal closure,
guard cell

1 INTRODUCTION

Network inference from expression information is an information extraction process where the
inputs are knowledge of the identity of the components that make up a network and their states in a
variety of contexts, and the output is a proposed regulatory network with edges and functions that
define the dynamics between the biomolecules. For inference of a gene regulatory network, the input
information comes from gene expression data, e.g., RNA-seq assays. Signal transduction networks
can be inferred from data on protein expression and post-translational modifications, combined with
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information on small molecule mediators. Metabolic networks
may be inferred from the knowledge of metabolite and enzyme
concentrations. Various methods have been developed for
network inference; each of these methods have their strengths
and weaknesses.

Correlation measures (e.g., Pearson correlation coefficient)
of the expression of gene or protein pairs can be used to
construct a weighted gene or protein co-expression network
(Huang et al., 2005). The correlation measures can also be
combined with clustering methods such as hierarchical
clustering or K-means clustering to obtain groups of co-
expressed genes/proteins (Horvath et al., 2006). These
networks show the extent of co-expression between genes/
proteins and may not be indicative of whether the gene
products/proteins regulate each other or have any causal
influence. Probabilistic graphical models like Bayesian
networks use Bayesian inference to obtain conditional
regulatory functions that indicate the probability that a target
node has a certain state given the state of its regulators. This
inference method often necessitates extensive data to calculate
the conditional probability of the state of the target node given
the state of the regulators (Sachs et al., 2005).

Network construction using edge inference from causal
information (such as information from perturbation
experiments) is a general method, applicable to any system,
that represents an efficient alternative to network inference
from state information (Albert et al., 2007; Kachalo et al., 2008,
S.; Li et al., 2006). The input information is the identity of the
components that make up a network and causal relationships
between them, and the output is a proposed regulatory
network. The causal effects used as input information
include the positive or negative causal effect of one node on
another (A → B), or information of the positive or negative
effect of a node on the regulation of another node by a
regulator (A → (B → C)). We will refer to the latter as a
three-node causal effect. The inferred network incorporates
each two-node causal effect as an edge or path of the
corresponding sign. Experimentally documented direct
interactions are always represented by edges. The inferred
network incorporates each three-node causal effect as the
intersection of two paths of the corresponding sign.
Specifically, (A → (B → C)) will yield a positive path from
B to C and a positive path from A to C, which intersect at an
unknown mediator (a pseudo-vertex). Two reduction
algorithms have been developed to simplify the resultant
network while preserving each of the initially encoded
causal relations: binary transitive reduction with critical
edges, and pseudo-vertex collapse (Albert et al., 2007;
Kachalo et al., 2008). The resulting network is the most
parsimonious incorporation of the input information. This
network synthesis method has been applied to various
biological systems and resulted in equivalent networks
compared to manual curation (Kachalo et al., 2008).

The Boolean modeling framework has been used successfully
to model the dynamics of various types of biological networks
(Wynn et al., 2012; Saadatpour and Albert, 2013; Abou-Jaoudé
et al., 2016) as well as for model inference from state (e.g., gene/

protein expression or post-translational modification) data.
Boolean models assume two possible states of each node, 1
(which can be interpreted as ON, active or above-threshold
level) and 0 (interpreted as OFF, inactive, or below-threshold
level). When a Boolean framework is used for network
inference, a key pre-processing step is to discretize the data
to either 0 or 1. Several methods are used for discretization of the
relevant data for inference (Berestovsky and Nakhleh, 2013).
One example is iterative k-means clustering where the data are
iteratively clustered into fewer clusters until there are only two
clusters that correspond to ON and OFF. The discretized data
are then interpreted as Boolean states (e.g., activity). The
inference process (described below) is performed in the same
way independent of the entity whose state is described by the
input data.

A traditional method to infer a regulatory network and
Boolean functions from state information is to observe the
time-course of the states of each node and perform an
exhaustive search through all possible Boolean functions
(with all subsets of nodes as possible regulators) to find the
one that best fits the given data (Pandey et al., 2010; Berestovsky
and Nakhleh, 2013; Dinh et al., 2017). This method is
implemented in the software BoolNet (Müssel et al., 2010).
This exhaustive search can be very time-consuming. Another
difficulty is that it is often the case that not all of the
combinations of the putative regulators’ states are observed
experimentally; thus, the inference is under-constrained and
can be satisfied by multiple alternate set of regulators and
multiple functions for each particular node.

A more effective method is to combine prior network
information with state data (for example, known attractors or
trajectories of the system) to infer the Boolean functions. Several
methods preserve the prior knowledge network during the
process of inferring the Boolean functions (La Rota et al.,
2011; Ghaffarizadeh et al., 2017; Chevalier et al., 2020;
Aghamiri & Delaplace, 2021). Such methods are implemented
in the applications Griffin and SMBionet (Khalis et al., 2009;
Munoz et al., 2018). Other methods refine the starting network by
deleting or adding edges (Terfve et al., 2012; Azpeitia et al., 2013;
Abou-Jaoudé et al., 2016; Dorier et al., 2016). Iterative
experimental and computational analysis can then be used to
further refine the Boolean network.

Here, we present a combined network and Boolean function
inference method based on causal logic relationships between
different network components (inferred from perturbation
experiments), extending the work in Albert et al. (2007),
Kachalo et al. (2008). We utilize the abundance of genetic or
pharmacological perturbation (knockout and overexpression)
experiments in the biological literature to infer causal logic
relationships. We then infer a parsimonious network and a set
of Boolean functions that recapitulates these causal relationships.
Our method differs from other Boolean network inference
methods in that it does not require snapshots or time courses
of all the nodes’ states, nor does it require a prior knowledge
network. Our method covers the middle ground between curated
(manual) network and model construction and automated
network inference. It is closer to the former in that it aims to
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find the most parsimonious model and does not explicitly identify
all the alternative models. Because of this reason, the resulting
model should be verified by follow-up experiments, as all models
should. This streamlined network and model inference method is
aimed at making the model construction process less laborious
and hence making it more accessible to the larger biological
community.

2 MATERIALS AND METHODS

2.1 Background: Causal Logic Implications
Between a Pair of Nodes in a Boolean
Network
Causal logic, introduced in (Maheshwari and Albert, 2017),
identifies causal relationships between pairs of nodes in a
Boolean network as sufficient or necessary. This logic
implication tells whether the sustained activity of the regulator
node is sufficient or necessary to activate the target node (for a
promoting edge) or deactivate the target node (for an inhibiting
edge) regardless of the state of other regulators.

There are four categories of logic relationships between a
regulator and its direct target: sufficient activator, sufficient
inhibitor, necessary activator, and necessary inhibitor. All of these
relationships are independent of the state of any other regulators. In
other words, these are canalizing relationships (Kauffman, 1993).
The logic relationships are summarized in Table 1. In the following
we give two examples. If the sustained ON state of a regulator node
leads to the sustained ON state of the target node, we say that the
regulator is sufficient for the target. A regulator node being necessary
for a target node means that the sustained OFF state of the regulator
node leads to the sustained OFF state of the target node. Such
necessary relationships are abundant in biology; for example, in an
enzyme-catalyzed reaction both the presence of the reactant(s) and
the activity of the enzyme are necessary for the production of the
reaction’s product.

An indirect regulator to target relationship can also have a logic
implication; this relationship is mediated by a path or subgraph
between the regulator and target node. For example, an indirect

sufficient relationship between R and T can be mediated by a group
of mediators Mi such that each Mi is necessary for the target node,
the union of Mi is collectively sufficient for T, and R is sufficient for
each Mi; see (Maheshwari and Albert, 2017) for a description of all
the paths and subgraphs that mediate a logic implication. In these
latter cases, the logic implication is independent of all other nodes in
the network except for the nodes that make up the path/subgraph of
the indirect regulation. An especially salient relationship is the
combination of sufficient and necessary logic implication,
i.e., when the state of a target node is completely determined by
the state of a distant regulator node. A sufficient and necessary
promoting relationshipmeans that the state of the target node will be
the same as the state of the regulator node while a sufficient and
necessary inhibitory relationship means that the state of the target
node will be the opposite of the state of the regulator node. More
details on each of these causal logic relationships can be found in
Maheshwari and Albert (2017).

2.2 Combining Causal Implications Incident
on the Same Target Node
In a large and complex network, nodes can have multiple direct
regulators, each of which may have a different causal logic
implication on the target node. These logic implications must
correspond to a single Boolean function that preserves each logic
implication. Consequently, the resulting Boolean function is in
the family of biologically meaningful functions (Raeymaekers,
2002) (i.e., no regulator is redundant or has an ambiguous effect),
and also in the family of nested canalizing functions (Y. Li et al.,
2013). Only certain combinations of logical regulators are able to
preserve each logic implication. To see why this is the case,
consider a hypothetical situation in which a target node (T) has a
direct regulator (R1) that is sufficient. According to the definition
of a sufficient regulator, the ON state of R1 always implies the ON
state of T independent of the state of other regulators. In terms of
Boolean functions, the existence of a sufficient direct regulator
among multiple regulators implies a logic OR gate. This means
that the effect of R1 is compatible with another direct regulator R2
that is also sufficient, making the update function T* = R1 or R2.
Here T* indicates the next state of the target node T. The other

TABLE 1 | Summary of the six different types of causal logic implication and their correspondence with the direct effect of the state of the regulator node (R) on the state of the
target node (T). The first column lists the causal logic implication, the second column lists what that implication indicates about the definite knowledge of the state of the
target node if the state of the regulator node is known, and the third column lists the corresponding Boolean rules. The “. . .” in the Boolean rule is a placeholder for any number
of other regulators of the target node. The asterisk (*) denotes a future state of a node, i.e., T* refers to the future (or next timestep) state of the target node.

Causal logic implication What does it mean for the state of T
(independent of the state of the rest of the network)?

Equivalent Boolean rule

Sufficient R = ON => T = ON T* = R or . . .
Sufficient inhibitory R = ON => T = OFF T* = not R and . . .

Necessary R = OFF => T = OFF T* = R and . . .

Necessary inhibitory R = OFF => T = ON T* = not R or . . .
Sufficient and necessary R = OFF => T = OFF T* = R

R = ON => T = ON
Sufficient and necessary inhibitory R = OFF => T = ON T* = not R

R = ON => T = OFF
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case of compatibility is when R2 is a necessary inhibitor; in this
case the function of the target is T* = R1 or not R2.Node T cannot
have another direct regulator (R2) that is necessary, because the
“necessary” classification of R2 (i.e., the OFF state of R2 implies
the OFF state of T) contradicts the sufficiency of R1. In summary,
sufficient regulators are incompatible with necessary regulators.
Please note that this incompatibility does not mean that every
regulator’s effect on the target must always combine with a logic
OR relation. For example, the Boolean rule for a target node can
be T* = R1 or (R2 and R3).Here, neither of the regulators R2 or R3
are independently sufficient or independently necessary for T but
they are still compatible with regulator R1.

We summarize the compatible logic implications in Table 2
and describe them in words in the following. When a direct
regulator is sufficient and necessary, it must be the only regulator
of the target node. Similarly, when a direct regulator is sufficient
and necessary inhibitory, it must be the only regulator of the
target node. Necessary regulators are compatible with other
necessary regulators and any other sufficient inhibitory
regulators. Sufficient inhibitory regulators are compatible with
other sufficient inhibitory regulators and any other necessary
regulators. Sufficient regulators are compatible with other
sufficient regulators and any necessary inhibitory regulators.
Necessary inhibitory regulators are compatible with other
necessary inhibitory regulators and any sufficient regulators.

2.3 Resolving Apparently Incompatible Implications by
Inferring New Relationships
A subset of the incompatible relationships described in the
previous subsection can be resolved if one or both of the
apparently incompatible regulators is in reality an indirect
regulator of the target node and if the two regulators are not
independent of each other, but rather one of them has a logic
implication on the other. This is expressed and proven in the co-
pointing subgraph theorem of (Maheshwari and Albert, 2017). If
a source node (S), i.e., a node with no regulators, is indirectly
sufficient for a target node (T) and another node (N), which is not
a source node, is directly or indirectly necessary for this target
node, we say that there are two co-pointing subgraphs, one from S
to T and one from N to T (Maheshwari and Albert, 2017)—see
Figure 1. The co-pointing subgraph theorem from Maheshwari
and Albert (2017) says that when there are two co-pointing
subgraphs as in Figure 1, where source node S is sufficient
and N is necessary to the target node, S must be sufficient for
N. The simplest subgraph that satisfies this theorem is if the
function of N isN* = S, and the function of the target is T*= S and
N. Here we extend the applicability of this theorem to the
situation in which S is not a source node and there is no path
from N to S.

The co-pointing theorem can be used to resolve certain kinds of
apparently incompatible logic implications of indirect regulators by
inferring new edges. Situations like this happen often in genetic or
pharmacological knockout experiments that aim to identify putative
signal transduction mediators. If the experiment finds that the
knockout of N disrupts the signal transduction process that
initiates from signal S, we conclude that N is necessary for the
target node. This might seem incompatible with the knowledge that
the signal S is sufficient for the target but in fact it is consistent if N is
a mediator of the pathway that establishes a sufficient relationship
from S to the target node. Therefore, we infer that S is sufficient for N
via an edge, a path, or a subgraph.

3 RESULTS

3.1 Our Proposed Method of Boolean Model
Inference From Causal Logic Implications
of Edges
We first give a high-level description of our inference process,
then describe the details of each step in separate subsections.
Boolean network inference using the causal logic method starts

TABLE 2 | Compatibility of the causal logic implications of regulator nodes. The matrix lists the compatibility of different regulators with varying causal logic implications with
✓’s and 7’s. The first row and the first column denote the logic implications of different regulators. A check (✓) entry denotes that the logic implications in the
corresponding row title and column title are compatible while a cross (7) entry denotes that they are incompatible.

Logic Sufficient Necessary Sufficient inhibitory Necessary inhibitory

Sufficient ✓ 7 7 ✓
Necessary 7 ✓ ✓ 7

Sufficient inhibitory 7 ✓ ✓ 7

Necessary inhibitory ✓ 7 7 ✓

FIGURE 1 | Illustration of the co-pointing subgraph theorem for inferring
logic implication between two regulators. The source node S is sufficient
indirectly (via a path or a subgraph) for the target node T and the non-source
node N is necessary indirectly for the target node T. The two subgraphs
from S to T and from N to T are co-pointing subgraphs. This leads to inference
of a direct or indirect causal logic implication that the signal node S is sufficient
for the non-source node N.
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with a compilation of information regarding the interactions and
inferred causal influences between different components of the
network. When a target node has multiple regulators, we classify
their effect on the target into three categories: direct relationships,
indirect relationships that likely do not share mediators with any
other relationships, and indirect relationships that likely share
mediators. The first two categories are represented as edges in the
Boolean network while the third may be implemented by paths or
subgraphs. We compile the edges incident on each node into
Boolean functions that best preserve their logic implications,
resolving any incompatibilities. Finally, we evaluate the
implementation of the mediator-sharing indirect causal logic
relationships by paths and subgraphs, and if necessary add
edges to reflect them, again resolving any incompatibilities in
the Boolean functions. A Python implementation of this method
is available in the GitHub repository https://github.com/parulm/
suff_necc.

3.1.1 Distilling Biological Knowledge and the Results
of Perturbation Experiments Into Logic Implications
The first step is to extract a library of information from
experiments regarding the behavior of the system in normal
and perturbed settings. This information is then organized as
a list of causal influences and interactions, with more details
indicated about each of the relationships whenever known. Each
entry must include whether the interaction is promoting or
inhibiting the target node, whether these relationships are
direct (i.e., due to a single reaction or physical interaction) or
indirect (mediated by other components) and the causal logic
implication of the regulator on the target node (if known).

Certain types of biological information naturally lend
themselves to causal representation. The causal effect
associated with a biochemical reaction can readily be
determined from the information that the presence of the
reactant(s), together with the enzyme that catalyzes the
reaction, leads to the production of the biomolecule that is the
product of the reaction. Thus, in an enzyme-catalyzed reaction
both the reactant(s) and the enzyme are necessary for the
product. More generally, if an experimenter observes that the
knockout of a node (regulator) leads to no (or below threshold)
levels or activity of another node (target), one can conclude that
the regulator node is necessary for the target. The “necessary”
designation incorporates the assumption that the knockout of the
source node would lead to the inactivity of the target in a different
context as well. This assumption is widely made in the biological
literature, as reflected by terms such as “necessary” and
“required”. If an experimenter observes that the sustained
presence or constitutive activity of a regulator leads to high
activity of another node (target), one can conclude that the
regulator is sufficient for the target node. Given the fact that
in vivo biological experiments involve multiple components in
addition to the pair whose relationship is studied, the noted
sufficient or necessary implication are provisional, conditioned
on the presence or absence of other components (known or
unknown) that define the biological context. Additional evidence
that characterizes these possibly hidden components may
necessitate the revision of the initial characterization.

Other types of biological information are better represented as
multi-node relationships. Specifically, many biological
experiments involve perturbing putative mediators and
comparing an input-output relationship in the perturbed and
normal systems. In these experiments, there are three essential
entities, the input, the output and the mediator. This usually
results in statements (three-node causal implications) of the form
“A promotes (B induces C)” [see (Albert et al., 2017; S.; Li et al.,
2006) for examples of such statements and how they were used
during model construction]. In general, each such statement
immediately leads to two derived statements. The first is that
“B induces C”, which usually implies that B is sufficient for C. The
second statement is that “A promotes C”. The causal logic
implication of this statement is obtained by looking at the
experiment regarding node A. The most frequently observed
case is that knockout of A leads to a drastically reduced
activity of C (below-threshold); in this case we conclude that
A is necessary for C. The role of node A could also be inhibitory,
leading to a statement of the type “A inhibits (B induces C)”. The
most frequently observed case is that constitutive activation of
such inhibitory A leads to a below-threshold activity of C; in this
case we conclude that A is a sufficient inhibitor of C.

A third regulatory relationship that can sometimes be inferred
from a promoting or inhibiting three-node relationship depends
on the use of the result on co-pointing subgraphs. If B affects C
indirectly and there is no path from A to B, for certain types of
causal logic of A on C we can infer that B regulates A according to
a specific causal logic. We do this using the co-pointing subgraph
theorem (Maheshwari and Albert, 2017). Given that B is
sufficient for C, the co-pointing subgraph theorem applies for
two causal logic implications of A on C. The first case is when A is
necessary for C—we can conclude in this case that B is sufficient
for A. The second case is when A is a sufficient inhibitor of
C—then we can conclude that B is a sufficient inhibitor of A.
However, if A is sufficient for C, no inference of any relationship
between B and A can be made.

3.1.2 Assigning a Boolean Function for Each Node and
Resolving Incompatibilities
We break up three-node causal implications into pairwise
implications and assign a logic implication to each pairwise
relationship as described above. We then consider each node
of the network along with its regulators and the corresponding
causal logic implications and use that information to obtain the
Boolean function for the node. In the following we describe the
method of determining Boolean functions in detail.

If a target node (T) has a single regulator (R), there are two
general cases: the regulator is either promoting or inhibiting. If the
regulator is promoting, its Boolean function would beT* = R; and if
the regulator is inhibiting, the Boolean function would be T* = not
R. When a target node has multiple regulators, we classify their
effect on the target into three categories: direct relationships,
indirect relationships that likely do not share mediators with
any other relationships, and indirect relationships that likely
share mediators. The third category consists of regulators of the
target node that are likely connected to the target node by a path or
subgraph, and this path may involve other, more direct regulators
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of the target node. For each of these regulators we need to evaluate,
on a case-by-case basis, whether or not an edge from the regulator
to the target is needed.

We start by considering the logic implications of direct
relationships and indirect relationships that likely do not share
mediators with any other relationships. In this case, there are two
possibilities: all of the incoming logic implications are compatible, or
the incoming edges have incompatible logic implications. In case of
incompatible logic implications, we cannot directly define the
Boolean function. These cases arise because the “sufficient” or
“necessary” implication was premature and the target node’s
activity in fact depends on the specific combination of regulators.
The ideal resolution for these incompatible logic implications would
be to do biological experiments that test both knockout and
constitutive activation of each regulator (see Figure 2). This
solution is often impossible to execute due to technical challenges
and/or the intertwined nature of biological systems. Hence, wemake
use of two theoretical resolution methods. One is automated while
the other requires manual curation.

The automated resolution method for incompatible logic
implication is the dominant regulators method; this has two
templates described as follows. One of these two templates
considers sufficient regulators as dominant (i.e., if any of the
sufficient regulators is active then the target node activates); the
other considers necessary regulators as dominant (i.e., if any of
the necessary regulators is inactive then the target node
inactivates). This resolution method assumes that during the
experimental result that concluded the logic implication that is
incompatible with the dominant logic implication the dominant
regulators were in their non-canalizing state. In the following we
describe each template.

The first automated template for resolving incompatibilities is
to assume sufficient regulators are dominant. We impose this
template by collecting all necessary regulators and marking them
sufficient together, i.e., when all the necessary regulators are
active, the target node will activate. Consider that target node
T has regulators A, B, C, and D, where the edges A→ T and B→
T have sufficient logic implication while the edges C→T and D→
T have necessary logic implication—see Figure 3. According to
the first template, we group C and D together, resulting in the
Boolean function T* = A or B or (C and D). When we group the
regulators C and D together and mark them as sufficient together,
we are implicitly assuming information about the states of the
other regulators, i.e., A and B, during the experiments concerning
C and D. Specifically, we are assuming that A and B are OFF
during the experiment involving knockout of C (or knockout of
D); in this context the experiment shows that C (or D) is
necessary for T, in agreement with the Boolean rule obtained
by the first template. Since necessary regulators are compatible
with sufficient inhibitory regulators, they can also be grouped
together with sufficient inhibitory regulators. In the above
example, if the edge from C to T were instead sufficient
inhibitory, the resulting Boolean function would be T* = A or
B or (not C and D). Our code on the GitHub repository (https://
github.com/parulm/suff_necc) lists the possible Boolean rules
obtained by this automated method.

The second template in the automated resolution method is to
give preference to the necessary logic implication and group the
sufficient regulators. Going back to the example of Figure 3, the
second template in this example (bottom right) leads to the
Boolean rule T* = (A or B) and C and D. Since sufficient logic
implication is compatible with necessary inhibitory logic

FIGURE 2 | Illustration of the use of knowledge about the experimental setting to resolve incompatibility. A target node T has two regulators; one is concluded to be
necessary (R1) from experiment/literature and the other is concluded to be sufficient (R2) from experiment/literature. The truth table below the network diagram shows
these relationships: R1→ T necessary relationship means that when R1 is constitutively OFF, T stabilizes to OFF; R2→ T sufficient relationship means that when R2 is
constitutively ON, T stabilizes to ON. Since this is an incompatibility, we consider two assumptions about the state of R2 (denoted by green “?”) in the experiment
that concluded R1 to be necessary—the row marked in green in the truth table below the network. The first assumption is when R2 is OFF. In this case, there are two
possible functions for T*: 1) T* = R1 and R2, and 2) T* = R1 or R2. If the rule were T* = R1 and R2, T would need to be OFF in the first row of the truth table, independent of
the state of R1, hence, this leads us to conclude that the rule is T* = R1 or R2—with the corresponding truth table shown on the top dashed edge. When R2 = OFF, this
rule becomes T* = R1, where R1 is indeed sufficient and necessary for T, making the “necessary” classification of R1→ T valid. The second assumption is when R2 is ON
but T is OFF when R1 is OFF, which leads us to conclude that the rule is T* = R1 and R2 (see bottom dashed edge). When R2 = ON, this rule is reduced to T* = R1, where
R1 is sufficient and necessary for T, making the “sufficient” conclusion about R1 → T valid. These two assumptions fall under the two templates of the dominant
regulators resolution method. Due to commutativity of the Boolean operators, the resulting Boolean function would be the samewhether the knowledge is about the
R2 → T experiment or about the R1 → T experiment.
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implication, sufficient regulators can be grouped with necessary
inhibitory regulators as well. In the previous example, if the edge
from B to T was necessary inhibitory, the Boolean rule would be
T* = (A or not B) and C and D. These resolution templates are
meant for a quick construction of the Boolean function from
incomplete information.

In the manual curation resolution method, whenever we come
across incompatible logic implications, we further browse the
literature to find information about the states (ON/OFF) of other
nodes of the network during the experiment that was used to infer
the logic implication. We then use this knowledge to pick the
more likely of the two possibilities detailed in the previous
paragraph. Often, there are more complex possibilities for the
Boolean function, which we handle on a case-by-case basis. In
many of these scenarios, we construct an incomplete truth table
from the literature knowledge and combine it with common
biological knowledge to obtain a Boolean function.

The automated and manual resolution methods can also be
applied simultaneously—we can obtain the two templates from
the automated method and pick one if it satisfies the existing
knowledge and the findings from the literature. The manual
curation method or the two methods used simultaneously will be
more thorough than just using the automatedmethod. However, the
automated method can be more useful to identify cases that need
manual attention, particularly when there are many
incompatibilities. Also, in scenarios where there is no additional
literature information available, the automated method is something
to rely on. Regardless of the method, the resulting function is one of

multiple possibilities compatible with the incomplete input
information. The function needs to be subjected to experimental
verification followed by improvement as necessary.

3.1.3 Incorporating the Mediator-Sharing Indirect
Relationships
After a draft network is constructed from the direct and indirect
but independent relationships between different nodes, we look at
the evidence for the remaining indirect relationships. Specifically,
we look at whether such relationships are reflected by paths or
subgraphs with logic implications in the network. If no relevant
path or subgraph is present, we add an edge to reflect the
relationship—see panels A, B, and C of Figure 4. In some
cases, an edge directed to one of the regulators of the target
would complete a path or subgraph and thus would be more
appropriate, as illustrated in Figure 4A for node S—most of these
instances are handled on a case-by-case basis. In some other
cases, this edge is pointing directly to the target node—this would
mean that the process behind the relationship of S and T is
independent of the other edges after all—this is illustrated in
Figures 4B,C. There are two such cases, one where the addition of
such an edge is logically compatible with other regulators so we
just connect the newly added regulator with the dominant
Boolean operator—illustrated in Figure 4B. The second case is
where the edge is incompatible with the other
regulators—illustrated in Figure 4C. In this case, we make the
newly added regulator the dominant regulator and update the
Boolean rule accordingly. In the case where a path/subgraph

FIGURE 3 |Dominant regulators method for the resolution of incompatible logic implications. Red edges indicate sufficient causal logic implication while blue edges
indicate necessary causal logic implication. In this example, regulators A and B are sufficient while regulators C and D are necessary for the target node T—this is an
incompatible combination of logic implications. The two templates for resolving this by the dominant regulators method are shown on the right. The top-right case shows
the first template where sufficient regulators are considered to be dominant, hence, the necessary regulators are grouped together, and this group is marked as
sufficient. In this case, nodeM is amediator node that is sufficient for T. The Boolean rule for the target node is: T* = A or B or (C and D), which is equivalent to T* = A or B or
M; where M* = C and D. The bottom-right case shows the second template where necessary regulators are considered to be dominant, hence, the group of sufficient
regulators is marked as necessary. In this case, M is a mediator node that is necessary for T. The Boolean rule for the target node is: T* = (A or B) and C and D which is
equivalent to T* = M and C and D; where M* = A or B.
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exists from the regulator to the target node, we have two cases. In
the first case, the causal logic implication of the path/subgraph is
not the same as the inferred causal logic implication of the new
regulator. In this case, we add an edge from the newly added
regulator to the target node—see Figure 4D. In the second case,
the causal logic implication of the path/subgraph is the same as
the inferred causal logic implication. In this case, we do not add a
new edge—see Figure 4E.

Once all the experimental evidence is incorporated in the
network, we use previously proposed logic reduction methods
such as logic binary transitive reduction (l-BTR) to reduce this
network and eliminate redundant edges (Albert et al., 2007).
Logic binary transitive reduction consists of eliminating an edge
from A to B if 1) it does not correspond to direct interactions and
2) there exists a path of the same sign and causal logic from
A to B.

3.2 Application of the Network Inference
Method to Biological Systems
3.2.1 The ABA Induced Stomatal Closure Network
We illustrate the inference process on a signal transduction
network that is known to be complex and for which a

significant (but still incomplete) amount of causal evidence
exists. The ABA induced stomatal closure network is a plant
signaling network that illustrates the process of closing of the
stomatal pores on the surface of leaves induced by the plant
hormone abscisic acid (ABA). ABA is produced in the plant in
response to drought or other desiccating stress. This stomatal
closure process involves the interconnected and interdependent
activities of many ion transport proteins, enzymes and other
biomolecules. This process is important to study since the
stomatal pores are responsible for intake of CO2 for
photosynthesis and water loss in transpiration. In this case
study, we build upon multiple previous studies on
understanding this complex process by the means of a
Boolean network model (Li, S. et al., 2006; Sun et al., 2014;
Albert et al., 2017).

We do a careful analysis of the literature relevant to ABA
induced stomatal closure. We derive pairwise relationships from
three-node observations as described earlier. We find the
associated causal logic corresponding to each pairwise
relationship (see Supplementary Table S1). If the experiment
reports strong qualitative results, we directly conclude the causal
logic effect from there. There are two categories of such strong
qualitative results. If the knockout of a gene (gene A) leads to a

FIGURE 4 | Different ways to incorporate an indirect relationship from a regulator S to a target node T when S is sufficient for T. Panels (A–C) describe the case
when there is no existing path or subgraph from the regulator (S) to the target node (T) and panels D and E describe the case when there is an existing path/subgraph
from S to T. (A). An existing regulator of T, namely R, is sufficient for T. If there is also biological support for a pathway or causal relationship from S to R, we complete a
sufficient path from S to T by adding a sufficient edge from S to R. (B). An existing regulator R of T is sufficient for T but there is no evidence to support a causal
relationship from S to R. In this case, we construct an independent sufficient edge from S to T. (C). An existing regulator R is necessary for T. We cannot be confident that
R does not influence S, thus the co-pointing theorem cannot be applied. Since the causal logic relationship between S and T is “sufficient”, we construct an independent
sufficient edge from S to T. (D). A path/subgraph exists from S to T, but its logic implication is not the same as the desired sufficient causal logic—this path is marked in
gray. In this case, we add an independent sufficient edge from S to T to satisfy the “sufficient” logic. (E) A sufficient path/subgraph exists from S to T. In this case, the
expected causal logic relationship already exists and hence we do not add any edges.
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drastic decrease in the activity of the protein product of
another gene (gene B), we conclude that gene A is
necessary for gene B. If there is evidence of a reaction or
physical interaction between the products of gene A and B, we
mark the edge as direct; otherwise it is marked “not direct”.
The second category is the observation that the supply of a
molecule (X) leads to a drastic increase in the activity of a
protein (Y), in such cases we conclude that X is sufficient for Y
(directly or indirectly). In some cases, the causal logic
implication has a lesser confidence (due to quantitative
nuances or to expected combinatorial effects of multiple
regulators), these cases are marked with an asterisk (*) in
Supplementary Table S1. We take extra care in finding the
Boolean functions in these cases as these relationships may
actually be neither sufficient nor necessary. The relationship
between the regulator D and target node T in the first template
(top-right) of Figure 3 is an example of such a complex
relationship. In the cases where it is applicable, we also use
the result on co-pointing subgraphs to infer edges, see
Supplementary Table S2. We use the causal logic
implication we find to infer the Boolean network by our
method. Here, we present selected cases that exemplify the
inference method.

Example of sufficient and necessary relationship. ABA
activates RCARs (Park et al., 2009). RCARs is a collective
node representing the PYR/PYL family of proteins, which are
soluble ABA receptors that directly bind to ABA. Their strict
dependence on ABA leads us to conclude a sufficient and
necessary relationship from ABA to RCARs. This is further
reinforced by the necessary nature of RCARs in the stomatal
closure process reported in Gonzalez-Guzman et al. (2012).

Example of sufficient relationship. SPHK1 and SPHK2 are
sphingosine kinases denoted together by one node as SPHK1/2.
Phosphatidic acid (PA) interacts with both SPHK1 and SPHK2
and upon binding, it increases the activity of SPHK1/2. An
increase in concentration of PA leads to increase in activity of

SPHKs 1 and 2 as reported in Figures 4, 5 of (Guo et al., 2011).
Hence, we conclude the logic implication of the edge from PA to
SPHK1/2 to be sufficient.

Example of necessary relationship. Ca2+c promotes PLDα1
activity (Qin et al., 1997). Ca2+c is required for the activation of the
enzyme PLDα1. The analysis in Qin et al. (1997) shows that a
reduction in the Ca2+ concentration leads to a reduction in the
PLDα1 activity—see Figures 3, 4 of (Qin et al., 1997). We
conclude that Ca2+c is necessary for PLDα1 activity.

Example of the use of co-pointing subgraphs to characterize
the indirect effect of ABA on nitric oxide-dependent guanylate
cyclase (NOGC1). It is well-known that ABA is sufficient for
stomatal closure (Joudoi et al., 2013; Albert et al., 2017). The
results in Joudoi et al. (2013) show that knockout of NOGC1
prevents stomatal closure (see Figure 2A of Joudoi et al. (2013).
Hence, NOGC1 is necessary for closure. As its name indicates,
NOGC1 is regulated by nitric oxide, thus it cannot be a source
node. As per the co-pointing subgraph theorem (Maheshwari and
Albert, 2017), this implies that ABA must be sufficient for
NOGC1, which must be reflected by a sufficient path or
subgraph in the resulting network (see Figure 5).

Example of adding an edge from an indirect regulator.
When we observe an indirect regulator that already has a path
to the target, we add an edge only if the path does not have the
same logic implication—the case shown in Figure 4D. For
example, the inference process is provided with the
information that OST1 is sufficient for CaIM. There is already
a path from OST1 to CaIM: OST1→ RBOH→ ROS→ GHR1→
CaIM, but the logic implication of this path is not “sufficient” and
hence we add a sufficient edge from OST1 to CaIM. The resulting
feed-forward loop is illustrated in Figure 6. As biological
knowledge increases, this edge will likely be refined and
populated by mediators or, refinement/correction of the
existing path may render this edge unnecessary.

Example of an indirect relationship reflected by a path/
subgraph. If an indirect regulator with a certain causal logic

FIGURE 5 | Use of co-pointing subgraph inference method in the ABA signaling network. The signal, and source node of the network, ABA, is well-known to be
sufficient for the target node stomatal closure and Nitric Oxide dependent Guanylate Cyclase (NOGC1) is a putative mediator of the signaling process. (A). Experimental
results show that NOGC1 knockout leads to a higher stomatal aperture, i.e., NOGC1 KO prevents the closing of the stomata, implying that NOGC1 is necessary for
closure. (B) As per the co-pointing subgraph theorem, ABA must be sufficient for NOGC1. In a previously reported Boolean model of ABA induced closure (Albert
et al., 2017), there is indeed a sufficient relationship from ABA to NOGC1.
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implication already has a path or subgraph to the target node with
the same logic implication, we do not add an edge—case shown in
Figure 4E. This happens frequently in the ABA network. Here,
we produce two examples that illustrate this. In the first case, we
infer a necessary regulation of stomatal closure by SLAC1 [an ion
channel that mediates anion efflux (AnionEM)] from the
experimental observation that SLAC1 knockout disrupts 8-
nitro-cGMP -induced stomatal closure as shown in Figure 10C
of (Joudoi et al., 2013). As shown in Figure 7A, there already
exists a path, SLAC1 → AnionEM → H2O Efflux → Closure,
comprised of necessary edges. Hence, the logic implication is
expressed by the path; we do not add the “necessary” edge from
SLAC1 to Closure—shown as a dashed edge. In the second case,
the input to our inference method indicates a necessary
regulation of 8-nitro-cGMP by NOGC1—see Figure 7B. The
path NOGC1 → cGMP → 8-nitro-cGMP is also necessary and
hence we do not add the NOGC1→ 8-nitro-cGMP edge shown as
a dashed edge.

The causal logic inference method is applied to 206
regulatory relationships collected in Supplementary Table
S1 of (Albert et al., 2017), among which 107 relationships
were known to be direct and 99 not known to be direct. An
example application is available on the GitHub repository
(see Methods). Among all these regulatory relationships, we
could assign a logic implication to 196, of which 47 have a
lower confidence (marked with an asterisk in
Supplementary Table S1). We used the result on co-
pointing subgraphs to infer 17 regulatory relationships, of
which 8 resulted in the inference of a new edge. The
remaining 9 cases corresponded to existing paths and
subgraphs of the same logic implication. We then used
the causal logic algorithm (Maheshwari and Albert, 2017)

to look at the logic implications of the regulators for each
node and construct the Boolean rules. In this process, 13 of
the 62 nodes had incompatibility in the logic implications of
the regulators. We used the dominant regulators method to
resolve 7 of these cases. For the remaining 6 cases, we re-
evaluated the causal logic implications and constructed
the complete or incomplete truth table from data in the
literature.

Our method, which only rarely needs manual interpretation
and knowledge of the biology beyond the causal logic implication
of an edge, re-discovered the Boolean rules of the ABA network
correctly in 48 of 62 cases of inferring Boolean rules (see
Supplementary Text S1). Following the second resolution
method, we did an in-depth literature study for the remaining
14 cases. The methodology of this in-depth study involved
constructing the incomplete truth table to find the exact rules.
This methodology led to updated rules in 3 of the 14 cases,
namely, PA (see Supplementary Table S3), AnionEM (see
Supplementary Table S4), and OST1 (see Supplementary
Table S5). Even after this update, only the rule for OST1
matched the previously reported rule (Albert et al., 2017). The
remaining 13 discrepancies are marked in bold in Supplementary
Text S1 and are explained in detail in Supplementary Text S2.
We believe they can be best resolved with new experimental
results, leading to higher confidence in one of the possible
Boolean functions.

3.2.2 The Network Corresponding to Epithelial to
Mesenchymal Transition
As a second case study we consider another process whose
underlying network is known to be complex: the epithelial to
mesenchymal transition (EMT). Steinway et al. (2014)
constructed a signal transduction network, and a Boolean
model, whose outcome is the transcriptional downregulation
of E-cadherin, which is a hallmark of EMT. As an additional test
of our method we re-infer the Booleanmodel from a subset of the
information that was used to construct the original model. We
derive logical observations for every regulator—direct target pair
from the Boolean functions of the EMT model, for a total of 127
edges (Steinway et al., 2014). We then modify this information to
be more representative of characteristic use cases of the inference
method. Specifically, we add indirect edges, or replace two-node
paths by indirect edges, for a total of 18 changes to the input
information. Some of these indirect edges correspond to a path of
the same causal logic implication. Other indirect edges replace
paths of the same causal implication. The logical observations
used as inputs to the inference process are detailed in
Supplementary Table S6. We use our inference method and
find that it correctly resolves each modification.

1. Edges that correspond to a path of the same causal logic
implication are reduced during the inference process.
Example: The path TCF/LEF → GLI → SNAI1 is a
sufficient path. So, the added TCF/LEF → SNAI1
sufficient indirect edge is redundant; it is reduced in
the inference process – see Figure 8.

FIGURE 6 | Addition of sufficient edge from OST1 to CaIM to reflect the
causal logic inferred from the literature. The sufficient regulatory relationship of
OST1 and CaIM is not reflected in the path given by OST1→RBOH→ROS→
GHR1→CaIM. The path from OST1 to GHR1 is necessary but the edge
fromGHR1 to CaIM is neither sufficient nor necessary since the rule for CaIM is
CaIM* = Actin Reorganization or (NtSyp121 and GHR1 and MRP5) or not
ABH1 or not ERA1 or OST1. Hence, the total path from OST1 to CaIM does
not have any logic implication. The sufficient edge fromOST1 to CaIM is hence
added. Edges in red color are sufficient, in blue color are necessary, and in
gray color are neither sufficient nor necessary.
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2. In cases where a two-node path is replaced by an
indirect edge of the same logic implication, the
inference method indicates potential mediator
nodes, thus aiding the biologist in inferring the
mediator – see Figure 9. We verified that all the
suggested mediators were in fact actual mediators in
the published EMT model.

3. A variant of the previous case is when a two-edge path
between a regulator and a target is disrupted by
deleting either the incoming or outgoing edge of the
mediator node and is replaced by an indirect edge of

the same logic implication. The inference method
completes the path and infers a specific edge and
logic implication for the mediator. This gives an
even stronger aide for the biologist to infer the
mediator compared to the previous case. An
example of this case is listed in Figure 10.

4. The inference method used the co-pointing theorem to
resolve discrepancies between incompatible indirect logic
implications. An example is illustrated in Figure 11.

The Boolean functions resulting from the inference process are
given in Supplementary Text S3. They are identical to the
functions of the original EMT model.

FIGURE 7 | Example of indirect regulators with the inferred causal logic implication reflected in a path. (A). SLAC1 is inferred to be a necessary regulator of Closure,
which is reflected by the necessary path formed by SLAC1, AnionEM, H2O Efflux, and Closure. Hence the dashed edge from SLAC1 to Closure is not added to the
network. (B) NOGC1 is inferred to be a necessary regulator of 8-nitro-cGMP, which is reflected by the necessary path formed by NOGC1, cGMP, and 8-nitro-cGMP.
Hence the dashed edge from NOGC1 to 8-nitro-cGMP is not added to the network.

FIGURE 8 | Example of an input perturbation where an indirect regulator
has the same logic implication reflected by a path formed by direct regulators.
TCF/LEF is a sufficient indirect regulator of SNAI1 and a sufficient direct
regulator of GLI which is a sufficient direct regulator of SNAI1. Hence the
sufficient indirect edge from TCF/LEF to SNAI1 is reflected in the sufficient
path TCF/LEF → GLI → SNAI1.

FIGURE 9 | Example of mediator node inference. The sufficient indirect
regulation of PAK1 by TGFβR can be mediated by CDC42 as a sufficient path.
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To further test the accuracy and sensitivity of our method, we
reduced the input information being provided to the code and
assessed the accuracy of the resultant output. We provided ~80%
of the initial input information (see Supplementary Table S7)
and found that the method correctly infers the Boolean function
of 41 of the 59 nodes in the network (see Supplementary Text
S8), i.e., ~70% of the functions are correctly inferred.

4 DISCUSSION

In this work, we present a combined Boolean network
inference method that infers the network topology and the
Boolean function for each node by assigning a causal logic
implication to pairs of network components based on
parsimonious interpretation of the results of perturbation
experiments. This method significantly reduces the manual
work needed to construct a Boolean network and infer its
update rules. Our method not only eases the model
construction process but also points to conflicting elements
of the network which can thereafter be used to guide follow-up
experiments and hence improve biological understanding. In
certain stages of the model construction process we have more
than one option for Boolean functions, which can lead to an
in-depth re-examination of the interpretation of experimental
results. This often provides specific relationships to search for
in the literature that might have been missed in the
initial scan.

In addition to indicating the knowledge gaps that need
filling, this inference method can also give hints about the
direct or indirect nature of relationships. For example, if a
regulator is not known to be direct and the underlying causal
logic relationship is found to be fulfilled by a path or a
subgraph, we have reason to believe that this relationship is
indirect, and we have a list of putative mediators to consider.
This was shown in the specific case of Ca2+c inhibition of PP2Cs
in Maheshwari et al. (2019); the causal logic inference method
makes it generally applicable.

Our application of this causal logic inference method to the
well-studied ABA signaling process served as an excellent
testbed for the method. A well-supported Boolean model of
ABA-induced stomatal closure was reported in Albert et al.
(2017), which we use to test the results of this inference
method. The inferred Boolean functions of the ABA
network (see Supplementary Text S1) particularly highlight
the fact that this inference method gives a logical justification
for choosing one of multiple possibilities in the face of
insufficient knowledge. For example, the published and the
inferred function for SLAH3 represent two different ways of
resolving an incompatibility in the existing evidence; the
inferred function is different from the published rule in
Albert et al. (2017) on the basis of the stronger evidence of
the sufficient inhibitory relationships between one of its
regulators, ABI1, and SLAH3. Causal logic methodology
working alongside other Boolean network analysis methods
has helped us understand and improve the ABA network
model (Maheshwari et al., 2019; Maheshwari et al., 2020).
Despite the complexity of the network, we obtain promising
results on this network using the causal logic inference
method.

This method has limitations that should be addressed in
future research. Any gaps or errors in the biological
information used for inferring the causal logic could
contribute to incorrect inferences. Furthermore, the
assumption that a certain state of the regulator implies a
state of the target node irrespective of the state of the other
regulators does not always hold and instead the state of the
target node is determined by a combination of the states of all
regulators. Incompatibility between the regulators’
designations is an indicator of the inappropriateness of the
causal implication. We proposed methods to resolve
incompatibility by weakening the assumption and replacing

FIGURE 10 | Example of half-known mediator node inference. The
inference input information reveals that TCF/LEF is indirectly sufficient for SHH
and that GLI is directly sufficient for SHH. This helps the biologist infer that the
indirect sufficient regulation of SHH by TCF/LEF could be via GLI and
potentially achieved by a TCF/LEF → GLI sufficient edge.

FIGURE 11 | Example of using co-pointing theorem for inference in the
EMT network. RAS is sufficient inhibitory for E-cadherin via a subgraph and
TWIST is a necessary inhibitory for E-cadherin. Sufficient inhibitory and
necessary inhibitory logic implications are not compatible but since they
share the same regulator, we can use the co-pointing theorem to conclude
that RAS must be sufficient for TWIST1, which will result in the elimination of
the edge from RAS to E-cadherin in the final version of the network.
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it with multiple regulators being collectively sufficient or
necessary. An undocumented regulator can also introduce
incompatibility between the known regulators’ designations.
Developing systematic methodologies to consider
undocumented regulators will be the topic of future work.
In cases of observed failure of the causal logic implication the
fallback is to use manual inference from the collective
experimental evidence, see for example the rule for OST1 in
the ABA network (see Supplementary Table S5).

We envision the use of this method as one step in the cycle
between experiment and modeling: its use speeds up the
construction of an initial parsimonious Boolean model and
allows more effort to be dedicated to experimental verification
of the model and to the resulting model improvement. Future
applications of this method for the inference of other signal
transduction or gene regulatory networks will help us further
refine this theory to further decrease the manual
interpretation required to obtain the Boolean functions.
We also believe that one can expand the causal logic
inference method to multi-level discrete networks, as have
been constructed for stomatal response (Sun et al., 2014; Gan
and Albert, 2016). In these networks, each biomolecule has
multiple levels, for example, 0, 1, and 2, and each level is
represented by an individual node that has corresponding
Boolean functions for different levels of the regulator nodes.
“Necessary” can be extended to mean that the lowest level of
the regulator, i.e., when the regulator is inactive, implies the
lowest level of the target, i.e., the inactivity of the target, and
“sufficient” can be extended to mean that the highest level of
the regulator implies the highest level of the target. Criteria
for identification of the group of nodes that together are
sufficient can be derived in various modeling frameworks,
e.g., in threshold models a node may be activated if two out of
its three possible activators are present.
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