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Accurate inference of gene regulatory networks (GRNs) is important to unravel unknown
regulatory mechanisms and processes, which can lead to the identification of treatment
targets for genetic diseases. A variety of GRN inference methods have been proposed
that, under suitable data conditions, perform well in benchmarks that consider the entire
spectrum of false-positives and -negatives. However, it is very challenging to predict which
single network sparsity gives the most accurate GRN. Lacking criteria for sparsity
selection, a simplistic solution is to pick the GRN that has a certain number of links
per gene, which is guessed to be reasonable. However, this does not guarantee finding the
GRN that has the correct sparsity or is the most accurate one. In this study, we provide a
general approach for identifying the most accurate and sparsity-wise relevant GRN within
the entire space of possible GRNs. The algorithm, called SPA, applies a “GRN information
criterion” (GRNIC) that is inspired by two commonly used model selection criteria, Akaike
and Bayesian Information Criterion (AIC and BIC) but adapted to GRN inference. The
results show that the approach can, in most cases, find the GRNwhose sparsity is close to
the true sparsity and close to as accurate as possible with the given GRN inferencemethod
and data. The datasets and source code can be found at https://bitbucket.org/
sonnhammergrni/spa/.
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INTRODUCTION

Genes are responsible for orchestrating the biochemical processes in a living organism, which is only
possible through a well-organized system of gene regulatory interactions called a gene regulatory
network (GRN). An alteration of the system may result in complex genetic diseases, and potential
treatment targets for these diseases can be identified by inferring reliable GRNs as they can reveal
important mechanisms in the underlying system.

Despite the importance of an accurate GRN inference, it has been difficult to achieve due to
several data-related issues such as biases and noise (Tjärnberg et al., 2015; Tjärnberg et al., 2017). The
application of preprocessing approaches to noisy datasets followed by GRN inference through an
accurate method has been shown on in silico data to overcome the noise-related obstacles in the
inference to a degree (Seçilmiş et al., 2020; Seçilmiş et al., 2021), when the accuracy of the GRN
inference can be measured with a known true network which is available for synthetically generated
data. The accuracy is most commonly measured by the area under the precision-recall and receiver-
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operating characteristic curves (AUPR and AUROC,
respectively) (Huynh-Thu et al., 2010; Madar et al., 2010;
Marbach et al., 2012; Bellot et al., 2015), that consider the
entire range of sparsities, from an empty to a full network.

For practical purposes, however, it is important to be able to infer
the single best GRN, which should be as close to the true GRN as
possible. In a benchmark with simulated data from a known true
network, this can be assessed by accuracy measures such as the F1-
score. However, in the absence of a known true network when using
real biological datasets where underlying novel genetic interactions
are yet to be identified as potential treatment targets, none of these
measurements can be used to evaluate the accuracy of the inferred
GRNs. In such situations, the selection of the best GRN is of critical
importance and most often made by an arbitrary cut-off on the
sparsity, which is usually ~1–3 three links per gene on average for
biological reasons (Martínez-Antonio et al., 2008; Seçilmiş et al.,
2020). However, this approach does not guarantee the selected GRN
to represent the best and most optimal model within the space of all
possibilities in terms of both accuracy and the information content.
Previous attempts have been published, for instance, Tjärnberg et al.
(2013) proposed amethod to reconstruct the gene expression from a
set of inferred GRNs whose sparsity ranges from full to empty, and
showed that this approach works well for informative data but not
when the noise level is high.Morgan et al. (2020) proposed amethod
for assessing GRN quality based on cross-validated fitting of the
GRN’s topology to expression data which was applied to select an
optimal GRN for a biological dataset.

Methods such as LASSO (Tibshirani, 1996; Friedman et al., 2010)
use a regularization approach through an internal penalty term
(called the L1-norm) to obtain a sparse GRN. However, they do
not offer any guidance on what value to set the L1 penalty to find the
optimal sparsity. To this end, one could potentially use the Akaike
Information Criterion (AIC) or Bayesian Information Criterion
(BIC), since these approaches would, in principle, minimize the
information loss with the minimum required number of
independent variables across all given models. These approaches
have previously been used in combination with penalty-based GRN
inference approaches (Menéndez et al., 2010), such as the graphical
LASSO (Friedman et al., 2008). However, it failed for AIC and is also
not applicable to non-penalty-based GRN inference methods such as
GENIE3 (Huynh-Thu et al., 2010).

Here, we present SPA, a sparsity selection algorithm that is
inspired by the AIC and BIC in terms of introducing a penalty
term to the goodness of fit, but is developed particularly for GRN
inference to identify the most mathematically optimal and accurate
GRN within a set of GRNs from varying sparsities inferred by any
inference method. The main idea behind the algorithm is to
determine the optimal model in which regulator genes are alone
capable of explaining target genes with minimum information loss,
given the gene expression data and its perturbation design.

METHODS

SPA: The Sparsity Selection Algorithm
SPA is a model selection pipeline that takes as input S GRNs
with different sparsities inferred by any inference method,

gene expression measured, and the perturbation design. It then
assesses the quality of each input GRN i (1, . . . , S) based on its
information content as detailed in Algorithm 1, and identifies
the model minimizing GRNIC as the best GRN (Figure 1).

Algorithm 1.

The assessment of a GRN model’s information content is
made by an information criterion inspired by AIC and BIC,
called GRNIC from GRN Information Criterion, and
calculated according to Eq. 1. This criterion aims to balance
the error in predicting the underlying gene expression
(badness of fit) and the number of variables (regulators) in
the model. Therefore, the GRN that minimizes GRNIC is
expected to include a set of variables which alone are
sufficient enough to reconstruct the measured gene
expression, without needing more variables.

GRNIC � K + L. (1)
In Eq. 1, K refers to the normalized penalty term, here set to

the number of genes that regulate at least one other gene in the
GRN, and L denotes the normalized badness of fit, here based on
the prediction errors of the estimated gene expression from the
GRN, calculated as described in Algorithm 1. The model for
predicting the gene expression from a GRN i as -Ai

† x P is
derived by Tjärnberg et al. (2015). It is preceded with a
conditional step of removing singular values below 1/max(Y)
that is almost never used but is included as a safeguard against
unstable inversions.

The normalization step to the terms of GRNIC was added as
their units do not naturally relate to each other, making them
incomparable without it. Finding the minimum GRNIC
rewards low badness of fit (high goodness of fit)
considering a penalty that increases with the number of
variables. To implement GRNIC as close to AIC as possible,
we here took e to the power of the badness of fit as an opposite
equivalent of taking the natural logarithm of the goodness
of fit.
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GRN Inference
We applied two different types of approaches: non-penalty-based
and penalty-based methods. As the non-penalty-based method
we chose GENIE3, and for the penalty-based methods, we chose
LASSO and Ridge regression. The code for the used methods is
available at https://bitbucket.org/sonnhammergrni/genespider.

GENIE3 was run with the following parameter settings:
number of regulators: all genes; tree method: random forests;
and number of trees: 1,000. Note that reverse edge direction is
used because it is considerably more accurate. This resulted in a
fully connected GRN with directed interactions that all have
positive weights. All GRNs were then extracted whose sparsity
ranged from 1–5 interactions per gene on average. For a 100-gene
dataset, this corresponds to 401 different sparsities. The rationale
behind this is that a biologically relevant GRN would contain
~1–3 interactions per gene on average (Martínez-Antonio et al.,
2008; Marbach et al., 2012).

LASSO was run as described by Tjärnberg et al. (2015) using
the glmnet Matlab package with alpha = 1, and GRNs were
inferred with as many sparsities as can be obtained given the data.
This was followed by extracting the GRNs whose sparsity ranges
from 1–5 interactions per gene on average, following the same
aforementioned biological motivation.

Ridge regression was also run using the glmnet Matlab
package with alpha = 0. Different sparsities were obtained by
applying cutoffs to the full GRN that Ridge regression outputs.

Data
Five 100-gene subnetworks were extracted from the complete
E. coli GRN available in the GeneNetWeaver network and data
generation tool (Schaffter et al., 2011) to be used as the “true”
GRNs (in other words, the underlying regulatory system, where
the topological properties of the E. coli network are preserved), for
gene expression data generation. Autoregulatory interactions

(self-loops) exist in these true GRNs for the system’s stability,
but none of them was used later on when measuring inference
accuracy, to make it solely determined by non-self-loops. To
maximize the regulatory effect in subsets, all genes were requested
to be a transcription factor, yet only a fraction of all genes had
regulatory effects: 0.53, 0.52, 0.53, 0.50, and 0.53 for the five true
GRNs. The vertices (genes) were drawn randomly with the
“greedy” edge selection (a GeneNetWeaver network extraction
setting). The sparsity of the extracted true GRNs is defined as the
number of interactions per gene on average, and ranges between
1.5 and 1.95 excluding self-loops. For each true subnetwork,
noise-free steady-state single knockdown gene expression data
were generated from ordinary differential equations (a data
generation setting in GeneNetWeaver). Fold changes in gene
expression following the system’s perturbations were calculated
as log base two of the ratio between experiment and wild-type
expression. The gene expression data created by GeneNetWeaver
are an NxN matrix Y (N = 100) of single replicate experiments,
which places the perturbation indications as −1 on the diagonal in
the experiment design matrix P. Then, concatenating these
matrices three times with themselves yields a three-replicate
matrix of size Nx3N. We separately generated the
corresponding Gaussian noise matrices with two different
signal-to-noise ratios (SNRs) corresponding to “high” and
“low” noise levels from Supplementary Equation S1 and
added these to the Y matrix.

RESULTS

We performed GRN inference using GENIE3, LASSO, and Ridge
regression on synthetic datasets and measured the GRN inference
accuracy in terms of the F1-score. Given a set of GRNs of different
sparsities for each method, we applied GRNIC model selection

FIGURE 1 |Workflow of SPA. SPA takes a set of inferred GRNs with varying sparsities, the measured gene expression in fold changes, and the perturbation design
as input. It then uses the GRN Information Criterion (GRNIC) as described in Algorithm 1 and identifies the GRN that minimizes GRNIC as the best GRN.
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criterion as described in the Methods section (Algorithm 1; Eq.
1). F1-scores of the selected GRNs were then compared with the
maximum F1-score obtained from the investigated range
(Figure 2). In addition to this, we evaluated the sparsities of
the selected GRNs (Figure 3).

The results show that the maximum accuracy of the GRN
inference method can be nearly achieved by SPA using GRNIC,
for all applied inference methods. In particular, we observed a
noise-related trend in the accuracy in terms of the F1-score,
where the GRN inference accuracy increased relative to the
decreasing noise, most notably for LASSO and Ridge
regression, from “high” to “low” noise. SPA was able to
identify GRNs very close to the maximum accuracy GRNs for
all methods in most datasets. There was a slight deviation from
the maximum achieved F1-score for network 1 for GENIE3,
networks 1 and 4 for LASSO, and network 5 for Ridge regression,
at the low noise level. At the high noise level, SPA was able to
identify GRNs whose F1-scores are almost identical to the
maximum achieved for all methods.

We analyzed the two terms of the GRN information criterion
(GRNIC) from Eq. 1, that is, the penalty term (K) and badness of
fit term (L), separately, and assessed their effect on GRNIC
(Supplementary Figures S1–S5). We observed that in most
cases, the two terms of GRNIC behave as expected, where the
badness of fit decreases relative to the increasing number of
regulators in the model (see e.g. Supplementary Figure S1A).
However, there are a few cases that do not behave as expected,
which we investigate as follows.

Issue of GRNIC Curve Not Finding a
Minimum at the True Sparsity
We observed a few cases where, even though both the penalty
term (K) and the badness of fit term (L) behave as expected, the
resulting GRNIC values are not minimized around the true
sparsity, and instead peak here (see e.g. Supplementary Figure
S2E). This situation can occur if the increase in the number of
regulators goes faster than the decrease in the badness of fit,

FIGURE 2 | Performance evaluation of the sparsity selection pipeline in terms of the F1-score. F1-scores of the inferred GRNs from datasets generated by
GeneNetWeaver with (A) high and (B) low noise levels. Each panel contains F1-scores from five datasets for two categories: GRNIC (circle) and maximum achieved in
inference (star).

FIGURE 3 | Performance evaluation of the sparsity selection pipeline in terms of sparsity. The sparsity of the inferred GRNs (the GRN having the maximum F1-
score, and the one selected by GRNIC) is shown in terms of the average number of links for (A) high and (B) low noise levels for the five networks. The sparsities of the five
true GRNs are shown in an extra column to the right.
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causing the penalty term to dominate the badness of fit when
calculating GRNIC. There is no obvious solution to this issue, but
either an improved function that better captures the badness of fit
or an adjustment to the penalty term K could potentially
resolve it.

Issue of Aberrant Badness of Fit
The badness of fit is expected to decrease with the addition of
regulators, that is, going from sparser GRNs to denser ones,
because of the increasing number of variables. However, a very
clear parabolic curve is formed by the badness of fit values from
the GENIE3 GRNs at the high noise level dataset generated from
network 4 (Supplementary Figure S4A) and less clearly from
network 3 (Supplementary Figure S3A). This type of behavior,
however, does not prevent SPA from finding the optimal sparsity.
Another concerning behavior of the badness of fit was observed
for Ridge regression GRNs at the low noise level, especially for
networks 3–5, where the badness of fit increases relative to the
increasing number of regulators (Supplementary Figures S2F,
S4F), which is the opposite of what is expected. We have not
found any clear explanation as to why these two situations occur.
In both types of aberrant behavior, the increased badness of fit
with increased GRN density indicates that the larger models
incorporate links that are less predictive, for instance, false
positives that have a strong negative impact on the goodness
of fit.

To explore how the badness of fit curves compare to what is
expected by chance, we applied an experiment-wise random
shuffling to the normalized gene expression matrices
reconstructed by the GRN inference methods. Both badness of
fit curves, the actual and shuffled, are visualized together in
Supplementary Figures. S6–S10. The trend observed in most
of the actual badness of fit curves, that is, gradually decreasing
badness of fit with decreasing sparsity, was lost for the shuffled
curves, which also had a very stochastic behavior. This adds
further support to the validity of the applied badness of fit for the
purpose of assessing the ability of a GRN to reconstruct the
underlying gene expression.

Despite a few aberrant cases, the GRNs identified by SPA are
almost as accurate as of the maximum achieved accuracy. To
further compare the sparsities of the GRNs identified by SPA with
those that achieved the maximum accuracy levels among others,
we calculated the number of interactions per gene on average
(Figure 3).

For GENIE3, SPA selected GRNs closer to the true sparsity than
the other methods, and for most networks, it also came closer than
the most accurate sparsity. This suggests that while GENIE3
predictions are not optimal, the criteria applied by SPA find the
set of regulators that are optimal to reconstruct the underlying gene
expression at both noise levels. The situation for LASSO and Ridge
regression is not as promising as observed for GENIE3 at the high
noise level. Some sparsities were overestimated while some others
were underestimated compared with the true sparsity levels.
However, the GRNs that achieved the maximum F1-scores also
deviated from the true sparsity levels, suggesting that at this noise
level, it is a difficult task to accurately reconstruct GRNs from the
underlying data. This hypothesis is supported by the sparsity

comparison at the low noise level, where both SPA GRNs and
those which achieved themaximumF1-scores have similar sparsities
to the true levels. In some cases, for example, for networks 3 and 5 at
low noise levels, sparsities of the GRNs identified by SPA are closer
to the true sparsity levels than those which achieved the maximum
F1-scores. This means, for some cases, SPA is able to eliminate
malefic interactions/regulators without sacrificing a significant
portion of accuracy.

DISCUSSION

The ability of SPA in identifying a GRN that approaches the
maximum achieved accuracy with a biologically relevant sparsity
solves an old and vexing problem in the field. It can provide guidance
for selecting the most optimal and accurate GRN from a set of
inferred ones, which is important, for instance, when the ultimate
goal is to determine novel treatment targets for underlying genetic
diseases from biological data in the absence of a true GRN.

There are a few obstacles to doing this, of which the most
important one is noise in gene expression. This study shows that,
even though SPA identifies the most accurate GRN, its accuracy
may still not be good enough for a biological discovery if the noise
levels are high, referring to possibly unreliable predictions.
Therefore, when using SPA, one should always note that the
highest possible accuracy that SPA can achieve is only limited to
the applied GRN inference method’s ability to compensate for
the noise.

SPA relies on the prediction accuracy of a set of input GRNs in
reconstructing the underlying gene expression, given the
perturbation design. Therefore, its usage is, to some extent,
limited to those methods inferring signed GRNs where not
only the direction but also the sign of the interaction, that is,
whether activation or inhibition, is known, if one wants to ensure
mathematical suitability. However, our application to GRNs
inferred by GENIE3 showed that SPA can overcome this
limitation and still identify an accurate GRN at a reasonable
sparsity. It would be possible to further extend its application to
undirected GRNs (Faith et al., 2007; de Matos Simoes and
Emmert-Streib, 2012) to see to what degree SPA can find the
most optimal GRN in such cases. However, we consider this
problem out of the scope for this particular study since the main
motivation behind identifying the most optimal GRN is to be able
to understand the causality in gene regulation, and the most
straightforward way of achieving this goal is to apply methods
which are suitable for this purpose.

The replacement of the goodness of fit term by the prediction
error in calculating the information-theoretical criteria required a
few adjustments in their formulation, including a normalization
step for the estimated gene expression data, and a scaling step to
the badness of fit and number of variables to allow for a fair
comparison between the two terms of the information criterion.
This was necessary to allow for a comparison between predicted
and measured gene expression since, depending on the
magnitude of the GRN content and measured gene expression,
the predicted gene expression can vary significantly, potentially
confounding biases. A series of normalization steps on the
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predicted gene expression allowed both measured and predicted
gene expression to be in the same range, therefore providing a
more balanced comparison to the problem. The results support
the methodology behind both the applied badness of fit
calculation and the general formula of SPA.

TheGRNIC algorithm includes a step inwhich the exponential of
the badness of fit is calculated. This was carried out to implement
GRNIC as close to AIC as possible, as an opposite equivalent of
taking the natural logarithm of the goodness of fit, and also, we
noticed that it improved performance. We also evaluated a number
of alternative transformation functions such as square, cube, and
logarithm of 1 minus the scaled badness of fit, to see which one
performed the best. We concluded that even if some cases were
improved with other functions, on the whole, there was no
improvement and we, therefore, prefer to stay with the
formulation closest to the original AIC. A potential future
improvement could be to adapt the function to certain properties
in the predicted and/or measured expression data. Because applying
a transformation function can radically change the scale of the
badness of fit, we apply normalization to ensure that it is in the same
range as the penalty term.

In addition to the overall accuracy of SPA in identifying the
most accurate GRNs near the true sparsity levels, we also focused
on a few aberrant cases, some of which were possible to explain in
terms of the negative effect of high noise levels, while some other
questions raised by SPA remained unanswered. These may be
answered by other researchers in the field together with what is
present in this study, possibly inspiring an even better solution to
the model selection problem in a larger context.

In conclusion, the implemented sparsity selection approach
introduces a great advance to the field since achieving the highest

possible accuracy is now made possible with the combination of a
GRN inference method and SPA. We foresee that more novel
gene regulatory interactions will be identified from the best
possible GRNs using our algorithm, and potential treatment
targets will be proposed.
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