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Acipenser schrenckii is an economically important aquatic species whose gonads require
particularly long times to reach sexual maturity. Luteinizing hormone plays important roles in
gonad development, and luteinizing hormone releasing hormone A2 (LH-A2) is used as an
oxytocin to promote ovulation in aquaculture of A. schrenckii. In this study, we aimed to
determine the effects of LH-A2 on gonad development in juvenile A. schrenckii through
transcriptome profiling analysis of the pituitary and gonads after LH-A2 treatment at a dose
of 3 μg/kg. The 17β-estradiol (E2) levels gradually increased with LH-A2 treatment time, and
significantly differed from those of the control group on days 5 and 7 (p < 0.01). However, the
content of testosterone (Testo) gradually decreased with LH-A2 treatment time and showed
significant differences on day 3 (p < 0.05), and on days 5 and 7 (p < 0.01), compared to those in
the control group. Thus, LH-A2promotes the secretion of E2 and inhibits the secretion of Testo.
Transcriptome profiling analysis revealed a total of 2,883 and 8,476 differentially expressed
genes (DEGs) in the pituitary and gonads, respectively, thus indicating that LH-A2 has more
regulatory effects on the gonads than the pituitary in A. schrenckii. Signal transduction, global
and overview maps, immune system, endocrine system and lipid metabolism were the main
enriched metabolic pathways in both the pituitary and gonads. Sixteen important genes were
selected from these metabolic pathways. Seven genes were co-DEGs enriched in both signal
transduction and endocrine system metabolic pathways. The other co-DEGs were selected
from the immune system and lipid metabolism metabolic pathways, and showed mRNA
expression changes of >7.0. The expression of five DEGs throughout LH-A2 treatment was
verified to show the same patterns of change as those observed with RNA-seq, indicating the
accuracy of the RNA-seq in this study. Our findings provide valuable evidence of the regulation
of gonad development of juvenile A. schrenckii by LH-A2 and may enable the establishment of
artificial techniques to regulate gonad development in this species.
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INTRODUCTION

The Amur sturgeon (Acipenser schrenckii) is an important
aquatic species providing substantial economic benefits in
China. In 2019, the annual production of A. schrenckii reached
15,317 tons, accounting for approximately 15% of the total
sturgeon aquaculture production (Zhang et al., 2020). The
optimum aquaculture temperature of A. schrenckii is 18–22°C.
The main distributed regions of A. schrenckii are in the Amur,
Songhua and Heilongjiang Rivers (Li et al., 2012; Li et al., 2020),
while the main aquaculture regions include Yunnan, Guizhou,
Shandong and Hebei Provinces (Zhang et al., 2020). Sturgeon
eggs are highly valuable and consequently are sometimes called
“black gold.” Female sturgeons are therefore preferred in the
sturgeon aquaculture industry. However, the long period
required for A. schrenckii to reach sexual maturity poses a
severe problem in the sustainable development of the artificial
aquaculture industry for this species. The gonadal primordia ofA.
schrenckii are first observed at 60 days after hatching, and the
gonads begin to differentiate at 170 days after hatching, on the
basis of histological observations (Zhang et al., 2012). However,
the time required for gonad maturity in A. schrenckii is 5–7 years
for testis development and 9–12 years for ovary development
under artificial aquaculture conditions (Qu et al., 2010).
Therefore, the mechanisms of sex determination and
reproduction of A. schrenckii must urgently be fully
understood to establish artificial techniques to regulate ovarian
development. Previous studies have identified many reproductive
genes in A. schrenckii, and determined their potential functions in
the sex-determination and reproduction mechanisms (Jin et al.,
2016; Lv et al., 2021). However, more studies must be performed.

The hypothalamus–pituitary–gonad (HPG) axis in vertebrates
regulates gonad maturity (Nagahama 2005; Kim et al., 2014).
Gonadotropin-releasing hormone (GnRH) is secreted by the
hypothalamus under normal conditions. GnRH promotes
ovarian development through stimulating the secretion of
follicle stimulating hormone and luteinizing hormone (LH)
(Coccia and Rizzello 2008; Gründker and Emons 2021). LH is
secreted by the anterior pituitary gonadotrophs and is classified as
a gonadotropin promoting gonad development. LH binds specific
transmembrane receptors localized primarily in the ovarian cells
and subsequently promotes ovarian development. In the ovaries,
LH is required to promote and mediate ovulation through
regulating the synthesis of androgens in follicular theca cells.
LH then helps maintain the secretion of progesterone after
ovulation and is required for blastocyst implantation in the
uterus (Paoli et al., 2020; Guo et al., 2021). LH is also used in
infertility treatment in women (Soleimanifar et al., 2016; Orlova
et al., 2017). LH was reported to be involved in the process of
ovarian development in salmonid fish (Josep et al., 2000) and
Ictalurus punctatus (Kristanto et al., 2009), while caused the sex
reversal in Monopterus albus (Tang et al., 1974). The cDNA
sequences of luteinizing hormone β were cloned from
Kryptolebias marmoratus (Rhee et al., 2009), Anguilla
dieffenbachia (Saito et al., 2003), and Engraulis japonicus
(Ohkubo et al., 2010), and proven to be involved in the
ovarian development. In sturgeon artificial aquaculture,

luteinizing hormone releasing hormone A2 (LH-A2) is used as
an oxytocin to promote ovulation in sturgeons. Previous studies
have identified the essential regulatory roles of KiSS1 and
gonadotropin-releasing hormone analogue (GnRH-a) in the
regulation of the HPG axis, thus affecting ovarian
development in A. schrenckii (Jin et al., 2016; Lv et al., 2021).
However, the effects of LH-A2 in promoting ovarian
development and ovulation remain unclear. The genes
regulated by LH-A2 treatment must be determined.
Understanding the effects of LH-A2 is essential for
establishing artificial techniques to shorten ovarian
development in A. schrenckii.

In this study, LH-A2 was injected into juvenile A. schrenckii at
60 days after hatching. The important metabolic pathways and
genes regulated by treatment with LH-A2 at 3 μg/kg were
identified through transcriptome profiling analysis of the
gonads and pituitary. To assess the effects of LH-A2 on gonad
development, we analysed the crucial differentially expressed
genes (DEGs) throughout LH-A2 treatment by using
quantitative real-time PCR (qPCR). The combined results
provide valuable evidence for regulating gonad development in
juvenile A. schrenckii.

MATERIALS AND METHODS

Ethics Approval
All fish handling and experimental procedures involved in this
study were approved by the Animal Care and Use Committee of
the Heilongjiang River Fisheries Research Institute, Chinese
Academy of Fishery Sciences, Harbin, on the basis of the
relevant guidelines and regulations.

Sample Collection
The A. schrenckii in this study were hatched from a full-sibling
population, and fed at the Amur Sturgeon Breeding and
Engineering Centre, Heilongjiang River Fisheries Research
Institute, Chinese Academy of Fishery Sciences. The new
hatching fishes were maintained in the aerated water at 16°C
with a dissolved oxygen content of ≥6 mg/L, and were fed
sturgeon commercial fodder purchased from Shandong
Shengsuo Feed Technology Co., Ltd. Each day, fish were fed
twice with 2% of their total weight. A total of 200 fishes with body
weights of 41.29–44.19 g were collected from the full-sibling
population at 60 days after hatching and randomly divided
into two groups. The gonad differentiation and development
sensitive period has been shown to begin 60 days after hatching
(Zhang et al., 2012). LH-A2 was purchased from Ningbo
Sansheng Pharmaceutical Co., Ltd. The control group was
injected with the 0.9% physiological saline; the experimental
group was injected with LH-A2 at a dose of 3 μg/kg, which is
commonly used in our A. schrenckii aquaculture program to
promote ovulation (Gao et al., 2020). LH-A2 was dissolved to
3 μg/μL in 0.9% physiological saline, then injected into the muscle
through the first dorsal bone plate, according to the body weight
of each fish. The amount of injected 0.9% physiological saline was
also determined, on the basis of the body weight of each fish.
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Blood samples from 15 individuals of A. schrenckii were collected
from the control group and LH-A2 group at 0, 1, 3, 5 and 7 days
after injection for the measurement of testosterone (Testo) and
17β-estradiol (E2) content. A blood sample was drawn from the
tail vein of each A. schrenckii. The blood samples from five
individual A. schrenckii were pooled to form a biological
replicate, and three replicates were examined. The pituitaries
and gonads sample (n = 15) were collected from the control group
and LH-A2 group at day 7 after injection, and transcriptome
profiling analysis of the pituitary and gonads was performed
between the control group and LH-A2 group. Five tissue samples
were pooled to form one biological replicate, and three biological
replicates were examined. Gonads and pituitaries of another 15
individuals were collected from the control group and LH-A2
group at 0, 1, 3, 5 and 7 days after injection, then subjected to
qPCR analysis. Pituitary and gonads from five different A.
schrenckii were pooled to form a biological replicate, and three
biological replicates were analysed. The collected tissues were
immediately frozen in liquid nitrogen until RNA extraction, to
prevent RNA degradation.

Measurement of Steroid Hormone
The pooled blood samples of A. schrenckii from days 1, 3, 5 and 7
after LH-A2 and 0.9% physiological saline injection were kept at
4°C for 4 h, and then centrifuged at 3,000 rpm/min for 5 min to
extract serum. E2 and Testo were then extracted from the serum
with 5 ml 100% methyl alcohol. The content of E2 and Testo was
measured with a BECKMAN ACESS II T Kit on a Beckman
Coulter Access two instrument (Kraemer Boulevard Brea, CA,
United States), according to the manufacturer’s protocol (Jin
et al., 2019; Lv et al., 2021). All samples were run in triplicate.

Transcriptome Profiling Analysis
The DEGs regulated by LH-A2 treatment were identified through
transcriptome profiling analysis of the pituitary and gonads in A.
schrenckii. The Illumina High-seq 2500 sequencing platform,
which is widely used in transcriptome studies, was used to
perform transcriptome profiling analysis. Previous studies have
described the detailed procedures for RNA-seq and analysis (Jin
et al., 2013; Jin et al., 2021). The Trinity program (version:
trinityrnaseq_r20131110) was used to assemble the clean data
into non-redundant transcripts (Grabherr et al., 2011). Gene
annotation was then performed in the non-redundant (Nr)
database, and the Gene Ontology (GO) (Ashburner et al.,
2000), Cluster of Orthologous Groups (COG) (Tatusov et al.,
2003) and Kyoto Encyclopaedia of Genes and Genomes (KEGG)
databases (Minoru et al., 2008), with an E-value of 10–5 (Jin et al.,
2013). The EB-seq algorithm was used to filter the differentially
expressed genes, according to the criterion of false discovery rate
<0.05 (Benjamini et al., 2001). The transcriptome raw reads were
annotated in the Acipenser ruthenus genome by using Cufflinks
(Trapnell et al., 2010).

qPCR Analysis
qPCR analysis was used to verify the reliability of the RNA-seq
data of selected DEGs, regulated by LH-A2. Previously published
studies have described the detailed procedures of qPCR analysis

(Zhang et al., 2013; Jin et al., 2019). Briefly, total RNA was
extracted from each tissue, using the UNlQ-10 Column Trizol
Total RNA Isolation Kit (Sangon, Shanghai, China) following the
manufacturer’s protocol. A total of 1 μg total RNA from each
tissue was used to synthesize the cDNA template by using the
PrimeScript™ RT reagent Kit (Takara Bio Inc., Japan). The
expression level of each tissue was determined using the
UltraSYBR Mixture (CWBIO, Beijing, China). The qPCR
analysis was performed on a Bio-Rad iCycler iQ5 Real-Time
PCR System (Bio-Rad), and SYBR Green RT-qPCR assays were
used. The primers for qPCR analysis are listed in Table 1 β-actin
was used as the reference gene in this study (Shi et al., 2010; Wu
et al., 2020). The qPCR reaction was 95°C for 10 min, followed by
40 cycles of 95°C for 15 s and 60°C for 1 min. DEPC-water was
used as a negative control instead of the template. The relative
expression levels were measured with the 2−ΔΔCT method (Livak
and Schmittgen 2001).

Statistical Analysis
All statistics were measured in SPSS Statistics 23.0. Quantitative
data are expressed as the mean ± SD. Statistical differences were
estimated by one-way ANOVA followed by LSD and Duncan’s
multiple range test for qPCR analysis in different mature tissues.
The statistical significance of differences in Testo and E2 on the
same day between the control group and experimental group, and
verification of RNA-seq data were determined with paired t-tests.
A probability level of 0.05 was considered to indicate significance
(p < 0.05).

RESULTS

Measurement of Steroid Hormone
The effects of LH-A2 on the secretion of E2 and Testo in the serum in
juvenile A. schrenckii are shown in Figure 1. The content of E2
gradually increased with LH-A2 treatment time at a dose of 3 μg/kg.
The content of E2 reached a peak at 7 days after LH-A2 treatment,
and was different from that at the other tested time points except
5 days (p < 0.05). The contents of E2 at days 5 and 7 after LH-A2
treatment showed significant difference with those of the control
group on the same day (p< 0.01) (Figures 1A). However, the changes
in Testo showed an opposite secretion pattern from that of E2,
revealing a gradual decrease with LH-A2 treatment time. The highest
content of Testo was observed at 0 days. The content of Testo was
different from that in the control group at 3, 5 and 7 days after LH-A2
treatment (p < 0.05) (Figures 1B).

Length Distribution
Illumina Hiseq2500 was used to produce reads for clustering and
de novo assembly. A total of 66.5 Gb raw reads were generated.
Approximately 63.4 Gb clean reads remained after elimination of
adapter sequences and filtering out low-quality reads (the number
of bases in each read was less than 25 bp). The De novo program
was used to assemble the A. schrenckii transcriptome. A total of
140,769 unigenes were assembled with a mean length of 967 bp.
Most unigenes (34.2%) were 300–400 bp in length, followed by
400–500 bp (12.6%) and >3,000 bp (8.8%).
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Functional Annotation
All assembled unigenes were compared with the non-redundant
protein database and nucleotide sequences in NCBI to identify
their putative functions, by using Blastp and Blastx at an E-value
of <10–5. A total of 140,769 unigenes were assembled in this
study, 54,590 of which were annotated in the Nr database.

Approximate 70% of the raw reads were highly matched with
the A. ruthenus genome. A total of 13,736 unigenes were finally
annotated in the A. ruthenus genome. The other unannotated
unigenes maybe caused by the analysis without reference genome
whose functions have not yet been identified. The functions of
these unannotated transcripts require further investigation.

Additional functional analysis of these unigenes was
performed with the GO, COG and KEGG pathway databases.
GO and COG provide a structured, controlled vocabulary for
describing the functions of gene products. A total of 29,622
unigenes (Figure 2) and 44,515 unigenes (Figure 3) matched
known proteins in the GO database and COG database,
respectively. A total of 50,177 unigenes matched known
proteins in the KEGG database and were divided into 258
metabolic pathways.

Identification of Differentially Expressed
Genes
Transcriptome profiling analysis of the gonads and pituitary was
performed between 0.9% physiological saline treatedA. schrenckii
and LH-A2 treatedA. schrenckii, to select the genes andmetabolic
pathways involved in gonad development in juvenile A.
schrenckii. A total of 2,883 genes were differentially expressed
in the pituitary, including 1,612 upregulated genes and 1,271
downregulated genes in LH-A2 treated A. schrenckii (criteria of
>2.0 for upregulation and <0.50 for downregulation, and p-value
< 0.01) (Supplementary Table S1). The DEGs were then blasted
against the GO and KEGG database. A total of 1,005 DEGs were
assigned to the GO database, comprising 49 functional groups.
Binding, cellular process, cell, cell part and membrane
represented the main functional groups, in which the number
of DEGs exceeded 350. A total of 1,009 DEGs matched the known
proteins in the KEGG database and were divided into 44
metabolic pathways. Signal transduction, global and overview
maps, infectious diseases: viral, immune system and
endocrine system were the most enriched metabolic pathways
in the gonad.

A total of 8,476 DEGs were identified in the gonads, including
3,748 that were upregulated and 4,728 that were downregulated
in LH-A2 treated A. schrenckii, according to the same criteria as
those for the pituitary (Supplementary Table S2). Among these

TABLE 1 | Primers used in this study.

Gene Sequence Melt temperature (°C) Efficiency (%)

PKC F: GGAGAACATCATCCTGGCCA 60 97.9
R: TCCTTGAGGCTGTCGTTGTG

Src F: AGTACCACAGCAAGGTCAGC 60 98.2
R: AGAACCAATGTCGCTCTGGG

Trx F: AACAAGATCAAGACGGGCGA 60 99.1
R: AACCGCTCCATGTCGATCAA

Claudin 4 F: TGTGACAGTGGCTGTACGTT 60 98.8
R: AACCGCCTGGATGATGAACA

ADH3 F: ATGAATCACTACTGGCGCGA 60 98.5
R: CAGGTTGTCTTGGAAACGCA

β-actin F: ATCGCCGCACTGGTTGTTGA 60 97.6
R: ATGCCGTGCTCGATGGGATA

FIGURE 1 | The content of E2 and Testo level at different time points
after the treatment of LH-A2 at the dose of 3 μg/kg. Lowercases indicated the
signifcant difference between different time points in the same treated group,
and capital letters indicated the significant difference between control
group and LH-A2 group on the same day (p < 0.05). (A) The content of E2; (B)
The content of Testo.
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8,476 DEGs, 2,417 were assigned to the GO database. These
DEGs comprised 55 functional groups, and the number of DEGs
in each functional group ranged from 1 to 1,115. Binding, cellular
process, catalytic activity, membrane, cell and cell part were the
main functional groups, in which the number of DEGs exceeded

850. A total of 2,540 DEGs matched the known protein in KEGG
database and were divided into 43 metabolic pathways. Signal
transduction, global and overview maps, immune system,
endocrine system and lipid metabolism were the main
enriched metabolic pathways in the pituitary.

FIGURE 2 | Gene ontology (GO) analysis of all unigenes identified by the transcriptome analysis. The left y-axis indicates the percentage of a specific category of
proteins existed in the main category, whereas the right y-axis indicates the number of a specific category of proteins existed in main category. The matched unigenes
were divided into three categories, including biological process (62,493), cellular component (67,146), and molecular function (32,643). The matched unigenes were
comprised of 61 functional groups, in which the number of unigenes in each functional group ranged from 1 to 14,996. Binding; Cellular process, Cell, Cell part and
membrane represent the top five functional groups.
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Identification of Genes for Gonad
Development
The strong candidate genes potentially involved in gonad
development of A. schrenckii are listed in Table 2. These
genes were selected from the main enriched metabolic
pathways of DEGs in both pituitary and gonad. The co-
DEGs were identified as the genes differentially expressed
in both the pituitary and gonads. Seven co-DEGs were
enriched in both signal transduction and endocrine system

metabolic pathways, four of which were upregulated and three
of which were downregulated after LH-A2 treatment. The
other co-DEGs were identified from the immune system and
lipid metabolism metabolic pathways, and the upregulated
expression changes were >7.0.

qPCR Analysis
Five DEGs were selected for qPCR analysis throughout LH-A2
treatment: Protein kinase C (PKC), Proto-oncogene tyrosine-
protein kinase Src (Src), Thioredoxin (Trx), Claudin-4 and

FIGURE 3 | Cluster of orthologous groups (COG) classification of all unigenes identified by the transcriptome analysis. The matched unigenes were classified
functionally into 25 functional categories in the COG database. The number of unigenes in each functional category ranged from 257 to 11782.
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Alcohol dehydrogenase class-3 (ADH-3). The expression of these
five tested DEGs generally remained stable at various time points
after the treatment with 0.9% saline in the pituitary, as compared
with the changes under LH-A2 treatment. The expression of As-
Src and As-Claudin4 gradually increased with LH-A2 treatment
time. The expression of As-PKC and As-ADH3 slightly decreased
1 day after LH-A2 treatment, then significantly increased and
reached a peak after 7 days of LH-A2 treatment. However, the
expression of As-Trx significantly increased from 0 to 3 days after
LH-A2 treatment, and then gradually decreased by 7 days. The
expressions of these five tested DEGs at day 5 and day 7 were
significantly lower in the 0.9% saline group than the LH-A2 group
(p < 0.05), in agreement with the RNA-seq results (Figure 4).

In gonads, the expression of As-PKC, As-Src, As-Trx and As-
Claudin4 gradually increased with LH-A2 treatment time,
whereas the expression of As-ADH3 slightly decreased at
1 day after LH-A2 treatment, then significantly increased and
reached a peak at 7 days after LH-A2 treatment. The expression
changes in these five DEGs in the gonads were similar to those in
the pituitary, showing significantly lower expression in the 0.9%
saline group than the LH-A2 group at days 5 and 7 (p < 0.05), in
agreement with the RNA-seq results (Figure 5).

DISCUSSION

In the present study, through transcriptome profiling analysis, we
aimed to select the important genes and metabolic pathways in
the gonads and pituitary regulated by LH-A2, which is widely
used in sturgeon aquaculture to promote ovulation. LH has been
proven to be involved in the process of gonad development and
ovulation in many aquaculture species (Tang et al., 1974; Josep
et al., 2000; Kristanto et al., 2009). Our previous study identified
the important regulatory roles of KiSS1 in the HPG axis (Jin et al.,
2016; Lv et al., 2021). However, the regulatory roles of LH-A2 in
A. schrenckii remained unclear. The biological functions of genes

regulated by LH-A2 treatment must be further investigated,
especially those of the up-regulated genes. There genes may
play essential roles in the ovarian maturity and development
of A. schrenckii and thus may support the development of
artificial techniques to regulate gonad development in this
species.

In the present study, the content of E2 increased with LH-A2
treatment time at a dose of 3 μg/kg, whereas the content of Testo
decreased. LH is required for ovarian maturity and ovulation in
vertebrates. LH-A2 is widely used as an oxytocin to promote
ovulation in sturgeon aquaculture programs. E2, which is
produced and secreted by the granulosa cells of the ovarian
follicles, promotes female differentiation and sexual
development (Hodgin et al., 2001; Maggiolini et al., 2004).
Testosterone is a major sex differentiation hormone in
vertebrates, and is commonly detected in the haemolymph
and testis. Testosterone is essential for sexual development in
males (Shalender and Stuart 2019; Huang et al., 2021). The dose
of LH-A2 at 3 μg/kg stimulated the secretion of E2 inA. schrenckii
and inhibited the secretion of Testo, thus indicating that LH-A2 is
involved in ovarian maturity in A. schrenckii.

A total of 140,769 unigenes were assembled, substantially
more than in previous studies; therefore, this study provides
valuable information for the analysis of gonad development in A.
schrenckii (Jin et al., 2016; Lv et al., 2021). Approximate 70% raw
reads were highly matched with the Acipenser ruthenus genome,
and a total of 13,736 unigenes were finally annotated in the A.
ruthenus genome, indicating A. schrenckii has close evolutionary
relationship withA. ruthenus (Cheng et al., 2019). A total of 2,883
DEGs and 8,476 DEGs were identified in the pituitary and
gonads, respectively, after the injection of LH-A2. Therefore,
LH-A2 has more regulatory roles in the gonads than the pituitary.
GO analysis of DEGs revealed that binding, cellular process,
catalytic activity, membrane, cell and cell part were the main
functional groups regulated by LH-A2, according to
transcriptome profiling analysis of both the pituitary and

TABLE 2 | Selected DEGs involved in the gonad development of A. schrenckii.

Gene p-value Accession number Metabolic pathway Folder change (LH-A2
vs Control)

Pituitary Gonad

Proto-oncogene tyrosine-protein kinase Src 3.65E-12 XP_014023654.1 Signal transduction; Endocrine system 7.16 6.32
Protein kinase C 1.74E-05 XP_006633404.1 Signal transduction; Endocrine system 4.31 6.32
Nuclear receptor subfamily 4 2.47E-42 XP_018616202.1 Signal transduction; Endocrine system 2.36 3.52
HRAS-like suppressor 3 6.43E-202 XP_015218238.1 Signal transduction; Endocrine system 3.69 2.79
Collagen alpha-1 3.57E-05 EMP35428.1 Signal transduction; Endocrine system −2.36 −2.11
Transcription factor 7 4.56E-30 XP_006630833.1 Signal transduction; Endocrine system −2.15 −2.83
Ficolin-1 1.71E-05 EMP28399.1 Signal transduction; Endocrine system −2.13 −2.79
Alcohol dehydrogenase class-3 5.51E-25 XP_006629873.1 Lipid metabolism 8.12 10.15
Prostaglandin f synthase 2.06E-08 ORC86208.1 Lipid metabolism 7.08 7.56
Beta domain protein 2.46E-05 KHJ90253.1 Lipid metabolism 7.04 8.51
Pol protein 1.55E-05 AAC16764.1 Lipid metabolism 8.37 10.82
Thioredoxin 4.10E-07 XP_012248332.1 Immune system 9.34 8.21
Foldase protein 2.46E-05 XP_017036539.1 Immune system 11.37 7.21
Microtubule-associated protein 1.48E-16 XP_016837448.1 Immune system 7.21 7.89
DNA-directed RNA polymerase 4.39E-29 CDW59665.1 Immune system 11.36 8.69
Claudin-4 5.46E-12 XP_006640934.1 Immune system 8.31 11.42
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gonads. Consequently, the genes involved in gonad development
in A. schrenckii were mainly enriched in these functional groups.

KEGG analysis of DEGs revealed a total of 187 and 74 DEGs in
the gonads and pituitary, respectively, which were involved in the
most enriched metabolic pathways in the transcriptome profiling
analysis of the pituitary and gonads. Thus, signal transduction
and endocrine system metabolic pathways may play essential
roles in gonad development in juvenileA. schrenckii, as well as the
DEGs in these metabolic pathways. The endocrine system
includes various endocrine glands, including the
hypothalamus, pituitary, pineal, thyroid, parathyroid, adrenal,
pancreas, ovaries and testes. These glands can secrete nitrogen-
containing hormones and steroid hormones (Garcia-Reyero
2018; Yuan et al., 2021). The bloodstream carries hormones
from the organs where they are produced to the organs that
they affect. Each hormone influences an organ or a type of cells
within an organ, which is known as the target organ or target cell
(Garcia-Reyero 2018). Signal transduction involves numerous
elements, all playing essential roles in target cells in the
recognition of their specific hormones (McIlwraith and
Belsham 2020). Organs transfer chemical signals through
blood-borne transmission. The target cells have receptors that
specifically bind the corresponding hormones and exert effects
after hormones binding. A reasonable explanation for this is that
the metabolic pathways work together to recognise the specific
hormone, in order to promote the ovarian development and
ovulation in A. schrenckii. We selected seven co-DEGs enriched
in the signal transduction and endocrine system metabolic
pathways in both the gonads and pituitary. Among these
DEGs, four were upregulated in the gonads and pituitary,
whereas the other three were downregulated. The expressions
of PKC and Src were up-regulated after LH-A2 treatment, which
may affect the ovarian development and ovulation in A.
schrenckii. PKC activation plays an important role in
controlling the functions of other proteins in multiple signal
transduction cascades. PKC was initially defined as a participant
in the regulation of hyperglycaemia (Gopalakrishna and Jaken
2000; Inoguchi et al., 2000). PKC activation was further identified
to regulate several biological processes, including the inhibition of
eNOS expression in endothelial cells (Kuboki et al., 2000), the
stimulation of VEGF expression in vascular smooth muscle cells
(Williams et al., 1997), a decrease in NO production in smooth
muscle cells (Ganz and Seftel 2000) and the activation of NF-κB
(Ha et al., 2002). Src has been identified to be an important factor
with a wide range of biological functions, including cell
proliferation, adhesion, angiogenesis, organisation of the cell
skeleton, cell division and cell death (Dunant and Ballmer-
Hofer 1997; Parsons and Parsons 2004; Ingley 2008;
Tegtmeyer and Backert 2011; Kinsey 2014). Src has also been

FIGURE 4 | Expression characterization of five DEGs in pituitary at
different time points after the LH-A2 treatment. The amount of five DEGs
mRNA was normalized to the β-actin transcript level. Data are shown as
mean ± SD (standard deviation) of tissues from three biological
replicates. Lowercases indicated the signifcant difference between different

(Continued )

FIGURE 4 | time points in the same treated group, and capital letters
indicated the significant difference between control group and LH-A2
group on the same day (p < 0.05). (A) Expression characterization of As-
PKC; (B) Expression characterization of As-Src; (C) Expression char-
acterization of As-Trx; (D) Expression characterization of As-Claudin4;
(E) Expression characterization of As-ADH3.
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reported to participate in the treatment of ILT herpesvirus (Li
et al., 2016) and macrophage-myofibroblast transition-driven
fibrotic diseases (Tang et al., 2018).

The immune system and lipid metabolism were two major
metabolic pathways enriched in both the pituitary and gonads.
The immune system involves complex mechanisms of defence
responses, and is found in humans and other advanced
vertebrates, in which it promotes stress resistance. The
nonspecific defence system (innate immunity) and specific
defence system (acquired immunity) work together in
organisms to prevent microorganisms from entering and
proliferating within the body. Nonspecific protective
mechanisms target all microorganisms equally, whereas
specific immune responses are tailored to particular types of
invaders. These immune mechanisms also help eliminate
abnormal cells in the body (Ader et al., 1995; Estrada et al.,
2021). A reasonable explanation for the enrichment of the
immune system is that LH-A2 treatment might be involved in
gonad development. Thus, aged or abnormal cells must be
digested, to adapt the LH-A2 treatment. A total of 24 co-
DEGs were selected, five of which were upregulated in the
LH-A2 treated group, with an expression change >7.0. Tight
junctions, the main apical component of intercellular junctional
complexes, play essential roles in establishing cell polarity and
paracellular permeability (Tsukita and Furuse 2000). The Claudin
family forms integral constituents of tight junctions (Morita et al.,
1999), consisting of at least 20 transmembrane proteins, and are a
major factor in establishing the intercellular barrier (Heiskala
et al., 2001). Claudin-4 is an integral constituent of tight junctions
and is overexpressed in pancreatic cancer (Michl et al., 2001;
Michl et al., 2003) and ovarian cancer (Rangel et al., 2003).
Overexpression of Claudin-4 has also been reported to
regulate the levels of Claudin-1, -2, or -3, occludin or ZO-1
(Itallie et al., 2001). Trx is a ubiquitous disulfide reductase
responsible for maintaining proteins in their reduced state
(Holmgren 1985). Trx is a negative regulator of Apoptosis
signal-regulating kinase 1 (Saitoh et al., 1998). In addition,
thioredoxin-interacting protein is associated with oxidative
stress and participates in the pathogenesis of type 2 diabetes
(Zhou et al., 2010).

Lipid metabolism is another important metabolic pathway
enriched in both the pituitary and gonads. Lipid metabolism is a
complicated process regulating lipid synthesis and degradation. It
is controlled by many bioregulators from the pituitary, liver,
endocrine pancreas, adipose tissue and the gut microbiome. Lipid
metabolism is regulated by several hormones, as well as the
presence of cancer or pregnancy. Leptin affects lipid
metabolism through regulating the mRNA levels and
concentrations of enzymes such as acetyl-CoA carboxylase in

FIGURE 5 | Expression characterization of five DEGs in gonad at
different time points after the LH-A2 treatment. The amount of five DEGs
mRNA was normalized to the β-actin transcript level. Data are shown as
mean ± SD (standard deviation) of tissues from three biological
replicates. Lowercases indicated the signifcant difference between different

(Continued )

FIGURE 5 | time points in the same treated group, and capital letters
indicated the significant difference between control group and LH-A2
group on the same day (p < 0.05). (A) Expression characterization of As-
PKC; (B) Expression characterization of As-Src; (C) Expression char-
acterization of As-Trx; (D) Expression characterization of As-Claudin4;
(E) Expression characterization of As-ADH3.
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adipocytes (Dahl et al., 2019; Markevich et al., 2021). A
reasonable explanation for this is that lipid metabolism
provided energy for ovarian development after the treatment
of LH-A2 in A. schrenckii. A total of co-13 DEGs were selected,
four of which were upregulated in the LH-A2 treated group, with
an expression change >7.0. Alcohol dehydrogenase (ADH) is a
principal enzyme participating in the oxidation of ingested
ethanol in humans (Cañestro et al., 2010). ADH3 has been
found to be involved in the synthesis of retinoic acid in
chordates (Dong et al., 1996).

Five DEGs from these main enriched metabolic pathways were
selected for qPCR verification throughout LH-A2 treatment. This
study reports the first analysis of the expression of these five genes
under regulation by LH-A2 treatment. qPCR analysis revealed
that the expression of As-Src and As-Claudin4 gradually
increased with LH-A2 treatment time in the pituitary, whereas
As-PKC and As-ADH3 required several days to respond to the
regulation by LH-A2. Interestingly, LH-A2 upregulated the
expression of As-Trx for only several days. In gonads, only
As-ADH3 required several days to respond to regulation by
LH-A2, whereas the expression of the other four DEGs
gradually increased with LH-A2 treatment time. This finding
also indicated that LH-A2 has more essential regulatory roles in
the gonads than the pituitary in A. schrenckii.

In conclusion, the measurements of the content of E2 and
Testo after LH-A2 treatment revealed that LH-A2 stimulates the
secretion of E2 while inhibiting the secretion of Testo in A.
schrenckii. These results are consistent with findings from
aquaculture indicating that LH-A2 promotes ovulation in A.
schrenckii. Transcriptome profiling analysis revealed a total of
2,883 and 8,476 in the pituitary and gonads, respectively,
indicating that LH-A2 has more regulatory effects on the
gonads than the pituitary. Transcriptome profiling analysis
also revealed that the metabolic pathways of signal
transduction, global and overview maps, immune system,
endocrine system and lipid metabolism, and their enriched
upregulated co-DEGs, may play essential roles in ovarian
development in A. schrenckii. qPCR analysis revealed that LH-
A2 stimulated the expression of these tested co-DEGs at 7 days
after treatment in the pituitary and gonads, findings consistent
with those of RNA-seq, whereas differences were observed in the
regulatory processes. The genes, which were rapidly responded to
the LH-A2 treatment, may play essential regulatory roles in
gonad development in A. schrenckii. The biological functions
of these genes need further investigation in A. schrenckii. The

artificial technique to regulate the process of ovarian development
maybe established in A. schrenckii through affecting the
expressions of these selected genes. This study identified the
effects of LH-A2 in A. schrenckii, thus providing valuable
evidence for establishing artificial techniques to regulate gonad
development in A. schrenckii.
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