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Background: Maternal smoking during pregnancy has adverse health effects on the
offspring, including lower birth weight and increased risk for obesity. These outcomes are
also influenced by common genetic polymorphisms. We aimed to investigate the
combined effect of maternal smoking during pregnancy and genetic predisposition on
birth weight and body mass index (BMI)-related traits in 1,086 children of the Human Early
Life Exposome (HELIX) project.

Methods: Maternal smoking during pregnancy was self-reported. Phenotypic traits were
assessed at birth or at the age of 8 years. Ten polygenic risk scores (PRSs) per trait were
calculated using the PRSice v2 program. For birth weight, we estimated two sets of PRSs
based on two different base GWAS summary statistics: PRS-EGG, which includes HELIX
children, and PRS-PanUK, which is completely independent. The best PRS per trait
(highest R2) was selected for downstream analyses, and it was treated in continuous or
categorized into three groups. Multivariate linear regression models were applied to
evaluate the association of the explanatory variables with the traits of interest. The
combined effect was evaluated by including an interaction term in the regression
models and then running models stratified by the PRS group.
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Results:BMI-related traits were correlated among them but not with birth weight. A similar
pattern was observed for their PRSs. On average, the PRSs explained ~4% of the
phenotypic variation, with higher PRS values related to higher trait values (p-value
<5.55E-08). Sustained maternal smoking was associated with lower birth weight and
higher BMI and related traits (p-value <2.99E-02). We identified a gene by environment
(GxE) interaction for birth weight between sustained maternal smoking and the PRS-EGG
in three groups (p-value interaction = 0.01), which was not replicated with the PRS-PanUK
(p-value interaction = 0.341). Finally, we did not find any statistically significant GxE
interaction for BMI-related traits (p-value interaction >0.237).

Conclusion: Sustained maternal smoking and the PRSs were independently associated
with birth weight and childhood BMI-related traits. There was low evidence of GxE
interactions.

Keywords: gene by environment (GxE) interaction, maternal smoking, polygenic risk score, birth weight, body mass
index, waist circumference, fat mass, children

INTRODUCTION

Maternal tobacco smoking during pregnancy remains a great
concern in public health, with 4.2–18.9% of European mothers
smoking during the pregnancy period (Smedberg et al., 2014).
Children of mothers who smoke during pregnancy have lower
birth weights (BW) (Abraham et al., 2017) and an increased risk
of developing obesity and metabolic problems in childhood (Behl
et al., 2013; Rayfield and Plugge, 2017). A poor start in life,
including low BWor being overweight in childhood, increases the
risk of type 2 diabetes, cardiovascular disease, certain cancers, and
mental health problems in later life (Weihrauch-Blüher and
Wiegand, 2018). This is known as the Developmental Origins
of Health and Disease (DOHaD) theory which postulates that
adverse intrauterine environments promote adaptations in the
developing fetus that lead to health problems in adulthood
(Suzuki, 2017). BW and obesity are considered complex traits
as they are influenced by genetic polymorphisms, environmental
factors, and their interactions (GxE) (Yengo et al., 2018;
Warrington et al., 2019; Sulc et al., 2020). Genome-wide
association studies (GWAS) have shown that complex traits
are highly polygenic: they are influenced by thousands of
single nucleotide polymorphisms (SNPs) with slight effects
that globally explain a substantial proportion of the
phenotypic variation (Visscher et al., 2017). For instance, more
than 211 genome-wide significant independent SNPs have been
identified for own BW (Warrington et al., 2019) and 941 for body
mass index (BMI), in both cases explaining ~6% of the
phenotypic variation (Yengo et al., 2018). SNP heritabilities
(i.e., the proportion of phenotypic variance explained by all
measured or imputed SNPs) for these two traits have been
estimated at 28.5 and 22.4%, respectively. The polygenicity of
complex traits has stimulated the development of disease risk
prediction biomarkers based on the aggregation of several SNPs.
Polygenic risk scores (PRSs) are a way to summarize genetic
predisposition for a given trait (Choi et al., 2020). PRSs are usually
computed as a weighted sum score of the number of risk alleles,
using effect sizes from reference genome-wide association studies

as the weights. Therefore, the computation of PRSs requires two
input data sets: the base or reference data, which consists of the
summary statistics of genetic variants from the published GWAS
of the trait of interest, and the target data, which consists of
genetic information from the individuals of the study population.
The individuals in the reference and the target datasets must be
non-overlapping and of the same genetic ancestry (Mostafavi
et al., 2020). PRSs are applied to an individual’s disease risk
prediction with the final goal of providing personalized
preventive strategies and treatments (Lewis and Vassos, 2020;
Wray et al., 2021). Previous studies have shown that PRSs for BW
and BMI, calculated using different statistical approaches and
including different numbers of SNPs, explain between 2 and 11%
of the phenotypic variation (Horikoshi et al., 2016; Khera et al.,
2019; Xie et al., 2020; Hüls et al., 2021; Odintsova et al., 2021).
Despite this, PRSs are not deterministic. For example, it was
found that 17% of the subjects in the top decile of a PRS that
included 2.1 million SNPs were not overweight or obese (Khera
et al., 2019). Thus, additional factors should be considered for
accurate prediction.

Another application of PRSs is the investigation of pleiotropy.
Pleiotropy is defined as the shared influence of a genetic variant
on more than one unrelated phenotype and is common in
complex traits (Visscher et al., 2017). For instance, BW SNPs
are also associated with height, glucose metabolism, or blood
pressure, which can explain, in part, the link between low BW and
later cardio-metabolic problems. In particular in the case of BW,
but also for other traits where the phenotype is influenced by the
direct effect of the fetal genotype and the indirect effect of the
maternal genotype that controls the intrauterine environment,
pleiotropy has an additional degree of complexity (Warrington
et al., 2019). Through a phenotype-wide association study
(PheEWAS), a PRS for BMI was found to be related to 40
disease outcomes, spanning endocrine/metabolic, circulatory,
and other disease groups (Dashti et al., 2022).

Finally, PRS can also be used to stratify the environmental risk
to disease by conducting gene by environmental (GxE)
interaction analyses (Domingue et al., 2020; Lewis and Vassos,
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2020). Some studies have shown the interaction of PRSs for BMI
with specific environmental factors such as parental education
(Hüls et al., 2021), with obesity lifestyle index (Dashti et al., 2022),
or with all potential environmental exposures estimated from the
data (Sulc et al., 2020).

In this study, we aimed to investigate the combined effect of
maternal smoking during pregnancy and genetic predisposition
on BW and BMI-related traits. We calculated several PRSs for
these traits in children of the Human Early Life Exposome
(HELIX) project and then tested their GxE interactions with
maternal smoking during pregnancy.

MATERIALS AND METHODS

Study Population
HELIX (https://www.projecthelix.eu/) is a collaborative project
across six established and ongoing longitudinal population-based
birth cohort studies in six European countries: EDEN - Étude des
Déterminants pré et postnatals du développement et de la santé de
l’Enfant (France); Rhea - The Rhea Mother–Child Study in Crete
(Greece); KANC - Kaunas Cohort (Lithuania), MoBa - Norwegian
Mother, Father and Child Cohort Study (Norway), INMA -
INfancia y Medio Ambiente (Spain), and BiB - Born in Bradford
(United Kingdom) (Maitre et al., 2018). In summary, HELIX aims
to investigate the effects of the early-life exposome on child health,
identify determinants and exposure patterns, understand molecular
mechanisms, and assess the role of genetic background. All the
participants in the study signed an ethical consent, and the study
was approved by the ethical committees of each study area.

PRS were calculated in the 1,155 European ancestry children
from the HELIX project with genetic data, and the GxE
interaction analyses were performed in 1,086 children with
genetic, phenotypic, and exposure data (Supplementary
Figure S1).

Maternal Tobacco Smoking in Pregnancy
and Second-Hand Smoke in Childhood
Maternal tobacco smoking was self-reported by the mother during
different trimesters of pregnancy, from which we created two
variables: any and sustained maternal smoking. Any maternal
smoking was categorized as “smokers” (mothers who smoked at
any point during pregnancy) and “non-smokers” (mothers who did
not smoke at all during pregnancy). Sustainedmaternal smoking was
categorized as “non-smokers,” “non-sustained smokers” (mothers
who smoked only during the first trimester), and “sustained
smokers” (mothers who smoked until the third trimester).

Exposure to second-hand smoke in childhood was assessed
through a harmonized questionnaire administered to the parents
at the age of ~8 years. Children were classified as “exposed” if they
were exposed to second-hand smoke at home or in other indoor
spaces and as “unexposed” if they were not exposed at all.

Phenotypic Traits
BW (in grams) was collected as part of the study protocol of each
cohort and harmonized in the context of the European Study of

Cohort for Air Pollution Effects (ESCAPE) project (Agier et al.,
2021). Whenever possible, gestation duration (in weeks) was
defined as the interval between the start of the last
menstruation and delivery; when the date of the last
menstruation was missing, ultrasound-based estimates were
used; when both measures were missing, obstetrician estimates
were used. BW was converted in gestational age- and sex-
standardized z-scores using the INTERGROWTH-21st
reference curves (Villar et al., 2014). Six individuals had
gestational age >300 days, which is outside the reference
curves, and thus, for them, we could not calculate zBW.

At the age of ~8 years, following a harmonized protocol across
cohorts, anthropometry was assessed (Vrijheid et al., 2020).
Children were asked to be in light clothing and without shoes,
and then, height to the nearest 0.1 cm was measured with a
stadiometer, and weight (in kg) was measured with a digital
weight scale. BMI (in kg/m2) was calculated and converted into
age- and sex-standardized z-scores (zBMI) using the international
World Health Organization (WHO) reference curves (De Onis
and Lobstein, 2010). Waist circumference (WC, in cm) was
measured in a standing position, at the high point of the iliac
crest at the end of a gentle expiration, using a metric tape and
recorded in duplicate (Seca 201, Seca Corporation). Bioelectric
impedance readings were performed with the Bodystat 1500
(Bodystat, Douglas, Isle of Man) equipment after 5 min of lying
down. The proportion of fat mass (FM) was calculated using
published age- and race-specific equations validated for use in
children (Clasey et al., 2011). Using the distribution of the full
study population combining all HELIX cohorts, we calculated
age- and sex-standardized z-scores for waist circumference
(zWC) and proportion of fat mass (zFM).

Genome-Wide Genotyping, Quality Control,
and Imputation
Child peripheral blood DNA samples were collected at the age of
~8 years. Genome-wide genotyping was performed using the
Infinium Global Screening Array (GSA) MD version 1 (Illumina)
at the Human Genomics Facility, Erasmus MC (HuGe-F).
Genotype calling was performed using the GenTrain2.0
algorithm based on a custom cluster file implemented in the
GenomeStudio software and annotation with the GSAMD-24v1-
0_20,011,747_A4 manifest.

Sample quality control was performed using the PLINK program
(Purcell et al., 2007). The following filtering was applied for sample
quality control: sample call rate <97% (n = 43), sex
inconsistencies (n = 8), heterozygosity (>3 standard deviations)
(n = 0), relatedness (sharing more than 18.5% of alleles) (n = 10),
and duplicated samples (n = 19). The Peddy program was used to
predict the ancestry from GWAS data and contrasted with self-
reported ethnicity (Pedersen and Quinlan, 2017). Discordant
samples were filtered out (n = 12). The following filtering was
applied for the variant quality control: variant call rate <95% (n =
4,046), variants in non-canonical pseudoautosomal region (PAR)
(n = 47), variants with minor allele frequency (MAF) < 1% (n =
178,017), and variants not in Hardy–Weinberg equilibrium
(HWE), thus with a p-value <1E-06 (n = 913).

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8676113

Fuentes-Paez et al. GxE of Maternal Smoking and PRSs

https://www.projecthelix.eu/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Genome-wide genotype imputation was performed with the
Imputation Michigan server using the Haplotype Reference
Consortium (HRC) cosmopolitan panel, version r1.1 2016.
Before imputation, PLINK GWAS data were converted into
VCF format, and variants were aligned with the reference
genome. The phasing of the haplotypes was performed with
Eagle v2.4 and the imputation with minimac4. Chromosome X
was imputed, including PAR and non-PAR regions. In total, we
retrieved 40,405,505 variants after imputation. Several quality
control filters were applied to the imputed dataset: 1) imputation
accuracy (R2) <0.9, 2) MAF <1% and 3) HWE p-value <1E-06,
giving rise to a final post-imputation dataset consisting of 1,304
samples and 6,143,757 variants (human genome build GRCh37/
hg19 and plus strand). The first 20 principal components were
computed from the GWAS data of European ancestry children
using PLINK with the LD clumping option.

Polygenic Risk Score Calculation and
Validation
PRSs for BW, BMI, WC, and FM were computed for 1,155 children
of the European ancestry using the PRSice v2 program and the
imputed and quality controlled genetic data (Choi and O’Reilly,
2019). Summarized results of reference GWAS (base data) were
retrieved from the Early Growth Genetics (EGG) consortium and
from the PanUK Biobank—European population (Supplementary
Table S1). PRSs were calculated operating with the average score
method, which computes the score as a sum of the summary statistics
for the effective allele multiplied by the number of effective alleles
observed, divided by the number of alleles included in the PRS. SNP
clumping was set at r2 > 0.1, and the rest of the arguments were left as
default in PRSice v2. For each trait, we calculated 10 PRSs based on
ten different p-value thresholds (Pt) of the base GWAS for SNP
inclusion: Pt = {0.00000005, 0.000005, 0.0001, 0.001, 0.01, 0.05, 0.1,
0.2, 0.5, and 1}. For BW, we computed two sets of 10 PRSs: one using
the EGG base GWAS (which includes around 25% of the HELIX
children) (PRS-EGG) and the other using the PanUK Biobank base
GWAS (with no overlap of individuals) (PRS-PanUK).

The optimal PRS for each trait among the 10 PRSs calculated
with different p-value thresholds (Pt) was selected using PRSice
v2. In particular, linear regression models were computed
between the phenotypic trait and each PRS adjusting for the
10 first GWAS principal components (PCs). The PRS with the
highest model-fit (R2) was considered the best and used in
downstream analyses. To control for overfitting due to
parameter optimization (i.e., 10 Pt tested), the association
between the best PRS and the phenotypic trait was corrected
by performing 10,000 permutations of the phenotype and
calculating an empirical p-value.

Finally, the best PRSs were centered and scaled by subtracting the
mean and divided by the SD. They were analyzed as continuous
variables and categorized into three groups: PRS-low (<25%
percentile), PRS-mid (from 25 to 75% percentile), and PRS-high
(>75% percentile). PRS was constructed based on the weights of the
baseGWAS; thus, the PRS group representing the highest genetic risk
for zBW is the PRS-low, while for the other traits is the PRS-
high group.

Association of Maternal Smoking With
Phenotypic Traits and Its Interaction With
the PRSs
Frequencies (for categorical variables) and means and SDs (for
continuous variables) were calculated. The cross-correlation of
the PRSs and phenotypic traits was calculated with Pearson’s
correlation coefficients and represented in heatmaps with the
corrplot R package (Wei et al., 2017).

To test the association of the PRS and maternal smoking
during pregnancy with phenotypic traits in the selected 1,086
children of the study, we fitted several linear regression models
adjusted for covariates:

Phenotypic trait = PRS-continuous + any maternal smoking
during pregnancy + covariates
Phenotypic trait = PRS-continuous + sustained maternal
smoking during pregnancy + covariates
Phenotypic trait = PRS-groups + any maternal smoking
during pregnancy + covariates
Phenotypic trait = PRS-groups + sustained maternal smoking
during pregnancy + covariates

Covariates for zBW were sex, gestational age, 10 first GWAS
PCs, and maternal education. Covariates for zBMI-related traits
were 10 first GWAS PCs, maternal education (in three levels), and
second-hand smoke in childhood. Maternal education, which is
associated with socioeconomic status and maternal age, was
included as a covariate as it is a potential confounder for
maternal smoking during pregnancy.

Effect sizes are expressed as the change in the z-score of the
phenotypic trait (where each unit represents one standard
deviation from the mean considering age and sex), by
maternal smoking status (non-smokers as reference), by PRS
group (PRS-low as reference), or by one standard deviation of the
PRS (when treated in continuous). The effect modification of the
PRSs on the association between maternal smoking and the
phenotypes was tested by including an interaction term
between these variables in the linear regression model:

Phenotypic trait = PRS-continuous + any maternal smoking
during pregnancy + PRS-continuous * any maternal smoking
during pregnancy + covariates
Phenotypic trait = PRS-continuous + sustained maternal
smoking during pregnancy + PRS-continuous * sustained
maternal smoking during pregnancy + covariates
Phenotypic trait = PRS-groups + any maternal smoking
during pregnancy + PRS-groups * any maternal smoking
during pregnancy + covariates
Phenotypic trait = PRS-groups + sustained maternal smoking
during pregnancy + PRS-groups * sustained maternal smoking
during pregnancy + covariates

Partial F-tests were used to determine statistically significant
differences betweenmodels with and without the interaction term
(global interaction p-value). For statistically significant GxE
interactions, models stratified by the PRS group were run.
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Finally, we performed a series of sensitivity analyses to explore
the effect on zBW of excluding cohorts included in the EGG-based
GWAS summary statistics (INMA and MoBa) and of excluding
non-preterm children. We also tested the effect on zBMI-related
traits by not adjusting themodels for childhood second-hand smoke
and by excluding children unexposed to second-hand smoke.

All the analyses were conducted in R (version 4.0.3), and
scripts can be found in a GitHub repository (https://github.com/
georginafp/analysis_GxE).

RESULTS

Description of the Study Population
The description of the main variables of the HELIX children is
shown in Table 1. All the children were of European ancestry

and were distributed across six ongoing European birth
cohorts. In the study sample, 45.8% were females, the mean
gestational age was 39.6 ± 1.6 weeks (4.9% preterm children),
the mean age at the HELIX visit was 8.1 ± 1.5 years, and 52.5%
were born to mothers with high educational attainment. Mean
(standard deviation—SD) of BW and BMI were 3,392.9
(490.8) grams and 17.03 (2.63) kg/m2, respectively. For the
analyses, phenotypic traits were sex- and age-standardized
using international reference curves (zBW and zBMI) or own
distributions (zWC and zFM). In total, 16.9% of the mothers
reported having smoked at some point during pregnancy, and
9.7% were classified as sustained smokers as they smoked
during the whole pregnancy period. Childhood exposure to
second-hand smoke at home or other places was 36.8%. The
correlation between pregnancy and childhood exposure was
~0.4 and has been described elsewhere in detail (Vives-Usano
et al., 2020). The description of the main variables by cohort is
shown in Supplementary Table S2.

Description of the PRSs and Their
Association With the Phenotypic Traits
Ten PRSs were calculated per phenotypic trait for the 1,155
HELIX children. The distribution of the PRSs, the total
phenotypic variation explained (R2), and the associations of
the best PRS in quantiles are shown in Supplementary Figure
S2. The best PRS for each trait was selected for downstream
analyses. They contained 3,316, 18,563, 60,993, 9,203, and 62,011
SNPs and explained 4.9, 2.5, 4.7, 4.9, and 3.3%, respectively, for
zBW-EGG, zBW-PanUK, zBMI, zWC and zFM. After correcting
through permutations, empirical p-values for the association of
the best PRSs with phenotypic traits were 9.99E-05. The cross-
correlation of the PRSs and phenotypic traits is shown in
Figure 1. zBMI-related traits were correlated among them (r >
0.72) but not with zBW (r < 0.13). A similar pattern was observed
for the PRSs but with a lower strength (r > 0.63, among PRSs for
BMI-related traits; r = 0.48 among PRSs for zBW (EGG vs.
PanUK); r <|0.06|, between PRSs for zBW and PRSs for BMI-
related traits). The correlation coefficient between the traits and
their PRSs ranged from 0.18 (zFM) to 0.29 (zBW).

Association of the PRS and Maternal
Smoking in Pregnancy With the Phenotypic
Traits
The mean and SD of each trait, by the PRS group and by
maternal smoking status during pregnancy, are shown in
Supplementary Table S3. Children in the PRS-high group
had higher phenotypic values than children in the PRS-mid
group, which had higher values than children in the PRS-low
group. Moreover, children exposed to maternal smoking
presented lower zBW and higher values of the zBMI-related
traits. To test the association of maternal smoking (any/
sustained) and of the PRSs (continuous/three groups) with
phenotypic traits, we fitted linear regression models adjusted
for covariates.

TABLE 1 | Descriptive of the HELIX children (N = 1,086).

Variable N (%) or mean
(SD)

Cohort
BIB (United Kingdom) 66 (6.1%)
EDEN (France) 135 (12.4%)
KANC (Lithuania) 193 (17.8%)
MoBa (Norway) 236 (21.7%)
RHEA (Greece) 185 (17.0%)
INMA (Spain) 271 (25.0%)

Sex
Males 589 (54.2%)
Females 497 (45.8%)

Gestational age (weeks) 39.6 (1.6)
Preterm birth (<37 complete weeks) 52 (4.9%)
Birth weight (g) (BW) 3392.9 (490.8)
Birth weight (z-score) (zBW) 0.310 (0.985)
Age at assessment (years) 8.1 (1.5)
Body mass index (kg/m2) (BMI) 17.03 (2.63)
Body mass index (z-score) (zBMI) 0.460 (1.188)
Waist circumference (cm) (WC) 59.20 (7.72)
Waist circumference (z-score) (zWC) 0.007 (0.941)
Fat mass (g) (FM) 5.36 (2.81)
Fat mass (z-score) (zFM) −0.062 (0.940)
Any maternal smoking in pregnancy
Non-smokers 903 (83.1%)
Smokers (non-sustained and sustained) 183 (16.9%)

Sustained maternal smoking in pregnancy
Non-smokers 903 (84.5%)
Non-sustained smokers 63 (5.9%)
Sustained smokers 104 (9.7%)

Second-hand smoke in childhood
Unexposed 672 (63.2%)
Exposed 391 (36.8%)

Maternal education level
High 570 (52.5%)
Middle 383 (35.3%)
Low 133 (12.2%)

N, sample size; SD, standard deviation. zBW and zBMI were calculated using
international (gestational) age- and sex-adjusted reference curves; zFM and zWC were
calculated subtracting the population mean and dividing by the SD, considering age and
sex. Sample size is 1,086 for all variables, except for sustained maternal smoking in
pregnancy (N = 1,070; 16mothers hadmissing information on tobacco smoking in some
trimesters), second-hand smoke in childhood (N = 1,063), preterm (N = 1,063), BW and
zBW (N = 1,080), BMI and zBMI (N = 1,063), WC and zWC (N = 1,060), and FM and zFM
(N = 1,052).
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In the model including the continuous PRS, any maternal
smoking in pregnancy was at least marginally associated with
lower child zBW and higher zBMI, zWC, and zFM (p-values
<5.64E-02) (Table 2). The associations were only observed
among children born from sustained smokers (p-values
<2.99E-02) and not among children born of non-sustained
smokers (p-values >0.402). In particular, children exposed to
sustained smoking during pregnancy had 0.500 (standard error,
SE = 0.100) lower zBW (adjusted for the PRS-PanUK), 0.321
(0.125) higher zBMI, 0.215 (0.099) higher zFM, and 0.280 (0.010)
higher zWC than unexposed children. The effects of sustained
maternal smoking on the phenotypic traits in the models
including the PRS in three groups were similar (Table 2).

In the model including sustained maternal smoking, the best
PRSs (treated in continuous) were positively associated with the
respective phenotypic traits (p-values <5.55E-08) (Table 3). The
same pattern was observed when PRSs were categorized into
three groups: low (<25% percentile), intermediate (25–75%
percentile), and high (>75% percentile). Children in the PRS-
high group of each trait had 0.634 (0.081) higher zBW (PRS-
EGG), 0.538 (0.082) higher zBW (PRS-PanUK), 0.743 (0.103)
higher zBMI, 0.451 (0.071) higher zFM, and 0.524 (0.080) higher
zWC than children in the PRS-low group. Effect sizes remained
similar when the models were adjusted for any maternal smoking
during the pregnancy instead of sustained maternal smoking.
Being above the 75th percentile of the PRS compared to being
below the 25th percentile had a stronger effect (in absolute terms)
than being exposed to maternal smoking during the whole
pregnancy: 0.538 (PRS-PanUK) vs. −0.428 for zBW and 0.743
vs. 0.309 for BMI.

Gene by Environmental (GxE) Interaction
Then, we tested the interaction betweenmaternal smoking during
pregnancy and the best PRS for each trait in the association with
the phenotype. We observed a GxE interaction for zBW between
maternal smoking during pregnancy and the PRS-EGG treated in
three groups (p-values interaction = 0.052 and 0.01, for any and
sustained smoking, respectively) (Supplementary Table S4 and
5).Maternal smoking during the whole pregnancy was associated
with decreased zBW in children who had a certain genetic
predisposition to low zBW (-0.399 (0.173) and -0.655 (0.157) for
children in the PRS-low and in the PRS-mid groups, respectively). In
contrast, the effect of sustained smoking was negligible in children
within the PRS-high group (-0.097 (0.195)) (Table 4). However, this
interaction was not observed when we analyzed the PRS-PanUK
(p-value interaction = 0.096 and 0.341, for any and sustained
smoking, respectively) (Table 4, Supplementary Table S4 and
5). Finally, there was no evidence for a GxE interaction for
zBMI-related traits (p-values for interaction >0.237)
(Supplementary Table S4 and 5).

Sensitivity Analyses
We, then, performed a series of sensitivity analyses. First, we
repeated the analyses of sustainedmaternal smoking in relation to
zBW without INMA and MoBa cohorts which are present in the
EGG-based GWAS summary statistics (Supplementary Table
S6), and the GxE interaction was still observed with a similar
magnitude of the effect. The R2 values explained by the PRS-EGG
in the subsets of children without overlap were 4.8% (without
INMA) and 4.2% (without INMA and MoBa). Second, we
repeated the analyses of sustained maternal smoking in relation

FIGURE 1 | Pearson’s correlation coefficients across PRSs and phenotypic traits, considering only complete pairwise observations (N = 1,066). The color intensity
and size of the circles indicate the degree of correlation.
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to zBW without preterm children, and the results did not change
substantially (Supplementary Table S7). Third, the models of
zBMI-related traits were analyzed again without adjustment for
childhood second-hand smoke or restricting the analysis to
children unexposed to second-hand smoke (Supplementary
Table S8). Effect sizes did not change much in both cases;
however, the associations of sustained maternal smoking during
pregnancy were not significant any more in the restricted
population, likely to the reduced sample size (n = 672).

DISCUSSION

In this study, we investigated the association of maternal smoking
during pregnancy and genetic predisposition, independently and
in combination, with BW and BMI-related traits measured in
1,086 European ancestry children of the HELIX project.

We found that mothers who smoked had newborns with lower
BW and with higher BMI, WC, and FM in childhood, after adjusting
for their corresponding PRS. The association between maternal
smoking and BMI-related traits had been previously reported in
HELIX publications of the early-life exposome, where maternal
smoking was classified as non-smoking, passive smoking, and
active smoking at some point during pregnancy (Vrijheid et al.,
2020; Agier et al., 2021). In this study, we additionally explored the
effect of the duration of smoking during pregnancy.We observed that

the effects were stronger in children of sustained smokers, that is,
mothers who smoked until the third trimester of pregnancy,
compared to children of non-sustained smokers. Overall, our
results are in line with the literature suggesting that maternal
smoking reduces BW (Timmermans et al., 2014; Abraham et al.,
2017; Kataoka et al., 2018; Chattrapiban et al., 2020) and increases
BMI, total FM, and WC later in life (Behl et al., 2013; Timmermans
et al., 2014; Magriplis et al., 2017; Rayfield and Plugge, 2017).

We calculated 10 PRSs for each one of the four traits of interest
based on different p-value thresholds (Pt) of the base GWAS
using PRSice v2, which is one of the most widely used tools to
compute PRSs. The best PRSs were robustly associated with the
phenotypic traits but only explained ~4% of the phenotypic
variation (R2). In HELIX, the variation explained by the PRS
of BMI that included 60,993 SNPs (R2 = 4.7%) was in the range or
slightly lower than previous estimations in children (R2 = 3%, 2 M
SNPs (Odintsova et al., 2021); R2 = 11%, 2.1 M SNPs (Hüls et al.,
2021)), in adolescents (R2 = 6.5%, 941 SNPs; Xie et al., 2020), or in
adult individuals (R2 = 2.9%, 97 SNPs (Dashti et al., 2022); R2 =
5.2%, 376 SNPs (Sulc et al., 2020); R2 = 6.7%, 2 M SNPs
(Odintsova et al., 2021); R2 = 7.8%, 2.1 M SNPs (Khera et al.,
2019)). In Khera et al., children in the 10th percentile of the PRS
for BMI, which included 2.1 M SNPs, weighed 3.5 kg more than
children in the lowest percentile. The predictive power of that
PRS was restricted to postnatal BMI from childhood to
adulthood, with low predictability for BW. Similarly, in our

TABLE 2 | Association of maternal smoking during pregnancy with phenotypic traits, adjusted for the PRSs and covariates.

zBW (EGG)* zBW (PanUK)** zBMI zFM zWC

Effect SE p-value Effect SE p-value Effect SE p-value Effect SE p-value Effect SE p-value

Adjusted for the PRS (cont.)

Any maternal smoking
Non-
smokers (ref.)

— — — — — — — — — — — — — — —

Smokers −0.284 0.078 2.91E-04 −0.305 0.079 1.30E-04 0.206 0.099 3.84E-02 0.158 0.078 4.43E-02 0.151 0.079 5.64E-02
Sustained maternal smoking
Non-
smokers (ref.)

— — — — — — — — — — — — — — —

Non-sustained
smokers

−0.049 0.123 6.92E-01 −0.06 0.124 6.28E-01 −0.009 0.155 9.56E-01 0.066 0.122 5.86E-01 −0.086 0.123 4.84E-01

Sustained
smokers

−0.417 0.098 2.36E-05 −0.5 0.1 7.04E-06 0.321 0.125 1.06E-02 0.215 0.099 2.99E-02 0.28 0.01 5.08E-03

Adjusted for the PRS (3 groups)

Any maternal smoking
Non-
smokers (ref.)

— — — — — — — — — — — — — — —

Smokers −0.286 0.079 2.92E-04 −0.304 0.079 1.35E-04 0.208 0.1 3.70E-02 0.158 0.079 4.46E-02 0.158 0.079 4.65E-02
Sustained maternal smoking

Non-
smokers (ref.)

— — — — — — — — — — — — — — —

Non-
sustained
smokers

−0.045 0.123 7.15E-01 −0.061 0.124 6.24E-01 0.019 0.155 9.00E-01 0.067 0.122 5.85E-01 −0.067 0.123 5.84E-01

Sustained
smokers

−0.428 0.099 1.64E-05 −0.445 0.1 8.37E-06 0.309 0.126 1.40E-02 0.213 0.099 3.20E-02 0.281 0.1 5.10E-03

Models were adjusted for the first 10 GWAS PCs and maternal education. Sample sizes are N = 1,080 for zBW, N = 1,063 for zBMI, N = 1,060 for zWC, and N = 1,052 for zFM.
*The PRS used in the models was calculated using the base GWAS from the EGG consortium.
**The PRS used in the models was calculated using the base GWAS from the PanUK Biobank.
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data, the PRS of BMI was not correlated with the PRS of BW or
vice-versa. In contrast, the PRSs of BMI-related traits (BMI, FM,
and WC) were correlated among them, suggesting pleiotropic
genetic effects underlying these phenotypic associations, as
suggested earlier (Vogelezang et al., 2020; Dashti et al., 2022).
In our study and using the PRSice v2 tool, the addition of more
SNPs in the PRS of BMI did not increase the predictive power. As
evidenced in the literature, the number of SNPs of the PRS not
necessarily correlates with the predictability of the PRS, suggesting
that other factors are also important. The slightly lower prediction
of the PRS of BMI in our study compared to others might be due to
the use of different base GWAS and/or different statistical methods
to calculate the PRS.Moreover, it also could be explained by the less
similarity between the genetic background of the base and target
populations (HELIX is composed of European ancestry children
from six different countries and the base GWASs were conducted
in adults from the UK Biobank). To control for this, our models
were adjusted for the first 10 GWAS PCs which also might have
attenuated the associations.

Regarding BW, previous studies have reported that a PRS for BW
including 62 SNPs from the EGG consortium explains between 2
and 4.9% of the phenotypic variation (Horikoshi et al., 2016). In
HELIX, the PRS with 3,316 SNPs derived from EGG explained 4.9%
of the BW variance. Odintsova et al. also computed a PRS for BW
using the PanUK Biobank data (Odintsova et al., 2021). Their PRS
that included 9M SNPs explained 1.4% of the variance of BW,
similar to the PRS-PanUKwith 18,563 SNPs that explain 2.5% of the
variance inHELIX. As for BMI, the PRS for BWdo not show a linear
relationship between the number of SNPs and the variance
explained.

For all the traits, having a PRS above the 75th percentile (PRS-
high) compared to having a PRS below the 25th percentile (PRS-
low) had a stronger effect (in absolute terms) than the exposure to
tobacco smoke during the whole pregnancy. Children with a PRS-
high level weighed ~266 g more at birth and had ~1.573 kg/m2

more in childhood than children in the PRS-low. Offspring born
from sustained smoker mothers had a mean reduction of BW of
~173 g and a mean increase of BMI of ~0.742 kg/m2, compared to

TABLE 4 | Association of sustained maternal smoking status with zBW, by PRS group.

Trait zBW (EGG)* zBW (PanUK)**

Effect SE p-value Effect SE p-value

PRS-low
Non-smokers (ref.) — — — — — —

Non-sustained smokers 0.393 0.23 8.85E-02 0.067 0.231 7.70E-01
Sustained smokers −0.399 0.173 2.19E-02 -0.215 0.188 2.55E-01

PRS-mid
Non-smokers (ref.) — — — — — —

Non-sustained smokers −0.389 0.187 3.79E-02 −0.104 0.19 5.85E-01
Sustained smokers −0.655 0.157 3.70E-05 −0.584 0.146 7.53E-05

PRS-high
Non-smokers (ref.) — — — — — —

Non-sustained smokers 0.02 0.235 9.32E-01 −0.098 0.243 6.87E-01
Sustained smokers −0.097 0.195 6.21E-01 −0.421 0.213 4.93E-02

Models were adjusted for the first 10 GWAS PCS and maternal education. Sample sizes are N = 275 for PRS-low, N = 539 for PRS-mid, and N = 266 for PRS-high.
*The PRS used in the models was calculated using the base GWAS from the EGG consortium.
**The PRS used in the models was calculated using the base GWAS from the PanUK Biobank.

TABLE 3 | Association of the PRSs with phenotypic traits, adjusted for maternal smoking during pregnancy and covariates.

zBW (EGG)* zBW (PanUK)** zBMI zFM zWC

Effect SE p-value Effect SE p-value Effect SE p-value Effect SE p-value Effect SE p-value

Adjusted for any maternal smoking

PRS (cont.) 0.241 0.028 5.82E-17 0.180 0.029 8.60E-10 0.259 0.037 3.85E-12 0.157 0.029 4.53E-08 0.190 0.028 3.39E-11
PRS (3 groups)
PRS-low (ref.) — — — — — — — — — — — — — — —

PRS-mid 0.280 0.068 4.09E-05 0.235 0.069 7.47E-04 0.378 0.086 1.13E-05 0.134 0.067 4.82E-04 0.373 0.068 4.57E-08
PRS-high 0.627 0.080 1.26E-14 0.529 0.082 1.38E-10 0.707 0.103 1.29E-12 0.458 0.079 4.61E-09 0.526 0.08 6.54E-11

Adjusted for sustained maternal smoking

PRS (cont.) 0.242 0.028 6.20E-17 0.182 0.03 8.01E-10 0.261 0.037 2.98E-12 0.157 0.029 5.55E-08 0.19 0.029 4.24E-11
PRS (3 groups)
PRS-low (ref.) — — — — — — — — — — — — — — —

PRS-mid 0.275 0.068 5.76E-05 0.242 0.069 4.96E-04 0.382 0.086 1.02E-05 0.223 0.067 9.55E-04 0.362 0.07 1.17E-07
PRS-high 0.634 0.081 8.76E-15 0.538 0.082 7.60E-11 0.743 0.103 9.96E-13 0.451 0.071 1.75E-08 0.524 0.08 8.93E-11

Models were adjusted for the first 10 GWAS PCs and maternal education. Sample sizes are N = 1,080 for zBW, N = 1,063 for zBMI, N = 1,060 for zWC, and N = 1,052 for zFM.
*The PRS used in the models was calculated using the base GWAS from the EGG consortium.
**The PRS used in the models was calculated using the base GWAS from the PanUK Biobank.
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offspring of non-smokers. Of note, the comparison of effect sizes
between the PRS and maternal smoking is subjected to the PRS
categorizations we applied (i.e., above 75th percentile vs. below
25th percentile) and to measurement error, which is likely larger
for maternal smoking (i.e., self-reported information).

The GxE analyses showed low evidence of interactive effects
for BMI-related traits between the PRSs and maternal smoking
during pregnancy. In contrast, other studies have reported GxE
interactions between BMI genetic predisposition with a PRS
including 2.1 M SNPs, and geographic region in Europe,
parental education, fiber intake, or screen time (Hüls et al.,
2021), and between a PRS with 97 SNPs and obesity lifestyle
risk index that includes alcohol intake, education, exercise, sleep
habits, shift work, and own smoking (Dashti et al., 2022). In
addition, a recent study, based on a new statistical method that
does not require environmental factors to be measured, has
reported that GxE interactions account for 1.9% of the BMI
variance, while the PRS alone for 5.2% (Sulc et al., 2020).

We detected an interaction for BW between sustained
maternal smoking and the PRS-EGG, which was not
confirmed when using the PRS-PanUK. Compared to others,
children with a genetic predisposition to high BW (EGG PRS-
high group) seemed to be protected against the adverse effects of
sustained maternal smoking on BW. Surprisingly, the adverse
effect of maternal smoking on BWwas stronger in children in the
PRS-mid group than in children in the PRS-low group, likely due
to the low numbers in each group. The interaction did not reach
statistical significance when treating the PRS in continuous.
Moreover, despite the correlation between the two PRS for
BW (r = 0.48), the protective effect of the genetic background
was not observed in children in the PRS-high group computed
with the PanUK base GWAS. The EGG base GWAS data includes
around 25% of the HELIX children, which represent <0.2% of the
base sample (Warrington et al., 2018). This is known to introduce
some inflation in the predictability of the PRS, which is
proportional to the fraction of the target sample that overlaps
the base sample (Choi et al., 2020). We estimated that the overlap
of samples between the base and target population would produce
a false positive rate of ~35% (Choi et al., 2021). In order to address
this limitation, we repeated the analysis without children
potentially included in the EGG base GWAS, and the results
did not change, suggesting the inflation due to the overlap of
individuals has a minor impact on the findings. On the other
hand, the lack of effect modification of the PRS-PanUK could be
explained by the lower variability it captures compared to the
PRS-EGG (2.5% compared to 4.9%). As far as we know, there are
no other studies exploring the interaction of these PRSs with
maternal smoking during pregnancy for comparison. Thus,
validation of these findings in other studies is necessary.

The results should be considered in light of some limitations.
The first one is that PRS predictability depends on the quality of
the reference GWAS (sample size, phenotype definition, ancestry,
and base-target sample overlap). Second, due to the lack of
reference GWAS in non-European populations, we only
calculated the PRSs in European ancestry HELIX children.
Third, HELIX is a pediatric population composed of children
from 5 to 12 years, while the base GWAS for BMI-related traits

were conducted in adults. Hence, genetic variants having specific
effects only in adults might have biased our findings, while
variants having specific effects only in children, and thus not
considered in the PRS, might have decreased the PRS
predictability. In any case, our PRSs could predict part of the
variation of the traits, indicating that some genetic factors seem to
be stable over life, as described before for BMI (Vogelezang et al.,
2020). Fourth, maternal genotypes were not available to study
their contribution to the phenotypes, especially on BW
(Warrington et al., 2019). Fifth, as PRSs explain a small
percentage of the variation of the trait, they might not be
sufficient to test GxE interactions in our relatively small
sample size, and large sample sizes will be required. However,
this approach is still more powerful than testing GxE interactions
with single SNPs. Finally, genetic variants in genes involved in
different biological pathways were combined to compute the
PRSs. This might have limited the identification of interactions
within a specific biological pathway affected by the exposure
(i.e., inflammation and glucose metabolism). In the future, it
would be interesting to create pathway-specific PRSs of each trait
and test their interaction with maternal smoking.

Nonetheless, our study also has some strengths. First,
HELIX is a well-characterized cohort in which phenotypic
measurements were obtained under extremely harmonized
protocols. Second, we have focused on maternal smoking
during pregnancy, a well-characterized exposure for which
strong effects on offspring health outcomes have been
described. Finally, this study could serve as a basis for
larger studies combining data of different cohorts that aim
to investigate GxE interactions.

In summary, maternal smoking during the whole pregnancy
period, but not only at the beginning, was related to lower BW
and higher BMI-related traits in childhood. The PRSs were
associated with the phenotypic traits, but they explained a low
proportion of the variation. There was low evidence for GxE
interactions, except for BW, where children in the highest PRS
group seemed to be protected against the damaging effects of
sustained maternal smoking. However, this was not validated
when using another PRS for BW, and thus, it requires further
investigation.
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