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Controlling the type I error rate while retaining sufficient power is a major concern in
genome-wide association studies, which nowadays often examine more than a million
single-nucleotide polymorphisms (SNPs) simultaneously. Methods such as the Bonferroni
correction can lead to a considerable decrease in power due to the large number of tests
conducted. Shifting the focus to higher functional structures (e.g., genes) can reduce the
loss of power. This can be accomplished via the combination of p-values of SNPs that
belong to the same structural unit to test their joint null hypothesis. However, standard
methods for this purpose (e.g., Fisher’s method) do not account for the dependence
among the tests due to linkage disequilibrium (LD). In this paper, we review various
adjustments to methods for combining p-values that take LD information explicitly into
consideration and evaluate their performance in a simulation study based on data from the
HapMap project. The results illustrate the importance of incorporating LD information into
the methods for controlling the type I error rate at the desired level. Furthermore, some
methods are more successful in controlling the type I error rate than others. Among them,
Brown’s method was the most robust technique with respect to the characteristics of the
genes and outperformed the Bonferroni method in terms of power in many scenarios.
Examining the genetic factors of a phenotype of interest at the gene-rather than SNP-level
can provide researchers benefits in terms of the power of the study. While doing so, one
should be careful to account for LD in SNPs belonging to the same gene, for which
Brown’s method seems the most robust technique.
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disequilibrium

1 INTRODUCTION

Genome-wide association (GWA) studies are commonly used to investigate the contribution of
genetic variants to the risk of developing certain diseases (Manolio, 2010). In a typical GWA study,
large quantities of single-nucleotide polymorphisms (SNPs) are genotyped to examine their
association with some phenotype of interest (e.g., the presence or absence of a disease) or their
interaction with some environmental factor (Baranzini et al., 2009; Jiao et al., 2015). However, the
availability of genotype information for such a large number of SNPs will either lead to a high rate of
type I errors or requires stringent corrections for multiple testing, which in turn inflates the number
of type II errors (Johnson et al., 2010).

In particular, the probability of falsely rejecting an individual null hypothesis (e.g., that a SNP is
unrelated to the outcome) is set a priori to a specific value by the researcher. This pointwise error rate
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(or error rate per hypothesis) is conventionally set to αp = 0.05.
However, the familywise error rate, αs � 1 − (1 − αp)k (i.e., the
probability of falsely rejecting at least one of k true null
hypotheses) quickly increases when testing a large number of
independent hypotheses. A common method to control the
familywise error rate is the Bonferroni correction (Bland and
Altman, 1995) that sets the pointwise error rate to αp/k, which in
turn keeps αs below the desired type I error rate (Shaffer, 1995).
Considering that nowadays around a million SNPs are genotyped
in a typical GWA study (Manolio, 2010), the commonly used
significance threshold of 5 × 10–8 in such studies is loosely based
on the Bonferroni correction (Johnson et al., 2010; Huang et al.,
2012).

As a consequence of the decreased significance threshold,
rejection of a null hypothesis becomes more difficult, whether
it be a true null hypothesis or not. Therefore, the Bonferroni
correction also increases the type II error rate (i.e., the probability
of failing to reject a false null hypothesis), which in turn decreases
power. Although other multiple testing correction methods have
been developed that lead to less severe reductions in power
(Holm, 1979; Simes, 1986; Hochberg, 1988; Hommel, 1988;
Benjamini and Hochberg, 1995; Conneely and Boehnke, 2007),
the reduction can still be severe due to the large number of SNPs
considered in a typical GWA study (Narum, 2006).

A promising approach for mitigating this severe loss of power
is to shift the focus of the analyses to higher functional structures
such as genes (known as gene-based testing) or sets of genes that
belong to common pathways (Lehne et al., 2011). As a result, the
number of hypotheses tested declines dramatically (e.g., to
25,000–30,000 when testing at the gene level) and hence
power is not as severely impacted when a correction for
multiple testing is then applied. Furthermore, by aggregating
signals from multiple SNPs, gene-based testing can be more
appropriate for understanding the genetic structure of complex
diseases (Liu et al., 2010; Chung et al., 2019).

Although the joint contribution of the SNPs in a gene can be
examined with multi-locus tests, such as Hotelling’s T2

(Chapman and Whittaker, 2008; Moskvina et al., 2012), such
approaches require access to the raw genomic data whichmay not
be available. In the absence of the raw data, we can test the joint
null hypothesis of the SNPs that belong to a gene by combining
their individual p-values into an overall p-value. A wide variety of
methods have been described in the literature for combining
independent tests of hypotheses (Pearson, 1938; Lancaster, 1949;
Stouffer et al., 1949; Wilkinson, 1951; Lipták, 1958; Becker, 1994).
Among these, Fisher’s method (Fisher, 1932) may be the best-
known one, which also has high relative efficiency asymptotically
when compared to other methods (Littell and Folks, 1971; Littell
and Folks, 1973). However, Fisher’s method, like many other
methods for combining tests of hypotheses, assumes that the p-
values are independent of each other. This assumption is known
to be violated in the present context as SNPs are often in linkage
disequilibrium (LD), that is, the alleles at different loci exhibit
non-random associations (Slatkin, 2008). As a consequence,
Fisher’s method does not provide nominal results, typically
leading to an inflation in the type I error rate (Moskvina
et al., 2011).

Several attempts have been made to adjust methods for
combining p-values such that they take dependence into
consideration. Brown (1975) proposed an adjustment to
Fisher’s method for combining the results of dependent tests
that has been used for gene-based testing (Moskvina et al., 2011;
Zhang et al., 2020), whereas several other authors have described
the use of principal component analysis (PCA) on the LD
correlation matrix to estimate the effective number of tests
(Cheverud, 2001; Nyholt, 2004; Li and Ji, 2005; Gao et al.,
2008; Galwey, 2009), which in turn can be combined with
various multiple testing correction procedures. In addition,
several authors have applied permutation tests or other
permutation-type procedures to account for the dependence
(Lin, 2005; Liu et al., 2010). However, while permutation tests
are often considered a ‘gold standard’ approach, such methods
are computationally very demanding especially in GWA studies.
Furthermore, proper permutation tests require access to the raw
data which can be another limitation. A promising way to mimic
the results of permutation tests (without needing the raw data and
requiring a fraction of the time) is to generate pseudo replicates of
the test statistics assuming they follow a multivariate normal
distribution under the null hypothesis. These pseudo test statistics
are then converted into SNP-level p-values which can be used to
generate an empirical distribution of the combined p-value under
the null hypothesis that takes the degree of LD into consideration
(Liu et al., 2010; Li et al., 2011).

The statistical properties (i.e., type I error rate and power) of
these methods have been examined in previous research (Lin,
2005; Conneely and Boehnke, 2007; Chapman and Whittaker,
2008; Johnson et al., 2010; Moskvina et al., 2011; Wen and Lu,
2011; Alves and Yu, 2014). However, there are still several points
that have not been considered so far. First, none of the studies
have performed an extensive comparison among all methods on a
genome-wide scale simultaneously. Furthermore, PCA-based
approaches have only been combined with the Bonferroni
correction (or with Tippett’s method; see below), although
they can also be used to modify other tests (e.g., Fisher’s
method) to account for dependence among the p-values. In
addition, it is unknown whether the statistical properties of
the correlations (e.g., their central tendency or spread) used to
quantify the degree of LD might affect the performance of the
methods. Moreover, some theoretical properties of the methods
have not received sufficient attention. Most importantly, Brown’s
generalization of Fisher’s method only applies to one-sided tests
(Brown, 1975). This property is especially problematic in GWA
studies, since tests of the association between the SNPs and the
phenotype of interest are typically two-sided (Laird and Lange,
2010). An extension of Brown’s method to two-sided tests has
been described (Yang et al., 2016); however, its performance in
the present context has yet to be investigated.

In this article, we review a variety of methods for combining p-
values that can be used for gene-based testing and describe how
LD can be directly incorporated into these methods. While doing
so, an important goal is to provide a more complete description of
how methods for combining p-values and adjustment techniques
can be combined. For example, we will describe how an estimate
of the effective number of tests can be used to adjust Fisher’s
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method. Furthermore, we describe how all methods for
combining p-values can be adjusted with an empirical
distribution obtained using a pseudo-permutation approach.
We also discuss the generalization of Brown’s method to two-
sided tests. Finally, we compare the type I error rate and power
of the methods based on a genome-wide Monte Carlo
simulation study using LD matrices derived from the
International HapMap Project (The International HapMap
Consortium, 2003).

2 METHODS

For a collection of i = 1, . . . , k SNPs that belong to a gene (or
pathway), let p1, . . . , pk denote the p-values obtained when testing
the association of each SNP with some phenotype of interest (or
the interaction of each SNP with some other variable). We useH0i

to denote the null hypothesis corresponding to the ith SNP. Since
we are only interested in testing for association regardless of
directionality, we assume that the p-values are derived from two-
sided tests. Moreover, we assume that the tests have nominal
properties, so that pi ~Uniform (0, 1) whenH0i is true. Depending
on the type of test used for deriving the p-values, this assumption
may only be true asymptotically (i.e., if the sample size underlying
the tests is large). For the purposes of describing the methods, we
still make this assumption, but return to this issue in the
discussion section.

Instead of considering each of the p-values and null
hypotheses individually, the goal is to combine the
information from the individual tests into one that tests the
gene as a whole. To be precise, the goal is to test the joint null
hypothesis that none of the SNPs in the gene are associated with
the phenotype (i.e., H0i is true for all tests) against the alternative
that at least one SNP is associated. We will now describe a variety
of methods for this purpose.

2.1 The Bonferroni Method
The Bonferroni correction (Bland and Altman, 1995) is a
method that was originally developed to control the
familywise error rate when conducting multiple hypothesis
tests. In order to apply the correction, the threshold for
significance is adjusted by dividing the pointwise error rate,
αp, by the number of simultaneous tests, k. Alternatively, we
can adjust the individual p-values by multiplying them with k.
Any test whose adjusted p-value is then equal to or less than αp
is declared significant (Simes, 1986).

Although not typically described in this manner, the
Bonferroni method can also be used as a method for
combining p-values. In particular, if any one of the adjusted p-
values is significant, then the joint null hypothesis is
automatically rejected. In the context of GWA studies, this
means that if at least one SNP is significantly associated with
the phenotype of interest, then the gene that this SNP belongs to
is considered significant. Accordingly, the combined p-value for a
gene is given by

p � min 1, min p1, . . . , pk( ) × k( ), (1)

where min(1, . . . ) simply ensures that the combined p-value
cannot exceed 1.

Contrary to popular belief, the Bonferroni correction does not
make any assumptions about the degree of dependence among
the p-values (Goeman and Solari, 2014). In other words,
regardless of the degree of dependence among the tests from
which the p-values are derived, the method guarantees that the
type I error rate is no larger than the desired nominal rate. This
makes the methods particularly interesting for gene-based testing,
where we know that the tests are likely to be dependent due to LD.

2.2 Methods Assuming Independence
In this subsection, we will describe methods that assume that the
tests, and hence the p-values to be combined, are independent.
Adjustments thereof will be considered later.

2.2.1 Tippett’s Method
Tippett’s method (Tippett, 1931), also known as the Dunn-Šidák
correction for multiple testing (Šidák, 1957; Dunn, 1958), follows
from the fact that the familywise type I error rate for k
independent tests, αs � 1 − (1 − αp)k, will equal a desired
nominal rate, α, if we set αp = 1 − (1 − α)1/k. Hence, the joint
null distribution can be rejected if min(pi) ≤ 1 − (1 − α)1/k.
Analogously, we can use

p � 1 − 1 −min p1, . . . , pk( )( )k (2)
as the p-value for the gene. As opposed to the Bonferroni

method, which is slightly conservative even when all tests are
independent, the method provides exact control of the type I
error rate, but only under independence.

2.2.2 Binomial Test
Under the joint null hypothesis, r ~Binomial (k, αp) where r
denotes the number of tests that are significant at αp. Therefore,
we can reject the joint null hypothesis if

p � ∑k
x�r

k
x

( )αxp 1 − αp( )k−x (3)

is equal to or less than the desired type I error rate (Wilkinson,
1951). Intuitively, we can interpret this method as a test of “excess
significance” of the SNPs within a gene. For example, the chances
of finding r = 10 or more significant SNPs at αp = 0.05 in a gene
with 100 independent SNPs is approximately p = 0.028, which
would be significant at α = 0.05.

2.2.3 Fisher’s Method
Assuming that pi ~Uniform (0, 1) under the null hypothesis of no
association, it is easy to show that −2 ln(pi) is chi-square
distributed with 2 degrees of freedom. Hence, the combined
test statistic

X2 � −2∑k
i�1

ln pi( ) (4)

follows a chi-squared distribution with 2k degrees of freedom
under the joint null hypothesis (Fisher, 1932). The p-value for the
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gene can therefore be computed with p = 1 − F (X2, 2k), where F (·,
2k) denotes the cumulative distribution function of a chi-square
distribution with 2k degrees of freedom.

2.2.4 Stouffer’s Method
Let Φ(·) denote the cumulative distribution function of the
standard normal distribution and Φ−1(·) its inverse. Since Φ−1

(1 − pi) follows a standard normal distribution under H0i, z �∑k
i�1Φ−1(1 − pi)/



k

√
~ Normal(0, 1) under the joint null

hypothesis (Stouffer et al., 1949). The p-value for a gene is
then computed with p = 1 − Φ(z).

2.3 Incorporating Linkage Disequilibrium
Except for the Bonferroni method, all methods described in the
previous section assume that the tests are independent. Therefore,
under this assumption (and the assumptions stated at the
beginning of this section), these methods are guaranteed to
have a type I error rate equal to the desired α level (for the
binomial test, the type I error rate is ≤ α due to the discrete nature
of the binomial distribution). On the other hand, when the
independence assumption is violated, the true type I error rate
may deviate from α in either direction, but usually leading to
inflation (i.e., the joint null is rejected too often). In comparison,
the Bonferroni method makes no assumptions about the degree
of dependence among the tests and is guaranteed to have a
rejection rate that is no larger than α, but can be quite
conservative under dependence. We will therefore now
consider adjustments to the methods that account for
dependence among the tests and that can bring their type I
error rate closer to α.

2.3.1 Effective Number of Tests
One potential approach to adjust the previous methods is to
quantify the degree of dependence between the tests, estimate the
effective number of independent tests based on this information,
and incorporate this estimate into the methods described above.

The degree of dependence between the tests is closely related
to the strength of the association between the SNPs. The latter can
be quantified with various statistics (e.g.,D,D′, r, or r2) expressing
the degree of LD between pairs of SNPs (Laird and Lange, 2010).
We can use one of these measures to construct a k × k association
matrix for all SNPs, sometimes called an “LD map”. The effective
number of tests can then be estimated based on this association
matrix. A variety of approaches have been described in the
literature for this purpose (Cheverud, 2001; Nyholt, 2004; Li
and Ji, 2005; Gao et al., 2008; Galwey, 2009). A common feature of
all methods is that they start by applying PCA to the association
matrix. We use λi to denote the ith eigenvalue extracted from
the PCA.

The method proposed by Cheverud (2001) and Nyholt (2004)
estimates the effective number of tests with

kCNeff � 1 + k − 1( ) 1 − Var λ( )
k

( ), (5)

where Var(λ) is the variance of the k eigenvalues. On the other
hand, Li and Ji (2005) suggested the formula

kLJeff � ∑k
i�1

f |λi|( ), (6)

where

f x( ) � I x≥ 1( ) + x − �x�( ) (7)
and �·� is the floor function. According to the method by Gao
et al. (2008), we first sort the eigenvalues in decreasing order,
letting λ(1) denote the largest and λ(k) the smallest eigenvalue.
Then the effective number of tests is defined as

kGAOeff � min x( ) such that ∑x
i�1λ i( )∑k
i�1λ i( )

>C, (8)

where C is a user-defined parameter and usually chosen to be
0.995. Finally, Galwey (2009) proposed to estimate the effective
number of tests with

kGALeff � ∑k
i�1




λi′

√( )2
∑k

i�1λi′
, (9)

where λi′ � max(0, λi).
All of the methods described above have the following

desirable properties. When applied to an identity matrix
(i.e., when there is no association between any pair of SNPs),
then keff = k, so that the effective number of tests is equal to the
number of SNPs. An exception to this property can occur with
kGAOeff . Depending on the value of C and the number of tests, it can
happen that the effective number of tests is then estimated to be
less than k (i.e., when k (1 − C) > 1 then kGAOeff < k). On the other
hand, when all of the SNPs are perfectly associated (i.e., the
correlationmatrix is equal to a k × kmatrix of 1’s), then keff = 1. In
essence, the same test is then repeated k times, yielding identical
results, so that effectively only a single test has been carried out.
However, the methods differ in how association matrices that fall
in between these two extremes are handled, yielding varying
estimates of the effective number of tests between 1 and k.

Once keff has been estimated with one of these approaches, it
can be used to adjust each of the methods for combining p-values
described earlier. For the Bonferroni and Tippett’s methods, we
substitute keff for k so that

p � min 1, min p1, . . . , pk( ) × keff( ). (10)
and

p � 1 − 1 −min p1, . . . , pk( )( )keff (11)
are then the p-values for the gene. For the binomial test, we first
define ~r � �r × keff

k � as the adjusted (i.e., effective) number of
significant SNPs within the gene. Then the p-value for the gene is
computed with

p � ∑keff
x�~r

keff
x

( )αx
p 1 − αp( )keff−x. (12)

Use of the floor function for computing ~r may be conservative,
but we consider this preferable over rounding and the risk of a too
liberal test. Fisher’s method can be adjusted by replacing the
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degrees of freedom of the chi-square distribution with 2keff and
adjusting the test statistic with ~X

2 � keff
k × X2. Hence, the p-value

for the gene is then computed with p � 1 − F( ~X2
, 2keff ). Finally,

for Stouffer’s method, we let ~z �



keff
k

√
× z denote the adjusted test

statistic and hence p � 1 −Φ(~z) is then the p-value for the gene.

2.3.2 Methods Based on Empirically-Derived Null
Distributions
Another approach to account for dependence is to make use of
permutation testing (Johnson et al., 2010; Moskvina et al.,
2011). The idea is to empirically derive the null distribution of
the test statistic of interest by reshuffling the data in such a way
that relevant features of the data structure are preserved except
for the actual association being tested. For example, when
testing for the association between each SNP and case-control
status, reshuffling the status variable breaks any existing
associations, but keeps the LD structure of the SNPs intact.
Hence, any dependence among the p-values to be combined
using one of the methods described earlier is automatically
incorporated into the null distribution. The p-value for a gene
is then computed from the percentile of the actually observed
test statistic under the empirical null distribution. Note that in
the present case, the test statistic of interest is actually a p-value
itself, so letting pj denote the combined p-value based on the
jth permutation of the data (with j = 1, . . . , s) and pobs the
observed combined p-value, the p-value for a gene is then given
by p � ∑s

j�1I(pj ≤pobs)/s.
Permuting the data in the manner described above requires

access to the raw data, so that the phenotype variable can be
reshuffled and the test of association can be conducted for each
SNP. In addition, repeatedly computing the test of association for
each SNP within a gene can be computationally demanding. We
can reduce the computational burden and eliminate the
dependence upon the raw data by directly generating p-values
based on an association matrix that reflects the degree of LD
among the SNPs (Liu et al., 2010) which may be obtained from a
reference population and not necessarily the given data.

In particular, let R denote the LD association matrix
constructed from the correlations among the SNPs. We can
then quickly generate a large number (s) of samples from a
multivariate normal distribution with a true mean vector equal to
zeros and covariance matrix R. Let Z denote the s × k matrix of
these values and P = 2 (1 − Φ(|Z|)) the matrix of two-sided p-
values obtained by applyingΦ(·) element-wise. For each row in P,
we then apply one of the methods for combining p-values,
yielding pj. The p-value for a gene is then again computed as
described above.

2.3.3 Methods Derived Under Dependence
The last set of methods we will consider are modifications of
Fisher’s and Stouffer’s method so that dependence among the
tests is directly taken into consideration.

2.3.3.1 Brown’s Method
The first adjustment is based on Brown (1975) who proposed a
modification of Fisher’s method for combining the results of

correlated one-sided z-tests. If the p-values are not independent,
X2 has expected value E(X2) = 2k and variance
Var(X2) � 4k + 2∑k−1

i�1∑k
j>iCov(−2 ln(pi),−2 ln(pj)), where the

covariance between two −2 ln (·)-transformed p-values is given by

Cov −2 ln pi( ),−2 ln pj( )( ) � 4∫∫+∞
−∞

ln 1 − Φ zi( )( )

× ln 1 − Φ zj( )( )f zi, zj( )dzidzj − 4, (13)
where (zi, zj) is assumed to follow a bivariate standard normal
distribution with correlation equal to the correlation among the
two SNPs and f(zi, zj) denotes the joint probability density
function of this distribution. The covariance term can be
computed using numerical integration, although Brown
(1975) also proposed a closed-form approximation that
avoids this step. Next, we assume that X2 follows a scaled
chi-squared distribution, i.e., X2 ~ cχ2f (or equivalently,
X2/c ~ χ2f), where χ2f denotes a chi-squared distributed
random variable with f degrees of freedom, and then
approximate this distribution by equating its first two
moments to the expected value and variance of X2 as
calculated above. That is, for X2 ~ cχ2f, it follows that E (X2)
= cf and Var(X2) = 2c2f, which implies f � 2(E(X2))2/Var(X2)
and c = Var(X2)/2E (X2). The p-value for a gene is then
computed with p = 1 − F(X2/c, f), where F(·, f) denotes the
cumulative distribution function of a chi-square distribution
with f degrees of freedom.

As given above, the method is only applicable to one-sided
tests. However, in GWA studies, the association between the
phenotype and the SNPs is typically examined with two-sided
tests. We can easily extend Brown’s method to two-sided tests by
computing the covariance with

Cov −2 ln pi( ),−2 ln pj( )( ) � 4∫∫+∞
−∞

ln 2 1 −Φ |zi|( )( )( )

× ln 2 1 −Φ 1 − |zj|( )( )( )f zi, zj( )dzidzj − 4, (14)

with (zi, zj) and f (zi, zj) as defined above (Yang et al., 2016).
The remaining steps of the method are unchanged.

2.3.3.2 Strube’s Method
Finally, Stouffer’s method can also be generalized to consider
the dependence among tests (Strube, 1985). To do so, we
assume (as in Brown’s method) that the test statistics that
generated the p-values follow a multivariate normal
distribution where the correlations among the test statistics
are given by the correlations among the SNPs. We then
compute

z � ∑k
i�1Φ−1 1 − pi( )



















Var ∑k
i�1Φ−1 1 − pi( )( )√ , (15)

where Var(∑k
i�1Φ−1(1 − pi)) � k + 2∑k−1

i�1∑k
j>iCov(Φ−1(1 − pi),

Φ−1(1 − pj))). The challenge is again the computation of the
covariance term, which in this case is given by
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Cov Φ−1 1 − pi( ),Φ−1 1 − pj( )( ) � ∫∫+∞
−∞

Φ−1 1 − 2 1 −Φ |zi|( )( )( )

× Φ−1 1 − 2 1 − Φ |zj|( )( )( )f zi, zj( )dzidzj (16)
and which can again be computed using numerical

integration. Then the combined p-value is calculated with p =
1 − Φ(z).

2.4 Illustrative Example
The methods for combining p-values described in the previous
section can yield conflicting conclusions. In particular, while the
(unadjusted) Bonferroni method controls the type I error rate
even under dependence, it may fail to detect significant
associations when combining non-independent p-values due to
its conservative behaviour in such contexts. We present an
example to illustrate this point.

Assche et al. (2017) reported the results of a candidate gene
study based on a sample of 982 Caucasian adolescents, analyzing
4,947 SNPs clustered in 263 genes known to be involved in
neurotransmission. The outcome of interest was the (log-
transformed) score on the Center for Epidemiologic Studies
Depression Scale (Radloff, 1977). The association between
each SNP and the outcome was tested using an additive model
(Laird and Lange, 2010). The resulting p-values were then
combined within each gene using Brown’s method. The results
showed that a small number of genes were significantly associated
with the phenotype at α = 0.05.

For illustration purposes, we obtained the combined p-values
for two genes (GRID2IP and ARNTL2) with all of the methods
described above. LD maps were calculated using the LD()
function of the genetics package in R (Warnes et al., 2013),
using the allelic correlation to measure the degree of association
between the SNPs within each gene. The combined p-values were
then obtained using the poolr package in R (Cinar and
Viechtbauer, 2020). Empirical null distributions were
generated as described earlier using s = 106 samples.

2.5 Simulation Study
To compare the performance of the various methods more
systematically, we conducted a simulation study based on
HapMap phase II + III data (The International HapMap
Consortium, 2003) so that the results are representative of real
genotype and LD information across the whole genome. Since
genetic recombination breaks down disequilibria among the
SNPs over time, LD tends to be weaker in older populations
(Koch et al., 2013). We therefore used information from the TSI
(Italian) sample from a somewhat younger population to avoid
LD maps overwhelmed with negligible pairwise LD values. The
sample contained n = 102 individuals and 1,421,526 SNPs with
their chromosome and position information.

We focus on autosomal chromosomes and excluded the sex
chromosomes. Furthermore, insertions and deletions (INDELs)
in the data (Mills et al., 2006) were removed. SNPs were assigned
to genes using the biomaRt package in R through the Ensembl
database (Hubbard et al., 2002; Durinck et al., 2005, 2009). SNPs

that were not assigned to a gene were excluded while SNPs that
were assigned to multiple genes (due to overlapping genes) were
kept in the study. After the assignment of SNPs to genes, the data
included 915,259 SNPs in 30,910 genes. The number of SNPs per
gene ranged from 2 to 3,178 with a mean (SD) of 29.61 (68.68)
and a median of 12. Missing genotypes were then imputed using
the MaCH software (Li et al., 2010). Next, LD maps (again using
allelic correlations) were computed as described above. For LD
maps that were not positive definite, the nearest positive definite
correlation matrices were obtained with the nearPD() function of
the Matrix package (Bates and Maechler, 2015). Finally,
genotypes were coded in an additive manner (i.e., 0/1/2
coding), corresponding to the number of minor alleles at a
locus (Moskvina et al., 2011).

For each gene, we examined the type I error rate of the
methods by 1) simulating a dichotomous phenotype variable
(e.g., case-control status) for the n = 102 individuals based on a
Bernoulli distribution with π = 0.50, 2) testing the association
between each SNP within the gene and the phenotype variable
using the Cochran-Armitage trend test (Cochran, 1954;
Armitage, 1955), 3) combining the resulting p-values with
each method described earlier, 4) repeating this process 1,000
times, and 5) calculating the proportion of times that the gene is
declared significant at α = 0.05 according to each method. For
methods that make use of empirical distributions, we generated
these distributions as described earlier using s = 105 samples.
Since the Cochran-Armitage trend test does not require that the
Hardy-Weinberg equilibrium (HWE) assumption holds (Laird
and Lange, 2010), we did not filter out SNPs that violate this
assumption. Also, we note here that our goal was to examine the
performance of the various methods based on individual genes,
not at a whole genome-wide level. Therefore, we tested each gene
at α = 0.05, not at some level corrected for multiple testing.
However, if a particular methods controls the type I error rate on
individual genes, then it will also do so when testing all genes at
α = 0.05/g, where g denotes the total number of genes tested.

To examine the power of the methods, the same steps as
described above were repeated, but the probability of having case
status was now made a logistic function of one or multiple SNPs
within the gene, that is, for the jth individual in the data set, we set
the probability of having case status equal to

πj �
exp β0 +∑k

i�1xijβi( )
1 + exp β0 +∑k

i�1xijβi( ), (17)

where xij denotes the number of minor alleles for the ith SNP of
the jth individual, βi determines how strongly the ith SNP is
related to case-control status, and

β0 � −∑n
j�1∑k

i�1xijβi
n

, (18)

so that approximately half of the n individuals were assigned to
case status and the other half were controls.

This part of the simulation involved several scenarios with
different features. In the first set of conditions, a single SNP
within a given gene was chosen in each iteration and the
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corresponding βi value was set to either 0.2 or 0.5 (two different
conditions). In the remaining conditions, we either allowed 5% or
20% of the SNPs within each gene to be associated with the
phenotype. We again examined two different effect sizes (0.2 or
0.5) and either set βi to the effect size value for each selected SNP
(non-distributed effect) or distributed the effect over all selected
SNPs (e.g., βi = 0.2/10 for an effect size of 0.2 and 10 selected
SNPs). Finally, the selected SNPs were either positioned on a
compact region of the gene (for this, a single SNP was randomly
chosen among the first k × (1 − 0.05) or k × (1 − 0.20) SNPs and all
consecutive SNPs were then also selected) or were dispersed
throughout the gene (for this, significant SNPs were equally
spaced throughout the gene). Hence, in addition to the first
two conditions where a single SNP was associated with the
phenotype with either an effect size of 0.2 or 0.5, we examined
another 16 conditions, as all factors (5 vs. 20% of SNPs
selected, effect size of 0.2 vs. 0.5, non-distributed vs.
distributed effect, non-compact vs. compact SNP selection)
were fully crossed.

To examine how sample size impacts the type I error rate and
power of the methods, the same steps were repeated but in each
iteration, a bootstrap sample of size 102, 500, or 1,000 was
generated from the original data (together with the non-
bootstrap conditions, we therefore examined 4 different sample
size conditions).We included a condition with a bootstrap sample
size of 102 to examine whether the performance of the methods
differed whether the original data or a bootstrap sample of the
same size was used. In total, we therefore examined a total of
(1 type I error + 2 Single SNP + 16 Multiple SNPs) × 4 Sample Size = 76
different conditions.

The simulation was carried out using R (R Core Team, 2020)
and was run on a cluster computer, making use of 144 cores (12
Intel Xeon E5-2,650 2.20 GHz CPUs with 12 cores each) using
parallel/multicore processing. Total computation time for the
simulation was approximately 20,000 core hours.

3 RESULTS

3.1 Illustrative Example
For the illustrative example, Table 1 presents the combined p-
values for the two genes. Heat maps corresponding to the LD
structure for these two genes (and the individual p-values for the
SNPs) are provided in Supplementary Figure S9 as part of the
supplementary materials. The table shows that the Bonferroni
method fails to detect a significant association between both genes
and the phenotype, whereas other approaches (including Brown’s
method) suggest a significant association. Interestingly, adjusting
the Bonferroni method with two of the PCA-based methods
(i.e., kLJeff and kGALeff ) leads to a significant finding at least for
GRID2IP.

While this example demonstrates that conclusions can differ
depending on the method used, we do not know which of the
conclusions drawn above are correct. In other words, the (non-
significant) results of the Bonferroni method may be Type II
errors (which are then avoided by using other methods) or they
may be true negatives (with other methods then leading to Type I
errors). The results of the simulation study will provide further
insights into the performance of the methods when the true status
of each gene is known.

3.2 Simulation Study
3.2.1 Type I Error Rates
Figure 1 shows boxplots of the type I error rates of all methods
observed on all 30,910 genes applied to the original HapMap
dataset (i.e., based on the non-bootstrapped data). Individual
genes are indicated as points when their rate was more than
1.5 times the interquartile range above the third or below the first
quartile. The mean rejection rates (and SDs) are also indicated in
the figure.

None of the unadjusted methods could achieve on average a
nominal rejection rate of α = 0.05. As expected, the Bonferroni

TABLE 1 | Combined p-values for the GRID2IP and ARNTL2 genes based on the methods presented in Section 2 (combined p-values that show non-significant
associations are accentuated in italic).

GRID2IP Unadjusted Cheverud-Nyholt Li and ji Gao Galwey Empirically derived Under dependence

k = 23 kCN
eff � 20 kLJ

eff � 15 kGAO
eff � 18 kGAL

eff � 13

Bonferroni 0.068 0.060 0.045 0.054 0.039 0.052
Tippett 0.066 0.058 0.044 0.052 0.038 0.051
Binomial <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Fisher <0.001 <0.001 <0.001 <0.001 <0.001 0.002 0.001
Stouffer <0.001 <0.001 <0.001 <0.001 <0.001 0.002 <0.001

ARNTL2 Unadjusted Cheverud-Nyholt Li and Ji Gao Galwey Empirically Derived Under Dependence

k = 24 kCN
eff � 22 kLJ

eff � 14 kGAO
eff � 18 kGAL

eff � 14

Bonferroni 0.112 0.103 0.065 0.084 0.065 0.082
Tippett 0.106 0.098 0.063 0.081 0.063 0.082
Binomial <0.001 0.001 0.004 0.002 0.004 0.011
Fisher <0.001 <0.001 0.003 0.001 0.003 0.020 0.016
Stouffer 0.001 0.001 0.009 0.003 0.009 0.030 0.023

The number of SNPs in the genes are denoted by k, whereas kCNeff , k
LJ
eff , k

GAO
eff , and kGALeff denote the effective number of tests estimated by the methods specified in the column header.
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method tended to be conservative, as was Tippett’s method,
which produced very similar results to the former method
throughout the entire simulation study and which will
therefore not be further discussed (note that rates above 0.05
for the Bonferroni method–which occurred for about 1.5% of the
genes–reflect simulation error, since we know that the method
guarantees that the type I error rate is equal to or less than α
regardless of the degree of dependence). On the other hand, the
remaining methods were generally liberal, at times dramatically
so, with the binomial test at least providing an average rejection
rate closest to the nominal level.

The adjustments for addressing the dependence did bring the
rejection rates closer to the nominal level with varying degrees of
success. In fact, when adjusted with the Li & Ji method, the
Bonferroni method had a nominal average rejection rate,
although this came at the cost of increased variability in the
type I error rates, and the occurrence of rates well above the
nominal level for particular genes. For the binomial test, the
average rates fluctuated around the nominal level, being slightly
conservative with the Li & Ji and Galwey adjustments and slightly
liberal with the Nyholt and Gao adjustments. In contrast, none of
the PCA-based adjustments could bring the average type I error
rates of the Fisher and Stouffer methods sufficiently close to
α = 0.05.

Using empirically-derived null distributions produced
rejection rates that were on average reasonably close to the

nominal level, especially for Fisher’s and Stouffer’s methods.
Moreover, the type I error rates of individual genes had much
lower variability than the rates obtained with the PCA-based
adjustments. This was also true for the Bonferroni method and
the binomial test, but these methods were slightly conservative on
average when adjusted in this manner.

The (two-sided) generalization of Fisher’s method to
dependent tests (i.e., Brown’s method) yielded a nominal
rejection rate on average. Furthermore, the variability (i.e., SD)
of the rates for individual genes was lowest compared to all other
methods. Quite importantly (mis)application of the one-sided
version of Brown’s method (since the p-values for the SNPs were
computed from two-sided tests) resulted in worse performance
(further references to Brown’s method will therefore pertain to
the two-sided version unless otherwise stated). On the other
hand, the generalization of Stouffer’s method to dependent tests
(i.e., Strube’s method) performed reasonably well, although its
type I error rate was on average slightly inflated.

Supplementary Figures S1–S3 show the type I error rates of
the methods based on bootstrap samples of sizes 102, 500, and
1,000, respectively. A comparison of Figure 1; Supplementary
Figure S1 (both with n = 102) shows that the performance of the
methods was similar regardless of whether they were applied to
the original data or to bootstrap samples of the same size. The
only exception to this was Stouffer’s method, which became
slightly more conservative for the bootstrapped data. Also, the

FIGURE 1 | Type I error rates of methods for gene-based testing when applied to the original HapMap data. The numbers above the boxplots show the mean (SD)
rejection rates of the methods. The horizontal grey dashed line corresponds to the nominal rejection rate of α = 0.05. Brown (1) and Brown (2) refer to the one- and two-
sided versions of Brown’s method (i.e., Eqs 13,14, respectively). Individual genes are indicated as points when their rejection rate was more than 1.5 times the
interquartile range above the third or below the first quartile.
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patterns in the type I error rates of the methods were not
fundamentally altered when applied to larger sample sizes.
Using empirical distributions in combination with Fisher’s and
Stouffer’s methods and Brown’s method generally resulted in
adequate control of the type I error rate on average and
comparatively low variability in the rates for individual genes.

To examine whether the performance of the methods was
affected by certain characteristics of the genes, we examined their
type I error rates as a function of the (log transformed) number of
SNPs in the genes, the average correlation in the LD maps, the
degree of variability (i.e., standard deviation) of the correlations,
the square-root of the mean squared correlations (SRMSC), the
average minor allele frequencies (MAF) of the SNPs in the genes,
and the standard deviation (SD) of the MAFs. The SRMSC was of
particular interest as it distinguishes genes whose SNPs are
independent (SRMSC equal to 0) from genes with SNPs in
strong LD regardless of the directionality of the association
(SRMSC close to 1). We used locally estimated scatterplot
smoothing to visualize the relationship between these
characteristics and the rejection rates for each method.

Figure 2 shows that the type I error rate of many methods was
affected by the number of SNPs in the genes. In particular, the
Bonferroni method became increasingly conservative as the
number of SNPs increased. Interestingly, this dependence on k

was essentially removed when using the adjustment of Li & Ji and,
to a slightly lesser extent, the adjustment of Gao. In contrast, the
binomial test and Fisher’s method became increasingly liberal as a
function of k, whereas Stouffer’s method displayed non-
monotonic behaviour. The PCA-based adjustments helped to
reduce the inflation in the type I error rates of these methods, but
could not eliminate the dependence on k. Furthermore, all
methods adjusted based on empirical distributions became
increasingly conservative as the number of SNPs increased.
Finally, Brown’s method yielded essentially nominal rates
regardless of k, except for very large genes, where the method
became slightly conservative.

Figure 3 shows the type I error rates as a function of the
SRMSC values. As expected, the figure points out the increasingly
conservative behavior of the Bonferroni method as the SNPs
within the genes become more dependent, while Fisher’s and
Stouffer’s methods then become liberal. The conservative
behavior of the binomial test under independence is also
expected (due to the discrete nature of the binomial
distribution, the type I error rate of the test will not exceed α
= 0.05, but will often fall well below it). More surprising is the fact
that the type I error rate of the method was essentially nominal for
genes with very strong LD. To understand this phenomenon,
consider a gene with k SNPs in perfect LD. In that case, all (two-

FIGURE 2 | Type I error rates of methods for gene-based testing as a function of the number of SNPs in the genes (log-transformed). The horizontal grey dashed
line corresponds to the nominal rejection rate of α = 0.05. Brown (1) and Brown (2) refer to the one- and two-sided versions of Brown’s method (i.e., Eqs 13,14,
respectively).
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sided) p-values are identical and hence either none or all k SNPs
are significant. Since the latter will happen (under the joint null)
with probability α, the test will exhibit nominal performance
under this extreme scenario. With respect to the adjustments, the
various PCA-based approaches again had the effect of
counteracting the conservativeness of the Bonferroni method,
while leading to a reduction in the type I error rates of the other
methods. For all methods, adjusting with the use of empirical
distributions was most successful when LD is strong, while
Brown’s method, although slightly conservative under
independence, and performed well over the range of SRMSC
values. Strube’s method performed similarly, but with some slight
inflation for larger SRMSC values.

Supplementary Figures S4, S5 show the type I error rates of
the methods as a function of the average correlation and the SD of
the correlations of the SNPs within the genes. Here, we again find
that changes in these characteristics have essentially no impact on
the performance of Brown’s method, as well as when using
empirical distributions in combination with Fisher’s and
Strube’s methods. Interestingly, the one-sided version of
Brown’s method performed similarly to the two-sided one
when the average LD was larger than ≈ 0.3.

Supplementary Figures S6, S7 display the type I error rates of
the methods as a function of the average MAFs and their SD

within the genes. The performance of Brown’s method and
Fisher’s method with the empirical distribution adjustment
was again not affected substantially by these factors except
that these methods were slightly conservative when the
average MAF was below 0.1 within the genes. Stouffer’s
method adjusted based on empirical distributions and its
generalization to dependence was also relatively robust to both
factors.

3.2.2 Statistical Power
Figure 4 illustrates the power of the methods (averaged over
genes) for the 54 conditions where the joint null hypothesis was
false. Each panel corresponds to one of three sample size
conditions (i.e., 102, 500, and 1,000), while the x-axis indicates
the condition, starting with the two “single SNP” conditions (with
effect sizes of 0.2 vs. 0.5) followed by the 16 “multiple SNPs”
conditions (with either 5% or 20% of SNPs selected, an effect sizes
of 0.2 or 0.5, a non-distributed or distributed effect, and either
non-compact or compact SNP positions). We only show the
power rates for the (unadjusted) Bonferroni method and those
method and adjustment combinations that could control the type
I error rate on average (i.e., the Bonferroni method with the Li & Ji
adjustment, Brown’s method, and use of empirical distributions
in combination with Fisher’s and Stouffer’s methods).

FIGURE 3 | Type I error rates of methods for gene-based testing as a function of the square-root mean squared correlation (SRMSC). The horizontal grey dashed
line corresponds to the nominal rejection rate of α = 0.05. Brown (1) and Brown (2) refer to the one- and two-sided versions of Brown’s method (i.e., Eqs 13,14,
respectively).
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As expected, power increased with the sample size, with the
effect size, when a higher percentage of SNPs was associated with
the phenotype, and when the effect was not distributed across
these SNPs. Whether the selected SNPs fell into a compact region
of the gene or were distributed throughout had comparatively
little influence on the results. The (unadjusted) Bonferroni
method typically had lower power compared to the other
methods especially for lower sample sizes. Also, Stouffer’s
method adjusted with the use of empirical distributions tended
to have slightly lower power compared to the other adjusted
methods. While differences between the other methods were
often negligible, a slight power advantage could be observed
for the Bonferroni method adjusted with the Li & Ji correction
when a single SNP or a low percentage of them contained a strong
signal. Otherwise, Brown’s method tended to have a slight power
advantage.

To compare the computational efficiency of the methods,
Supplementary Figure S8 presents the average computation
times (based on 500 iterations) of the unadjusted methods
along with the Li & Ji, empirical (using 104 samples), and
dependence adjustments (the latter only for the Fisher and
Stouffer methods) for a set of genes with {10, 25, 50, 100, 199,
254, 492, 897, and 1150} SNPs. While the unadjusted methods
show no noteworthy increase in computational times as a

function of the gene size, the results show that the use of the
adjustments does come at the cost of increased computational
times, less so for the Li & Ji adjustment and more so when using
the Brown and Strubemethods. Finally, as expected, the empirical
methods demand the highest amount of computer time (although
this can be mitigated to some extent; see Cinar and Viechtbauer
(2022) for details). The computation times for the different test
types, however, did not appear to vary substantially.

4 DISCUSSION

In this paper, we described some common methods for gene-
based testing that combine the p-values of individual SNPs within
genes (or that are clustered within some other higher-level
functional structure) to test the joint null hypothesis that none
of the SNPs within a gene are associated with the phenotype of
interest. Along the way, we described a variety of adjustment
techniques to incorporate LD information into this process. To
examine and compare the type I error rates and power of the
methods, we conducted an extensive simulation study based on
HapMap data. While the (unadjusted) Bonferroni method
guarantees that the type I error rate is never larger than the
chosen significance level for all genes, the results show that this

FIGURE 4 | Power comparison of five methods for gene-based testing for three different sample sizes (n = 102, 500, and 1000). The points represent the average
rejection rate of amethod under a specific scenario as indicated by the labels/symbols under the x-axis (number/percent of SNPs that are associated with the phenotype,
the effect size, whether the effect was distributed over the significant SNPs, and whether significant SNPs were compactly positioned within the genes). Brown (2) refers
to the two-sided version of Brown’s method (i.e., Eq. 13).
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comes at the cost of a decrease in power for detecting genes that
contain SNPs associated with the phenotype of interest.

Other methods for gene-based testing require adjustments
based on the LD structure to ensure that their type I error rate is
close to the nominal level on average. Doing so can increase the
power for detecting “significant genes”, but this in turn can lead to
an inflated type I error rate for some of the individual genes. We
would consider this an acceptable risk under two conditions.
First, the variability in the rates for individual genes should be low
(to avoid excessively inflated type I error rates for particular
genes). Moreover, the method should provide adequate control of
the type I error rate regardless of the characteristics of the genes.

Among the various methods examined, the extension of
Brown’s method to two-sided tests comes closest to fulfilling
these requirements. It had a nominal type I error rate on
average and the lowest variability in the rates for individual
genes (also when compared against the unadjusted Bonferroni
method). The highest type I error rate observed across all
30,910 genes was 0.091, but this value might reflect at least in
part simulation error, as the Bonferroni method also had
inflated rates for 470 (1.5%) of the genes, with a maximum
rate equal to 0.069. To further examine this, we repeated the
simulation for these 470 genes using 106 iterations (see
Supplementary Figure S10 for boxplots of the type I error
rates of the Bonferroni and Brown’s method). Now, only 34 of
these genes still had a type I error rate above 0.05 with the
Bonferroni method, with a maximum rate of 0.056. In
contrast, the highest type I error rate of Brown’s method
was then 0.058, although (as expected) a higher number (188
out of these 470 genes) still had a rate above 0.05. Finally, the
results based on all 30,910 genes showed that the Bonferroni
method became increasingly conservative for genes with a
larger number of SNPs or SNPs that were in stronger LD,
while the performance of Brown’s method was essentially
independent of the various gene characteristics examined
(except for some slight conservativeness when the degree of
LD was very weak).

Another consideration in this context is the relative
performance of the methods depending on whether the
‘signal’ is concentrated in a single SNP or distributed over
a larger number of them. The Bonferroni method–which
focuses on the lowest p-value among the SNPs within a
gene–might be at an advantage under the former scenario,
while methods that can aggregate signals across multiple SNPs
(such as Fisher’s and Stouffer’s method and versions thereof
adjusted to account for dependence) would be expected to be
more powerful in the latter case. However, under the
conditions studied, the (unadjusted) Bonferroni method
was never able to outperform Brown’s method even when
only a single SNP was strongly associated with the phenotype.
Only when combined with the adjustment by Li & Ji did the
Bonferroni method show a slight power advantage under this
scenario. Brown’s method may therefore be particularly
advantageous when studying complex diseases where
relatively small associations are likely to be spread across
many SNPs and multiple genes (Neale and Sham, 2004;
Moskvina et al., 2011).

We also considered how an estimate of the effective number
of tests can be used to adjust other methods besides the
Bonferroni or Tippett methods (to which such adjustments
are typically applied). However, none of these generalizations
yielded nominal type I error rates on average. On the other
hand, combining the Bonferroni method with the estimate of
Li and Ji (2005) did perform adequately and, as mentioned
above, may be of interest when the signal is concentrated in a
single SNP. Our findings are in line with those by Wen and Lu
(2011) who showed that the method by Li and Ji (2005)
performs better than other effective number of tests
adjustments.

Finally, we explored methods that mimic “proper”
permutation tests by using pseudo replicates of the p-values
to construct the empirical distributions needed for such tests.
This approach greatly reduces the computation time (and can
even be used when the raw data are not available) and
produces results that are quite similar to those of
conventional permutation techniques (Lin, 2005; Conneely
and Boehnke, 2007; Liu et al., 2010; Moskvina et al., 2011).
However, the results of our simulation study show that the
performance of this approach depends on the method used for
combining the p-values. Moreover, the type I error rate of
these pseudo permutation tests either tended to be slightly
conservative or, when the type I error rate was nominal on
average, they offered no power advantage over Brown’s
method.

There are, however, a few issues that require further
discussion. First, as mentioned at the beginning of Section 2,
the methods discussed in the present manuscript assume that
the p-values follow a Uniform (0, 1) distribution under the null
hypothesis. In our simulation study, the association between
the SNPs and case-control status was tested using the
Cochran-Armitage trend test (as is often done in practice
when assuming an additive model). When using the typical
normal approximation for conducting this test, the p-values
only follow a uniform distribution asymptotically. While an
exact version of this test is also available (Williams, 1988), the
discrete nature of the test (since it is based on the frequency
counts in a contingency table) can still make the exact p-values
slightly conservative under the null hypothesis. In general
though, the uniform assumption should hold when the
sample size underlying the p-values is sufficiently large.
Moreover, as this is a common issue for all of the methods
described, it should not affect the relative performance of the
methods.

Furthermore, in this paper, we focused on methods for
combining p-values that can explicitly incorporate information
from the LD matrix into their computation. Other recently
proposed techniques for combining p-values, such as the
Cauchy combination test (Liu et al., 2019; Liu and Xie, 2020)
and the harmonic mean p-value method (Wilson, 2019), do not
make use of LD information, but still provide control of the type I
error rate under dependence. Now that the present results
indicate the most advantageous methods that directly make
use of the LD matrix, a further step will be a comparison of
these method with those that do not.
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Similarly, gene-based testing can also be conducted using
modeling techniques (see Chapman and Whittaker, 2008;
Ionita-Laza et al., 2013; Moskvina et al., 2012, for examples);
however, such techniques require access to the raw genotype data.
The focus of the present paper was on methods that avoid this
requirement, but the relative performances of model-based
methods and methods for combining p-values is an important
subject to be examined in the future.

Finally, in our simulation, we focused on the gene regions in
the HapMap data. As is well-known, SNPs in intergenic regions
may play an important role in gene regulation and therefore may
also be associated with a phenotype of interest (Ionita-Laza et al.,
2013). Methods for combining p-values can also be utilized for
synthesizing information from such genome regions as long as
the p-values and LD matrices are derived accordingly. One could,
for example, treat such regions as separate sets, or include
intergenic SNPs with their neighboring genes.

In conclusion, the present results indicate that the two-sided
version of Brown’s method is a potentially attractive alternative to
the use of the Bonferroni correction and other methods for gene-
based testing. It is generally able to control the type I error rate
and can lead to increased power, especially when associations are
spread across multiple SNPs and genes. Those are the
circumstances characterized by complex diseases where
shifting the focus to higher functional structures may in fact
be particularly advantageous.
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