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Hypertension or elevated blood pressure is a serious medical condition that significantly
increases the risks of cardiovascular disease, heart disease, diabetes, stroke, kidney
disease, and other health problems, that affect people worldwide. Thus, hypertension is
one of the major global causes of premature death. Regarding the prevention and
treatment of hypertension with no or few side effects, antihypertensive peptides
(AHTPs) obtained from natural sources might be useful as nutraceuticals. Therefore,
the search for alternative/novel AHTPs in food or natural sources has received much
attention, as AHTPs may be functional agents for human health. AHTPs have been
observed in diverse organisms, although many of them remain underinvestigated. The
identification of peptides with antihypertensive activity in the laboratory is time- and
resource-consuming. Alternatively, computational methods based on robust machine
learning can identify or screen potential AHTP candidates prior to experimental verification.
In this paper, we propose Ensemble-AHTPpred, an ensemble machine learning algorithm
composed of a random forest (RF), a support vector machine (SVM), and extreme gradient
boosting (XGB), with the aim of integrating diverse heterogeneous algorithms to enhance
the robustness of the final predictive model. The selected feature set includes various
computed features, such as various physicochemical properties, amino acid compositions
(AACs), transitions, n-grams, and secondary structure-related information; these features
are able to learn more information in terms of analyzing or explaining the characteristics of
the predicted peptide. In addition, the tool is integrated with a newly proposed composite
feature (generated based on a logistic regression function) that combines various feature
aspects to enable improved AHTP characterization. Our tool, Ensemble-AHTPpred,
achieved an overall accuracy above 90% on independent test data. Additionally, the
approach was applied to novel experimentally validated AHTPs, obtained from recent
studies, which did not overlap with the training and test datasets, and the tool could
precisely predict these AHTPs.
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INTRODUCTION

Hypertension is a global health issue due to its worldwide
incidence and association with increased mortality and
morbidity (Mills et al., 2020). Chronic hypertension is a
substantial risk factor for heart diseases, stroke, cardiovascular
diseases, congestive heart failure, glomerulonephritis,
arteriosclerosis, and other diseases (Zhou et al., 2021).

The renin-angiotensin system (RAS) or the renin-angiotensin-
aldosterone system (RAAS) is responsible for blood pressure
regulation. The RAS regulates blood pressure and cardiac
output by controlling the flow of blood through the heart (Wu
et al., 2018).

One of the most important enzymes in the RAS system,
angiotensin-converting enzyme (ACE), regulates blood
pressure and fluid/salt homeostasis (He et al., 2014; Balgir and
Sharma 2017). In the RAS, renin transforms angiotensinogen into
angiotensin-I (ANG I), and subsequently, ACE transforms the
inactive decapeptide angiotensin-I (ANG I) into the
vasoconstrictor octapeptide angiotensin-II (ANG II). Excessive
ACE activity results in the production of excessive amounts of
angiotensin II and, as a result, an increase in blood pressure (i.e., it
upregulates blood pressure) (Zhu et al., 2021).

ACE inhibition is a well-established technique for developing
pharmaceuticals for the treatment of hypertension. Synthetic
ACE inhibitors such as captopril, enalapril, cilazapril,
benazepril, and lisinopril are typically used in clinical
hypertension treatments (Daskaya-Dikmen, et al., 2017).
However, the long-term treatment of hypertension with these
drugs is accompanied by severe or mild adverse effects, such as
cough, headache, diarrhea, dizziness, fatigue, angioedema,
hyperkalemia, hypotension, or, in rare cases, renal impairment
(De Leo et al., 2009; Nguyen et al., 2010; Norris and FitzGerald,
2013; Daskaya-Dikmen et al., 2017; Abachi et al., 2019; Festa
et al., 2020).

Antihypertensive peptides (AHTPs) are bioactive peptides
obtained from natural foods that have the effects/activities of
ACE inhibitors against hypertension and are considered safe for
consumption, with fewer adverse side effects than synthetic ACE
inhibitor drugs or even no side effects. These natural ACE
inhibitory bioactive peptides are highly desired for the
development of functional foods, nutraceuticals and
pharmaceuticals for the prevention and treatment of
hypertension (Norris and FitzGerald, 2013; de Castro and
Sato, 2015; Kumar et al., 2015; Abachi et al., 2019; Pujiastuti
et al., 2019; Jiang et al., 2021; Zaky et al., 2022). Peptides are often
multifunctional and may exhibit several health-promoting
bioactivities, such as antioxidative, antihypertensive, anti-
inflammatory, cytoprotective, and antimicrobial effects (He
et al., 2019; Jakubczyk et al., 2020). Emerging evidence
indicates that AHTPs may mediate antihypertensive effects by
interacting with RAS-related renin, AT-II receptors,
arginine–nitric oxide pathway, endothelin system, or Ca2+

channels in addition to ACE inhibition (Udenigwe and
Mohan, 2014; Aluko 2015). AHTPs have major potential as
functional ingredients (dietary compounds) in a daily diet
aimed at helping prevent and safely manage hypertension and
enhancing human health (Norris and FitzGerald, 2013;
Jakubczyk et al., 2020). Therefore, the identification of new,
nontoxic bioactive peptides derived from food or natural
sources has received significant attention. As a consequence,
an increasing number of food-derived antihypertensive
peptides have been studied and reported (Martínez-Maqueda
et al., 2012; Kumar et al., 2014; Abachi et al., 2019; Lee and Hur
2019; Pujiastuti et al., 2019; Lu et al., 2021). Finding new AHTPs
in various organisms is currently a significant research topic.
However, large-scale identification through wet laboratory
experiments is a costly, time consuming, and labor-intensive
approach (Li-Chan 2015; Pujiastuti et al., 2019; Festa et al.,
2020). The use of bioinformatics and in silico methods for the
identification of potential candidate AHTPs for subsequent
experimental assays is necessary to shorten the process. The
development of efficient computational approaches will
facilitate the processes of discovery and screening, allowing
potential novel AHTP candidates to be identified in a cost-,
resource- and time-effective manner.

A few existing machine learning-based computational
approaches are available for predicting AHTPs. mAHTPred is
a meta-predictor that employs a two-step feature selection
methodology (Manavalan et al., 2019). PAAP is an RF
classification model approach based on varied combinations of
amino acids, dipeptides, and pseudo amino acid composition
descriptors (Win et al., 2018). AHTpin was developed to screen,
predict, and design AHTPs by using an SVM-based regression
model for tiny peptides and SVM-based classification models for
small, medium and large peptides (Kumar et al., 2015).
Additionally, an SVM prediction tool was recently built by
using convolutional neural network (CNN) deep learning-
based encoding features derived from amino acid
compositions (AACs) and dipeptide composition features
(Rauf et al., 2021).

Although certain tools for AHTP prediction are available, the
development of our ensemble method is different from that of the
existing approaches in several ways. First, we developed a
weighted voting method for integrating the strengths of three
independent machine learning models, each of which has high
levels of performance in different aspects. Second, a new
composite feature called comF2 was developed based on a
logistic regression statistical framework. In both the RF and
extreme gradient boosting (XGB) feature importance plots,
this feature was ranked as the most significant. In addition, a
Shapley additive explanations (SHAP) analysis revealed
consistent results, showing that comF2 was the top-ranked
feature and was capable of explaining large samples in the
model; therefore, it could capture characteristics for most of
the AHTPs in the training data. Third, our ensemble method
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outperformed previously developed methods in terms of
robustness and accuracy when predicting independent testing
datasets, with an enhanced accuracy of 90.4%. Last, the technique
could also correctly classify many novel unseen, and experimental
AHTPs collected from recent studies.

MATERIALS AND METHODS

Workflow
The workflow of Ensemble-AHTPpred is shown in Figure 1.

Datasets
In this study, we employed two nonredundant datasets from
mAHTPred (Manavalan et al., 2019): a benchmarking dataset
and an independent testing dataset. The balanced benchmarking
dataset contained 913 unique AHTPs and 913 unique non-
AHTPs. The 913 AHTPs were experimentally validated on the
publicly available AHTPDB (Kumar et al., 2015) and BIOPEP
(Minkiewicz et al., 2008; Iwaniak et al., 2016) databases. Note that
experimentally validated non-AHTPs were not available as a
public non-AHTP database. Therefore, the non-AHTPs were
random peptides generated from Swiss-Prot proteins.
Considering random sequences as a negative dataset is a
routinely used standard procedure in many peptide-based
prediction methods (Sharma et al., 2013; Kumar et al., 2015;
Chen et al., 2016; Usmani et al., 2018; Manavalan et al., 2019) with
the assumption that the probability of finding a random sequence

to be positive is very low. Positive and negative training datasets
have similar length distributions. The AHTPs in the
benchmarking dataset have a length between 5 and 81 amino
acids, with an average length of 7.7 amino acids. The non-AHTPs
in the benchmarking dataset have a length between 5 and 45, with
an average length of eight amino acids.

Another dataset, an independent dataset, was composed of 386
nonredundant, experimentally validated AHTPs (Win et al.,
2018; Yi et al., 2018) and 386 random peptides generated from
Swiss-Prot as negative samples. The AHTPs in the independent
testing dataset have a length between 5 and 24 amino acids, with
an average length of 6.48 amino acids. The non-AHTPs in the
independent testing dataset have a length between 5 and 29, with
an average length of 15.42 amino acids.

Features
The peptide properties that were relevant for predicting AHTPs
were determined and encoded as a vector of 431 numerical
features. The features can be grouped into seven main types as
follows.

1) AAC descriptors: These descriptors were used as the fractions
of each amino acid type within a protein sequence. The
fractions of all 20 natural amino acids {A, C, D, E, F, G, H,
I, K, L, M, N, P, Q, R, S, T, V, W, Y}, were calculated. (AAC1-
AAC20: 20 dimensions).

2) Chou’s pseudo amino acid composition (PseAAC) was
generated in various modes: Chou’s PseAAC (Chou, 2005)

FIGURE 1 | Workflow of the proposed approach.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8837663

Lertampaiporn et al. Ensemble Model for AHTP Prediction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


has been widely used to convert complicated protein
sequences with various lengths to fixed-length numerical
feature vectors that incorporate sequence-order
information. In comparison with an AAC, a PseAAC is
more informative and capable of representing a protein
sequence and incorporating information about its
sequence order. Hence, it has been widely used for
diverse amino acid sequence-based prediction problems
(Chou, 2011). The PseAACs were calculated by using
parameters of lambda = 3 and weight = 0.05 (PAAC1-
PAAC23: 23 dimensions). PseAACs in parallel
correlations (Pse_PC1-Pse_PC22: 22 dimensions),
PseAACs in series correlations (Pse_SC1-Pse_SC26: 26
dimensions), and amphiphilic pseudo AACs with
hydrophobicity correlation functions (APAAC1_1-
APAAC1_23: 23 dimensions) and hydrophilicity
correlation functions (APAAC2_1-APAAC2_23: 23
dimensions) were also calculated.

3) Composition/transition/distribution (C/T/D): The three
descriptors based on the grouped AACs (Dubchak et al.,
1995) [composition (CTDC1-CTDC21: 21 dimensions),
transition (CTDT1-CTDT21: 21 dimensions) and
distribution (CTDD1-CTDD105: 105 dimensions)
descriptors] were calculated. C/T/D was calculated using
the protr R package (Xiao et al., 2015). All amino acid
residues were divided into three groups according to seven
types of physicochemical properties, as defined in Dubchak
et al. (1999). The seven physicochemical properties used for
calculating these features were hydrophobicity, normalized
van der Waals volume, polarity, polarizability, charge,
secondary structures, and solvent accessibility.

4) Quasi-sequence-order descriptors: The quasi-sequence-order
descriptors were derived from the distance matrix of the 20
amino acids (Chou 2000). Quasi-sequence-order descriptors
(QSO1-QSO46: 46 dimensions) and sequence-order-
coupling numbers (SOCN1-SOCN6: 6 dimensions) (lag =
3, w = 0.1) were calculated.

5) Various physicochemical and topological property-based
features: The Crucian properties covariance index
(Crucian1-Crucian3: 3 dimensions) (Cruciani et al., 2004),
Z-scales based on physicochemical properties (zscales1-
zscales5: 5 dimensions) (Sandberg et al., 1998), factor
analysis scales of generalized amino acid information
(fasgai1-fasgai6: 6 dimensions) (Liang and Li 2007),
T-scales based on physicochemical properties (tScales1-
tScales5: 5 dimensions) (Tian et al., 2007), VHSE-scales
(principal component score vectors of hydrophobic, steric,
and electronic properties) (vhsescales1-vhsescales8: 8
dimensions) (Mei et al., 2005), protFPs (protFP1-protFP8:
8 dimensions) (van Westen et al., 2013), ST-scales based on
physicochemical properties (stscales1-stscales8: 8
dimensions) (Yang et al., 2010), MS-WHIM scores
(mswhimscore1-mswhimscore3: 3 dimensions) (Zaliani
and Gancia 1999), aliphatic indices of proteins (aIndex: 1
dimension) (Ikai, 1980), Geary autocorrelations (geary1-
geary12: 12 dimensions), the autocovariance index
(autocov: 1 dimensions) (Ikai, 1980), the potential protein

interaction index (Boman: 1 dimension) (Boman, 2003), the
net charge (Charge: 1 dimension), cross-covariance indices
(Crosscov1-Crosscov2: 2 dimensions), instability indices
(Instaindex: 1 dimension) (Guruprasad et al., 1990), the
hmoment alpha helix (Hmoment1: 1 dimensions), the
hmoment beta sheet (Hmoment2: 1 dimensions),
BLOSUM matrix-derived descriptors (Blosum1-8: 8
dimensions), and the isoelectric point (pI: 1 dimension)
were calculated by using the peptide R package (Osorio
et al., 2015).

6) Occurrence of selected k-mer motifs: The YP, HLP, IYP, LHL,
LPP, LRP, VPP, PEV, PFP, QTP, VLP, VYP, and YPF motifs
(13 dimensions) were determined. First, we generated all 2-
mers (400 dimensions) and all 3-mers (8000 dimensions).
Then, we searched for the k-mer that was overrepresented in
the positive and underrepresented in the negative datasets by
calculating the log odds ratio score of the frequency of each
k-mers in the positive versus negative datasets. Next, we
ranked the discriminant k-mers based on the calculated
log-odds score. Finally, we retained the top 2-mer and the
top 12 3-mers as selected k-mermotif features that still need to
be determined (the heatmap of log odds scores of 2-mers is
shown in Figure 5).

7) Secondary structure conformation-related features: The
aggregation, amyloid, turn, alpha-helix, helical aggregation,
and beta-strand conformation secondary structure
propensities were calculated using the Tango program
(tango1-tango6: 6 dimensions) (Fernandez-Escamilla
et al., 2004).

To further improve the prediction process with new
informative features, we proposed a composite feature
generation method via the fusion of the various selected
features by using a logistic regression model. Various
composite features based on various combinations of
informative selected features were built by using logistic
regression based on the benchmarking data and then
compared through a 10-fold cross-validation process. The
detailed process of building composite features is described
in the hybrid feature section of ensemble-AMPPred
(Lertampaiporn et al., 2021). A combination of features was
used to fit a logistic regression model, which is represented by
the following equation:

Prob. (Y � AHTPs|x) � logistic(x)
� (eβ0+β1 X1+β2X2+β3X3+/+βnXn/(1 + e β0+β1X1+β2X2+β3X3+/+βnXn))

Logit transformation (the logarithm of the odds ratio that Y is
in the AHTP category) was applied to link a function with the
logistic regression. The logit function is defined as

Logit(x) � log ( P(Y � AHTP|X � X)
P(Y � nonAHTP|X � X))

� β0 + β1X1 + β2X2 + β3X3 +/ + βnXn

Therefore, the composite feature was defined by the following
equation:
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Composite feature � β0 + β1 feature 1 + β2feature 2

+ β3feature 3 + . . . + βn feature n

where β0 is the intercept; β1, β2, β3, and βn represent the
regression coefficients for each selected feature in the equation;
and feature_1, feature_2, . . ., and feature_n are the component
features in the composite feature.

Feature Selection
A feature selection procedure based on ReliefF (Kononenko, 1994)
scores was used as a preprocessing step to filter irrelevant features
with a cutoff score. The ReliefF score for a feature was calculated
based on how well the feature could distinguish between instances
that were near each other. The ReliefF evaluation criterion selected
features that aided in the separation of the samples from different
classes and gave higher weights to the features that discriminated
the samples from the neighborhoods of different classes.

Recursive feature elimination (RFE) (Tolosi and Lengauer, 2011)
is a wrapper-type feature selection algorithm. RFE starts with all
features in the training dataset and then searches for a subset of
features by removing features through recursive elimination to
eliminate the least relevant features one by one and refitting the
model. This process is repeated until the optimal number of features
is reached, ensuring that the classifier can achieve high performance.

Models
To select base classifiers for constructing an ensemble, seven
machine learning algorithms were considered in our algorithm
selection experiment—a naïve Bayes (NB) model, a neural
network (NN), a support vector machine (SVM), k-nearest
neighbors (kNN), a decision tree (DT), a random forest (RF)
and an extreme gradient boost (XGB). Each algorithm has a
different inductive bias and different learning hypotheses that can
provide a potentially more independent and diverse set of
predictions through the ensemble. For the hyperparameters,
we used a grid search to find the optimal parameters.

The NB classifier is a simple probabilistic classifier based on
Bayes’ theorem and substantial independence assumptions
between the features.

The NN was a multilayer perceptron (MLP). An MLP is a
neural network with at least three layers: an input layer, a hidden
layer, and an output layer (parameters: number of epochs: 500;
learning rate: 0.3; and momentum for updating weights: 0.2).

The SVM model is a supervised learning model with
associated learning algorithms for data classification and
regression analysis. The SVM assigns training examples to
coordinates in a high-dimensional space to widen the distance
between the two classes and separates the two classes with a
simple hyperplane (parameters: C = 36.0; kernel = ‘Radial Basis
Function’; and gamma = 0.119).

The KNN method is a well-known nonparametric technique
used in statistical pattern classification due to its simplicity,
intuitiveness, and effectiveness. The essential principle is that
an unclassified object is assigned to the class to which the majority
of its k nearest neighbors belong (parameters: k = 7 and distance =
inverse weight).

The DT is another nonparametric supervised learning method
used for classification and regression. It develops a model that
accurately predicts the value of a target variable by inferring basic
decision rules from data attributes. A tree can be thought of as an
approximation to a piecewise constant (parameter: confidence
factor = 0.25).

The RF algorithm is one of the most commonly used bagging
ensemble algorithms because of its flexibility and ease of use. This
algorithm can produce good results without hyperparameter
tuning. The RF approach is an ensemble technique with the
ability to achieve high accuracy and prevent overfitting bymaking
use of voting with multiple decision trees (parameters: no.
estimators = 350 and max_depth = 12).

The XGB algorithm is a gradient boosting ensemble algorithm.
The boosting algorithm adjusts the model weights according to a
differential loss function and then uses the adjusted weights in the
next training iteration [parameters: no. estimators (nrounds) =
800; max_depth = 10; eta = 0.01; and subsample = 0.8].

The proposed method was implemented by using Perl,
Python, and R scripts. The program was run on a Fedora
Linux-based machine. All the data, the trained models and the
standalone program are available to download at http://ncrna-
pred.com/Ensemble_AHTPpred.htm.

We adopted 10-fold cross-validation to investigate the
classification performance of the various models on the
benchmarking dataset. Based on the 10-fold cross validation
results, model selection processes were performed. Then, the
best-performing models were selected based on their diverse
measurements and later used as the base classifiers of the
ensemble model. Thereafter, the individual base classifiers
were iteratively trained to find the optimal weight for each
class of each classifier. The probability weight set (w1, w2, w3,
w4, w5, w6) was estimated by using the level of confidence in
predicting each class (AHTP or non-AHTP), which fluctuated
among the classes. The probabilities acquired from the base
classifiers were aggregated through weighted voting to obtain
the final prediction of the ensemble model.

Probability-weighted voting = (W1
pProb. (RF class=AHTP)) +

(W2
pProb. (RF class=non-AHTP)) + (W3

pProb. (XGB class = AHTP))
+ (W4

pProb. (XGB class=non-AHTP)) + (W5
pProb (SVM class=AHTP))

+ (W6
pProb (SVM class=non-AHTP)).

To evaluate the classification performance of the model, the
following metrics were used:

ACC � TP + TN

(TP + TN + FP + FN)
Sn � TP

(TP + FN)
Sp � TN

(TN + FP)
MCC � TP × TN − FP × FN��������������������������������������������(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)√

where ACC, Sn, Sp, andMCC are accuracy, sensitivity, specificity,
and Matthew’s coefficient correlation, respectively. These
measurements were calculated based on the numbers of true
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positives (TPs), true negatives (TNs), false positives (FPs) and
false negatives (FNs). The area under the receiver operating
characteristic (ROC) curve (AUC) was calculated to assess the
tradeoff between the sensitivity and specificity performance of the
different methods. The ROC curve is a plot of the TP vs. FP rates
at different thresholds. For a perfect predictor, the AUC is
equal to 1.

RESULTS AND DISCUSSION

Amino Acid Composition and Positional
Residue Analysis
The activity of peptides depends on their structure and amino
acid composition. To understand the relation between the

composition and antihypertensive function of a peptide, the
composition of AHTPs and non-AHTPs were analyzed/
investigated. Generally, most antihypertensive peptides are
relatively short peptide residues with lengths that vary from 2
amino acids to 20 amino acids. The amino acid composition is a
quantitative measure of the fraction of each amino acid type
within a protein. The percent amino acid composition based on
the physicochemical properties of amino acids (whole peptides)
was computed and calculated using COPid (Kumar et al., 2008)
and includes the composition of charged (DEKHR), aliphatic
(ILV), aromatic (FHWY), polar (DERKQN), neutral
(AGHPSTY), hydrophobic (CVLIMFW), positively charged
(HKR), negatively charged (DE), tiny (ACDGST), small
(EHILKMNPQV) and large (FRWY) residues, as summarized
in Table 1 (a category with higher composition is shown in bold).

TABLE 1 | Physicochemical property-based composition of amino acids.

Physicochemical property-based composition
of amino acids

Positive dataset (AHTPs) Negative dataset (non-AHTPs)

Molecular weight of the peptide (Da) 888.2 912.5
Number of amino acids in the sequence 7.75 8.05
% Composition of charged residues (DEKHR) 19.91 24.94
% Composition of aliphatic residues (ILV) 22.34 22.04
% Composition of aromatic residues (FHWY) 14.42 10.32
% Composition of polar residues (DERKQN) 25.81 31.49
% Composition of neutral residues (AGHPSTY) 43.44 37.68
% Composition of hydrophobic residues (CVLIMFW) 30.75 30.83
% Composition of positively charged residues (HKR) 12.75 12.96
% Composition of negatively charged residues (DE) 7.16 11.98
% Composition of tiny residues (ACDGST) 22.65 34.97
% Composition of small residues (EHILKMNPQV) 61.94 51
% Composition of large residues (FRWY) 15.41 14.03

The higher values, between the two datasets, are shown in bold.

FIGURE 2 | Percent average composition of amino acid residues present in the positive and negative datasets.
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When comparing positive and negative of benchmarking
datasets, we can see that AHTPs include more aliphatic (ILV),
aromatic (FHWY), and neutral (AGHPSTY) amino acid residues
than non-AHTP sequences.

Amino acid residues present in AHTPs and non-AHTPs were
compared, as shown in Figure 2. Histidine (H), proline (P),
glutamine (Q), valine (V), tryptophan (W) and tyrosine (Y) more
frequently occurred in AHTPs than in non-AHTPs, especially
proline (P), which is highly abundant in AHTPs. In contrast,
certain residues such as cysteine (C), aspartic acid (D),
methionine (M), and tryptophan (W) occurred rarely in
AHTPs. Certain types of residues occured frequently in both
AHTPs and non-AHTPs, such as leucine (L) and valine (V).
Amino acids such as alanine (A), aspartic Acid (D), and serine (S)
were less frequent in AHTPs than in non-AHTPs.

C-terminal and N-terminal positional residue analysis was
also performed by calculating the average amino acid
composition of position one to position five of the N- and
C-termini in AHTPs (positive) and non-AHTPs (negative).
The log odds ratios between positive and negative N- and
C-termini were calculated. The log-odds ratios of positive
versus negative termini were calculated as [log2 (Pa/Na)],

where Pa and Na are the observed frequencies of amino acid a
in the positive and negative training datasets, respectively.
Heatmaps of log odds ratios were plotted for the N-terminal
and C-terminal regions, as shown in Figures 3A, 4A. The
sequence logos of positions one to five of the N- or
C-terminus were generated by using Seq2Logo (Thomsen and
Nielsen, 2012). Figures 3B,C display N-terminal positional
sequence logos of AHTPs and non-AHTPs, respectively. (In
sequence logos, specific colors were assigned to amino acids as
follows, purple represents nonpolar sidechains
(G A V L I M FW P), blue represents basic amino acid
(K R H), Red represents acidic amino acid (D E), and green
represents polar sidechains (S T C Y N Q); the height of the
amino acids is proportional to their frequency at that
position.) The most abundant amino acids in the N-terminus
of AHTPs were Leu (9.069%), Pro (14.896%), Tyr (5.214%) and
Val (8.697%). The most abundant amino acids in the C-terminus
of AHTPs were Leu (9.003%), Pro (16.605%), and Val (7.338%).
The most abundant amino acids in the N- and C-termini of non-
AHTPs were Leu, Ala, Gly, and Val. The most abundant 2-mers
in the N-terminus of AHTPs were YP, LP, PF, PP, and VP, while
the most abundant 2-mers in the C-terminus of AHTPs were IP,

FIGURE 3 |N-terminal features of AHTP positive data and non-AHTP negative data: (A)Heatmap of log odds ratios, where a lighter color denotes overrepresented
amino acid residues in AHTPs compared to non-AHTPs (positive log odds score) and, a darker color denotes underrepresented amino acid residues in AHTPs
compared to non-AHTPs (negative log odds score). (B) Sequence logos of positions one to five of the AHTP positive dataset. (C) Sequence logos of positions one to five
of the non-AHTP negative dataset.
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FP, PL, PP, PV, QP and VP. The most abundant 2-mers in the
N- and C-termini of non-AHTPs were AA, LA, AL, LG, LE,
and AR.

In addition, a heatmap of the log odds score of occurrences
of the 2-mer motif in the whole sequence of AHTPs vs. in the
whole sequence of non-AHTPs was also plotted, as shown in
Figure 5. TyrPro (log odds = 4.393), ProPhe (log odds = 3.896)
and ProHis (log odds = 3.340) were overrepresented in AHTP
positive data compared to non-AHTP negative data. In
contrast, AspSer (log odds = −5.708), MetThr (log odds =
−4.292) and CysLeu (log odds = −4.070) were overrepresented
2-mers in non-AHTP negative data relative to AHTP
positive data.

Performance Evaluation Based on the
Benchmarking Dataset to Select the Base
Models for the Ensemble
Before training a prediction model, feature extraction and
feature selection are two important steps for extracting
various numerical features to represent biological sequences
and then selecting relevant and discriminative features so that a

machine learning model can further analyze and detect the
generalized pattern of the data of interest. In this work, we
extracted a total of 431 numerical features to represent peptide
sequences.

Since we collected as many features that could explain the
peptides as possible, these 431 extracted features may have
contained irrelevant and noninformative features with respect
to explaining the AHTPs. Feature selection is required to
eliminate irrelevant and redundant features that do not
explain the target class. Furthermore, feature selection
mitigates the curse of dimensionality (by reducing the
number of dimensions) and prevents overfitting. Filter,
wrapper, and embedding techniques are the three primary
feature selection methods. Both the wrapper and embedding
methods are tightly coupled with specific classification
algorithms. The wrapper requires one predetermined
classification algorithm and relies on its performance to
evaluate and select the feature subset. This approach seeks
the features that are best suited to the predetermined
algorithm. As a result, these methods first necessitated
determining the classification algorithm to be used. However,
we intended to create an ensemble consisting of multiple

FIGURE 4 |C-terminal analysis of AHTP positive data and non-AHTP negative data: (A)Heatmap of log odds ratios, where a lighter color denotes overrepresented
amino acid residues in AHTPs compared to non-AHTPs (positive log odds score) and a darker color denotes underrepresented amino acid residues in AHTPs compared
to non-AHTPs (negative log odds score). (B) Sequence logos of positions one to five of the AHTP positive dataset. (C) Sequence logos of C-terminal positions one to five
of the non-AHTP negative dataset.
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classification algorithms. Therefore, the filtering procedure was
used initially to remove irrelevant features during this step. Note
that the filtering method may not eliminate redundant features.
We applied the filtering method based on ReliefF scores. After
applying the filtering method, a total of 379 features had scores
that were higher than the cutoff score. The vector containing
these 379 numerical features was then used to train the 7
algorithms.

The training process was carried out via 10-fold cross-validation
on a benchmarking dataset to investigate the classification
performance of different trained models. Table 2 shows the
performance of the individual trained models. Different
algorithms were able to take advantage of different characteristics
and relationships contained in a given dataset. In this process, we

detected and combined the strengths of distinct algorithms to form a
resilient and stable ensemble. The findings support the “no free
lunch” theorem, which states that there is no single best algorithm
that is superior in terms of every metric. The ROC curves of
individual classification model performance are plotted in Figure 6.

Based on the performance obtained during the training process,
Table 2 shows that XGB had the highest sensitivity (0.789),
followed by the SVM (0.758). The AUC provides a measure for
evaluating which models are better on average by weighing the
tradeoff between sensitivity and specificity. For the AUC metric,
the SVMmodel achieved the highest score of 0.878, followed by the
RFmodel (0.877), indicating that these twomodels achieved a good
balance between positive and negative prediction. The RF model
had the highest classification accuracy of 80.668% among the seven

FIGURE 5 |Heatmap of the log odds scores of 2-mers abundant in the positive versus negative datasets. In the heatmap, a red color (high log odds score) denotes
2-mers overrepresented in AHTPs compared to non-AHTPs, and a white color (low log odds score) denotes 2-mers underrepresented in AHTPs compared to non-
AHTPs.

TABLE 2 | Classification performance of different trained models.

DT NB KNN NN SVM XGB RF

ACC (%) 73.494% 74.465% 74.918% 76.177% 80.504% 78.925% 80.668%
Sn 0.714 0.696 0.690 0.721 0.758 0.789 0.752
Sp 0.756 0.814 0.808 0.803 0.852 0.791 0.861
AUC 0.766 0.793 0.791 0.831 0.878 0.861 0.877

The highest values are in bold.
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trainedmodels. Accordingly, based on the evaluation, we chose the
SVM, the RF, and XGB as the ensemble members because of their
superior performance in terms of different metrics.

Note that the input vectors for the SVM model were drawn
from a separate collection of features. Because the RF and XGB
have built-in feature selection, we used the complete 379-feature
vector as the input feed. However, for the SVM-based model, we
used RFE as an additional wrapper feature selection step to
remove redundant features and reduce the computational time
and memory. As a result, the feature subset used as the input
vector for the SVMmodel was reduced from 379 to 256 attributes.

Each model was assigned a weight, which was proportional to
the model classification accuracy across all classes. In addition,
the capacities for classification and prediction on different classes
may have been unequal. Therefore, the classifier with the highest
prediction confidence was given greater weight for that class.
Subsequently, the training process was conducted via 10-fold
cross validation to find the optimal class weights for each
classifier/predictor in the ensemble. Thereafter, the individual
classifiers (SVM, RF, and XGB) were aggregated through
weighted voting to obtain the final probability and prediction.

The New Composite Feature is Significant
for Improving the Sensitivity of the Method
We propose utilizing a logistic regression equation to create
additional composite features, based on the fusion of two or
more existing features. In contrast to sophisticated black-box
classification models, regression is a powerful way to determine
the unique relationships between a large number of features and a
target class. In this work, we created a number of composite
features and selected the two with the highest sensitivity, which

we refer to as comF and comF2. These features were merged into
the feature vector as the input of the ensemble model.

The comF feature is defined as

comF � 0.8634 − 0.157tscales4 − 0.154CTDC19 − 0.135protFP6
+0.133CTDC21 − 0.132fasgai4 + 0.122mswhimscore1

− 0.12hydrophobicity

The comF2 feature is defined as

comF2 � 0.1786 + 0.1522APAAC1 15 − 2.2951CTDC10
−0.6069CTDC19 − 0.0065CTDD49+ 0.2176QSO19

+ 0.9747fasgai4 + 0.3691ProtFP3

+ 2.0823Pse PC13

where APAAC1_15 denotes the amphiphilic PseAAC of
amino acid R (the sequence-order coupling mode was used
along a protein sequence via a hydrophobicity correlation
function; the hydrophobic properties of amino acids were
taken into account) and CTDC10 denotes the percentage of a
particular amino acid in the polarizability group 1
(polarization between 0 and 1.08: amino acids G, A, S, D,
and T) relative to protein length. CTDC19 is the percentage
of a particular amino acid in solvent access group 1 (buried:
amino acids A, L, F, C, G, I, V, and W) relative to the protein
length. CTDD49 is the percentage of a particular amino acid
in polarization group 1 (polarization between 0 and 1.08:
amino acids G, A, S, D, and T) located in 75% of the residues
of the protein chain. QSO19 is the quasi-sequence order of
the normalized occurrence of amino acid Y, fasgai4 is a
descriptor that reflects compositional characteristics,
ProtFP3 is the scales-based descriptor derived from the
amino acid properties of all AA indices (protein
fingerprint 3), and Pse_PC13 is the parallel correlation
PseAAC of amino acid P.

Interestingly, we discovered some intriguing aspects within the
comF2 composite feature. Particular component properties of
comF2, such as the distant locations of certain amino acids Y, R,
and P, had beneficial impacts on the equation; this is consistent
with the results of many research papers demonstrating that
certain residues are dominant in the C-termini or N-termini of
potent AHTPs. Hydrophobic residues with aliphatic side chains
at the C-terminus promoted ACE inhibitory activity
(Nimalaratne et al., 2015; Asoodeh et al., 2016; Jiang et al.,
2021; Wang et al., 2021). Other studies have demonstrated
that the positively charged lysine and arginine amino acids (K
and R) contribute to the strong potency of ACE inhibitory
peptides (Wei et al., 2019; Maky and Zendo, 2021). The
richness of proline (P) and its number of occurrences in a
sequence positively influenced the potency of ACE inhibition
(Abachi et al., 2019; Festa et al., 2020; Pavlicevic et al., 2020). The
presence of a polar amino acid at the C-terminus along with
hydrophobic amino acids at the N-terminus may have
contributed to the activity (Ryan et al., 2011; Udenigwe et al.,
2012; de Castro and Sato, 2015). Moreover, the equation was
adversely affected (according to the minus sign) by component

FIGURE 6 | ROC curves of individual machine learning models.
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properties involving low-polarization amino acids (CTDC10 and
CTDD49) and those with restricted solvent access (CTDC19;
buried structure).

Because the RF and XGB have built-in feature importance
analysis mechanisms, we discovered that the composite feature
comF2 was the highest-ranking feature in both models based on

FIGURE 7 | Importance plots and SHAP plot: (A) Importance plots yield by the RF (left: permutation importance; right: Gini importance). (B) Importance plot yielded
by the XGB model. (C) SHAP summary plot of the top 15 features; (D) dependence plot of composite feature comF2 for the AHTP class. (E) Density distribution of the
SHAP plot’s top six features (sample) by class in the training data.
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their importance plots (as shown in Figures 7A,B). It is well
known that the value of a feature (as measured by information
gain) varies depending on how frequently it is employed at the

leaf nodes. We also conducted SHAP (Shapley Additive
exPlanations) analysis as a follow-up to our initial
investigation. SHAP is a game-theoretic framework for

FIGURE 7 | (Continued).

TABLE 3 | Performance evaluation of the proposed method using benchmarking
dataset.

Method ACC Sn Sp MCC AUC

CNN + SVM (Rauf et al., 2021) 0.958 0.996 0.920 0.920 0.958
mAHTPred (Manavalan et al., 2019) 0.848 0.821 0.874 0.697 0.903
PAAP (Win et al., 2018) 0.791 0.865 0.780 0.585 NA
AHTpin_AAC (Kumar et al., 2015) 0.785 0.777 0.793 0.567 NA
AHTpin_ATC (Kumar et al., 2015) 0.785 0.783 0.787 0.573 NA
Our ensemble 0.858 0.832 0.885 0.718 0.926

TABLE 4 | Performance evaluation of the proposed method using independence
testing dataset.

Method ACC Sn Sp MCC AUC

CNN + SVM (Rauf et al., 2021) 0.895 0.948 0.841 0.795 0.895
mAHTPred (Manavalan et al., 2019) 0.883 0.894 0.873 0.767 0.951
PAAP (Win et al., 2018) NA NA NA NA NA
AHTpin_AAC (Kumar et al., 2015) 0.800 0.821 0.780 0.601 0.852
AHTpin_ATC (Kumar et al., 2015) 0.820 0.798 0.842 0.641 0.888
Our ensemble 0.904 0.920 0.889 0.809 0.965
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explaining the output of any machine learning model. It
correlates optimal credit allocation with local explanations by
using classic Shapley values (Lundberg and Lee 2017). Since it
averages the marginal contributions across all permutations,
the performance of SHAP is notably more consistent than that
of the information gain technique. The SHAP summary plot
in Figure 7C is somewhat consistent with the information
gain-based importance plot, which shows that comF2 was the
most significant feature, followed by Pse_SC13 and QSO35.
According to the SHAP plot, the comF2 feature had an effect
on the likelihoods for a larger model sample. Every dot in the
SHAP plot represents a sample from the data. For each
sample, the color of the corresponding dot refers to the
value of the associated feature. The x-axis represents the
feature’s influence on the model’s prediction. The high
spread of comF2 indicates that it could capture and
provide more useful information to the model to predict/
identify the classes. Moreover, the partial dependence plot
(PDP) of comF2 presents the impact of this feature on the
predicted outcome, as shown in Figure 7D, allowing for a
better understanding of the feature’s interdependence with
the target class (AHTP). According to the comF2 PDP
illustrated in Figure 7D, the higher the value of the comF2
feature is, the higher the chance of the sample being classified
into the AHTP class by the model (comF2 greater than two
likelihoods of being in the AHTP class). Additionally,
Figure 7E depicts the distribution of the top six features. A
substantial distribution difference was observed between the
AHTP and non-AHTP classes in the histogram of the comF2
feature. However, some overlap occurred between the two

classes’ territories. The functionality of comF2 can be
enhanced, resulting in an increase in prediction performance.

Comparison With Existing Prediction
Methods
To evaluate the performance of the proposedmethod, we used the
benchmarking dataset and the independence testing dataset (as
shown in Tables 3, 4, respectively), and then we compared and
evaluated our ensemble method with the available prediction
tools based on the results reported in (Manavalan et al., 2019;
Rauf et al., 2021). As shown in Table 3, our technique achieved
85.8% accuracy on the benchmarking dataset or training dataset,
outperforming most of the other methods. However, while the
CNN + SVM technique surpassed our ensemble for the training
dataset, our ensemble performed substantially better on the
independent dataset.

When testing was performed on the independent data,
accuracies of 90.4% were achieved, as shown in Table 4,
and our method significantly outperformed the other
methods.

Performance Evaluation of Our Model With
Novel Antihypertensive Peptides From
Recent Studies
Novel AHTPs derived from food or natural sources are
receiving significant attention. Therefore, an increasing
number of food-derived or natural sources AHTPs have
been researched and reported. To further assess the

TABLE 5 | Performance evaluation of the proposed method using recently reported novel AHTPs.

Peptide sequence IC50 Source References Correctly identify by
our method (Yes/No)

YLYELR 9.37 μM Scorpion venom Setayesh-Mehr et al. (2021) Yes
AFPYYGHHLG 17.22 μM Scorpion venom Setayesh-Mehr et al. (2021) Yes
LVLPGE 13.5 μM Broccoli protein Pei et al. (2021) Yes
IPPAYTK 23.5 μM Broccoli protein Dang et al. (2019) Yes
LVLPGELAK 184 μM Broccoli protein Dang et al. (2019) Yes
TFQGPPHGIQVER 3.4 μM Broccoli protein Dang et al. (2019) Yes
LIIPQH 120.1 μM Rice wine lees He et al. (2021) Yes
LIPPEH 60.49 μM Rice wine lees He et al. (2021) Yes
QTDEYGNPPR 210.03 μM Black tea Lu et al. (2021) Yes
AGFAGDDAPR 178.91 μM Black tea Lu et al. (2021) No
IDESLR 196.31 μM Black tea Lu et al. (2021) No
IQDKEGIPPDQQR 121.11 μM Black tea Lu et al. (2021) Yes
DAFGSFLYEYSE - Ricotta cheese Pontonio et al. (2021) No
RHPYFYAPELLYYANK - Ricotta cheese Pontonio et al. (2021) Yes
VERGRRITSV 6.82 μM Walnut Glutelin-1 Wang et al. (2021) No
FVIEPNITPA 6.36 μM Walnut Glutelin-1 Wang et al. (2021) Yes
LSGYGP 2.57 μM Tilapia Chen et al. (2020) Yes
LVPPHA 414.88 μM Radix Astragali Wu et al. (2020) Yes
SAGGYIW 0.002 μM Wheat gluten Zhang et al. (2020) Yes
APATPSFW 0.875 μM Wheat gluten Zhang et al. (2020) Yes
PPNNNPASPDFSSS - Soy protein Daliri et al. (2019) Yes
GPKALPII - Soy Protein Daliri et al. (2019) Yes
IIRCTGC - Soy protein Daliri et al. (2019) No
IGPGPFSR 47.22 μM Mussel lamellidens Ankhi et al. (2022) Yes
FHAPWK 16.83 μM Cassia obtusifolia seeds Shih et al. (2019) Yes
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generalization performance and robustness of the proposed
method on new unseen data, we collected various experimental
AHTPs from recent studies. These published AHTPs have
been validated by in vitro or in vivo experimental assays. The
results are summarized in Table 5. Note that these peptides did
not overlap with our training data. Our ensemble model
correctly classified these novel AHTPs from different
sources with an accuracy of 80%.

CONCLUSION

In this work, an ensemble model with a combination of XGB, RF,
and SVM machine learning algorithms integrated by weighted
voting was developed to achieve improved sensitivity and reduce
the false positive rate in terms of predicting AHTPs. A new
composite feature for AHTPs, comF2, was proposed and
incorporated to improve the sensitivity of the developed
method. The components of the comF2 feature were selected
by a machine learning process based solely on a single training
dataset (benchmarking dataset). However, we hypothesize that
this new feature can be improved and adjusted to be more
sensitive by combining novel knowledge or the information
contained in the structure-function relationships (structure-
activity relationships) of AHTPs reported in recent studies or
by experts/biologists in the field. This knowledge can be expanded
by incorporating more recent information or new significant
features found in the future to further improve the proposed
approach.

Currently, deep learning (DL) has become very prominence
because of its ability to identify patterns in large volumes of raw
data (scalability) and its ability in perform automatic feature
extraction from raw data (feature encoding/learning). However,
DL does not have an explicit feature engineering step because it
has automated feature extraction. We are interested in feature
engineering, extraction, and selection; therefore, we apply
machine learning, including DL-related algorithms so called

neural nets. We exploited various features that are more
explainable in terms of biological meaning, and we tried to
capture an explainable relationship in the hybrid feature that
may be an advantage in AHTP design in the future. We used the
ensemble method, which is well-known to ensure generalization
and to reduce the problem of overfitting of individual models. For
precision of classification tools, both positive and negative dataset
are important for model training. Availability of experimentally
validated negative datasets, particularly sequences with similar
amino acid compositions to those of AHTPs, will be beneficial for
further improvement. Moreover, additional negative datasets
containing other classes of peptides, for example, antioxidant,
antimicrobial, and anticancer peptides and neuropeptides, which
have been experimentally confirmed for their activities and do not
show any antihypertensive activity will be more advantageous. To
make this tool more useful, implementation as a webserver will be
more accessible to bioactive peptide research communities.
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