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Background: Sequencing quality has improved over the last decade for long-reads,
allowing for more accurate detection of somatic low-frequency variants. In this study, we
used mixtures of mitochondrial samples with different haplogroups (i.e., a specific set of
mitochondrial variants) to investigate the applicability of nanopore sequencing for low-
frequency single nucleotide variant detection.

Methods:We investigated the impact of base-calling, alignment/mapping, quality control
steps, and variant calling by comparing the results to a previously derived short-read gold
standard generated on the Illumina NextSeq. For nanopore sequencing, six mixtures of
four different haplotypes were prepared, allowing us to reliably check for expected variants
at the predefined 5%, 2%, and 1%mixture levels. We used two different versions of Guppy
for base-calling, two aligners (i.e., Minimap2 and Ngmlr), and three variant callers
(i.e., Mutserve2, Freebayes, and Nanopanel2) to compare low-frequency variants. We
used F1 score measurements to assess the performance of variant calling.

Results:We observed a mean read length of 11 kb and a mean overall read quality of 15.
Ngmlr showed not only higher F1 scores but also higher allele frequencies (AF) of false-
positive calls across the mixtures (mean F1 score = 0.83; false-positive allele frequencies <
0.17) compared to Minimap2 (mean F1 score = 0.82; false-positive AF < 0.06). Mutserve2
had the highest F1 scores (5% level: F1 score >0.99, 2% level: F1 score >0.54, and 1%
level: F1 score >0.70) across all callers and mixture levels.

Conclusion: We here present the benchmarking for low-frequency variant calling with
nanopore sequencing by identifying current limitations.

Keywords: nanopore sequencing, long-read, mtDNA, heteroplasmy, benchmarking, mixtures, haplogroups, low-
frequency variant

1 INTRODUCTION

While next-generation sequencing (NGS) allowed cost-effective sequencing of whole-genome sequences
over the last decades, third-generation sequencing (TGS) has finally made it possible to generate the first
complete assembly of a human genome (Nurk et al., 2022). The improvement in TGS resultedmainly from
improved single-molecule long-read sequencing chemistry and newly developed bioinformatic methods
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enabling the analysis of reads at >10 kb (Logsdon et al., 2020). We
investigate whether Oxford Nanopore Technologies(ONT) achieves
the base-calling accuracy needed for low-frequency variant calling. A
plethora of tools for somatic (i.e., low-frequency) variant calling exist
for NGS data, thereby allowing detection of low-frequency variants in
short-read data even below the 1% variant allele frequency (Schmitt
et al., 2012; Kennedy et al., 2013). However, due to the difference in
applications, no variant caller stands out for all the different scenarios
(Koboldt, 2020).

Numerous available tools for TGS are tracked on long-read-
tools.org (Amarasinghe et al., 2021), currently listing 80 aligners,
101 de-novo assemblers, and 15 tools useful for both approaches.
For base-calling, 36 different tools are available for Oxford
Nanopore Technology (ONT), while for SNP and variant
analysis, 109 tools/pipelines are currently available. In contrast
to the high number of available tools, only six comparative studies
are presently available that benchmark long-read data analysis
tools/platforms (Wick and Holt, 2019; Latorre-Perez et al., 2020;
Møller et al., 2020; Liu et al., 2021; Pei et al., 2021; Yuen et al.,
2021). In fact, only two studies focus on benchmarking variant
callers for long-read sequencing data. While Møller et al. focused

on diploid variant callers (Medaka, Clair, Pepper/Deepvariant)
(https://github.com/nanoporetech/medaka; Poplin et al., 2018;
Luo et al., 2020; Shafin et al., 2021), Pei et al. benchmarked
both next-generation sequencing (NGS) and TGS data with 11
different variant callers in mixtures down to 10%, however
limiting the TGS tools for germline variant calling with
DNAseq and GATKs HaplotypeCaller. Thereby for the
somatic haplotype calling, only NGS data was used for
benchmarking purposes.

Thus far, benchmarking for long-read sequencing data and
low-frequency variant callers has not been performed below the
5% mixtures. When reviewing the present literature, there are
15 pre-prints, 20 research articles, one book chapter, and two
protocols related to mtDNA and nanopore long-read sequencing.
When focussing on human mtDNA, Lindberg et al.,2016
investigated mtDNA data on a MinION device, with mixtures
at the 1:1 ratio (Lindberg et al., 2016), and Zascavage et al. present
protocols for mtDNA analysis on ONT devices and results with
error rates of 0.3% per mtDNA sequence–corresponding to
50 base-substitution errors per sample (Zascavage RR. et al.,
2019; Zascavage R. R. et al., 2019). Nakanishi et al. recently

TABLE 1 | Summary of detected minor variants, false-positive calls, and F1 scores resulting from the three tested variants callers.

Mixture and haplogroup Mixture I: D4e193 and J1c2 Mixture II: H1b1+16362 and U5a2a1

Percentage major and minor component 95% + 5% 98% + 2% 99% + 1% 95% + 5% 98% + 2% 99% + 1%

Mutserve2 (alignment generated with Minimap2)

Detected minor variants/expected minor variants 18/18 15/18 11/18 21/22 1/22 14/22
False-positive variant calls 2 4 13 1 3 12
F1 score 0.98 0.93 0.82 0.97 0.52 0.72

Mutserve2 (alignment generated with ngmlr)

Detected minor variants/expected minor variants 18/18 17/18 11/18 21/22 2/22 13/22
False-positive variant calls 1 2 14 2 3 12
F1 score 0.99 0.96 0.81 0.99 0.54 0.70

Freebayes (alignment generated with Minimap2)

Detected minor variants/expected minor variants 18/18 18/18 15/18 22/22 2/22 18/22
False-positive variant calls 11 21 83 8 21 99
F1 score 0.89 0.83 0.34 0.89 0.41 0.37

Freebayes (alignment generated with ngmlr)

Detected minor variants/expected minor variants 18/18 18/18 12/18 22/22 3/22 20/22
False-positive variant calls 28 73 337 20 56 265
F1 score 0.79 0.59 0.21 0.77 0.29 0.19

Nanopanel2 (alignment generated with Minimap2)

Detected minor variants/expected minor variants 14/18 13/18 3/18 16/22 1/22 8/22
False-positive variant calls 2 2 19 1 2 22
F1 score 0.86 0.85 0.61 0.77 0.33 0.43

Nanopanel2 (alignment generated with ngmlr)

Detected minor variants/expected minor variants 14/18 12/18 4/18 15/22 1/22 8/22
False-positive variant calls 3 2 14 1 1 12
F1 score 0.85 0.84 0.64 0.75 0.33 0.47

Variant callers: Mutserve2, Freebayes and Nanopanel2, Aligners: Minimap2 and Ngmlr.
Bold values are headlines for better discrimination between mixtures, aligners and variant callers.
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analyzed mtDNA haplotypes in mixed DNA samples onMinION
and MiSeq in a manual fashion, down to 5% (Nakanishi et al.,
2022). Furthermore, mtDNA methylation has been investigated
by Bicci et al. (Bicci et al., 2021) and Lüth et al. (Luth et al., 2021).

Mitochondrial DNA has a ~10x higher mutation rate than
nuclear DNA (Pinto and Moraes, 2015). Its content per cell
ranges from 100s to several 1,000 molecules depending on the
tissue (Wachsmuth et al., 2016). The circular 16.6 kb mtDNA is
maternally inherited and is recombination-free (Wei et al., 2020).
These features render it an ideal model for benchmarking low-
frequency variant calling since we can mix two haplotypes at any
ratio. Thereby mitochondrial homoplasmic variants, which are
variants present in all mtDNA copies, define an individual’s
haplotype. Rare homoplasmic variants are described as causing
diseases like LHON, MELAS (Goto et al., 1990; Bargiela and
Chinnery, 2019). The accumulation of mitochondrial
heteroplasmic variants (i.e. variants that are present in a
fraction of the mtDNA copies) is associated with aging as well
as various diseases such as neurological and cardiovascular,
cancer and diabetes (Stewart and Chinnery, 2021). At the
population level, Laricchia et al. analyzed 56,434 mtDNA
samples, where most samples showed no heteroplasmy;
however, one in 250 samples carried pathogenic heteroplasmic
variants above the 10% (Laricchia et al., 2022). Bolze et al.
analyzed ~200,000 mitochondrial genomes between 5% and
1% and identified one heteroplasmic variant per person on
average (range from 0 to 13, median 0) (Bolze et al., 2020).

In this study, we deeply investigate low-frequency variants
calling for long-read data, as it is of great importance to
investigate heteroplasmy and somatic variants accurately. First,
we prepared a gold standard from NGS data of mitochondrial
genomes by merging the results from three different variant
callers. Subsequently, the TGS mixtures were prepared, base-
called, trimmed, and additional quality control (QC) was
performed. Finally, the performance of two variant callers
designed for short-read data and one low-level variant specific
for long-read data was compared. We evaluated the performance
of the callers to detect low-frequency variants in mtDNA
mixtures at predefined 5%, 2%, and 1% levels. In different
short-read sequencing-based studies, the sensitivity thresholds
to detect heteroplasmy ranged from >10% to 0.1% (Li et al., 2010;
Guo et al., 2013; Dierckxsens et al., 2020; Fazzini et al., 2021;
Weissensteiner et al., 2021). In addition, short-read duplex
sequencing enabled the reliable detection of heteroplasmic
variants at 0.01% (Ahn et al., 2015). However, as we are aware
of the lower base-calling quality of nanopore sequencing, we did
not include mixtures below the 1%minor component percentage.
We also highlight the advantages of employing different mtDNA
haplotypes as validation sets, with mean read lengths at 11 kb.

2 METHODS

2.1 Library Preparation and Sequencing
2.1.1 DNA Extraction and Sample Selection
All DNA was extracted from blood with the Blood and Cell
Culture DNA Midi kit (Qiagen). Four samples (B-28, L-2804, L-

3034, and L-649) were used in this study for the mixture models.
The selected samples were from participants of European descent
(Supplementary Table S1). We have combined haplogroups
(D4e1′3 and J1c2) and (H1b1+16362 and U5a2a1) based on
the phylogenetic distance (16 branches apart for each mixture)
and the number of obtained minor variants (>18). See
Supplementary Figure S1 for additional information on SNPs
(shared, major, and minor variants annotated according to
coding-, control-region, rRNA, tRNA) and intermediate
haplogroups, as well as the gold standard in Supplementary
Table S2. Two different mixtures with different percentages were
prepared at 1%, 2%, and 5% based on concentration (Table 1;
Figure 1A).

2.1.2 Illumina NextSeq Short-Read Sequencing
MtDNA was amplified by two overlapping long-range PCRs,
which were subsequently tagmented and sequenced on an
Illumina NextSeq. Deep mitochondrial sequencing was
performed with bait enrichment or long-range PCR, two
primer sets used for the long-range PCR were: MTL-F1 5′-
AAA GCA CAT ACC AAG GCC AC -3′, MTL-F2 5′- TAT
CCG CCA TCC CAT ACA TT -3′, MTL-R1 5′- TTG GCT CTC
CTT GCA AAG TT -3′, MTL-R2 5′- AAT GTT GAG CCG TAG
ATG CC -3’. Next-generation sequencing was performed on the
NextSeq500 (Illumina, Inc.) to produce 2 × 150 bp reads. Raw
sequencing reads were converted to standard FASTQ format
using bcl2fastq software 2.17.1.14 (Illumina, Inc.). Raw FASTQ
files were analyzed with FastQC and aligned with BWA MEM to
the mitochondrial reference genome (rCRS). The resulting SAM
files were processed with SAMtools to sorted BAM files.
Subsequently, the BAM files were processed with GATK, and
duplicates were removed with MarkDuplicates. Additional
quality control was performed with QualiMap2 and afterward,
MultiQC was applied to the resulting reports, including the
FastQC reports.

2.1.3 Oxford Nanopore Long-Read Sequencing
Two overlapping amplicons spanning the complete mtDNA were
prepared with long-range PCRs, using the same primer sets for
Illumina sequencing. Please see Supplementary Table S3, S4 for
specific PCR mix and conditions. The DNA concentration was
measured and subsequently normalized. Next, the PCR products
of the major component (PCR product of sample: B-28 and L-
3034, haplogroup: D4e1′3 or H1b1+16362) were mixed with the
minor component (PCR product of sample: L-2804 and L-649,
haplogroup: J1c2 or U5a2a1) at the predefined levels of 5%, 2%
and 1% (Supplementary Table S5). Subsequently, each mixture
was barcoded with the Native 1–12 Barcoding Kit (EXP-
NBD104) and multiplexed, using 400 ng of each mixture. The
library was prepared with the Ligation Sequencing Kit (SQK-
LSK109), following the manufacturer’s instructions. The library
of the six barcoded mixture samples was loaded on one R9.4.1
flow cell and sequenced on the GridION. Base-calling was
performed with Guppy v5.0.11 with the super-accurate model
and v4.5.4 with the high accuracy model. The base-called reads
were filtered with Filtlong (v0.2.0) (https://github.com/rrwick/
Filtlong) to only include the best 50% of the reads, based on Phred
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FIGURE 1 | Laboratory workflow data analysis pipeline (A) The schema illustrates the laboratory workflow for the preparation of the mitochondrial DNA (mtDNA)
mixture models and subsequent nanopore sequencing (B) Workflow of how the mtDNA nanopore data was processed and which aligners (i.e., Minimap2 and Ngmlr)
and variant callers (i.e., Mutserve2, Freebayes, and Nanopanel2) were used.
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quality scores (q-score), with a minimum read length of 9 kb.
Then, the reads were trimmed with NanoFilt (v2.5.0) (De Coster
et al., 2018) and 75bp were cropped from the front of the reads
and 20bp from the end. Subsequently, the nanopore reads were
aligned against the mitochondrial genome reference sequence
(rCRS) using Minimap2 (v2.17) (Li, 2021) and Ngmlr (v0.2.7)
(Sedlazeck et al., 2018). Finally, the alignments were sorted and
indexed with Samtools (v1.3.1) (Danecek et al., 2021).

2.2 Data Analysis
2.2.1 Preparation of Gold Standard From NGS
The processed BAM files previously aligned against the rCRS
were analyzed with three different variant callers: GATK v4
Mutect2 (Benjamin et al., 2019), Freebayes v.1.3.4 (arXiv:
1207.3907), and Mutserve2 c.2.0.0-rc.12 (Weissensteiner et al.,
2021). We applied an alignment score of Q30 and set the variant
level at 0.7% (where applicable). For GATK Mutect2, the
mitochondria flag was applied. The resulting VCF files were
processed with BCFtools query and subsequently merged into
consensus variants (Li, 2011). The four individuals (B-28, L-2804,
L-3034, and L-649) had haplogroups D4e1′3, J1c2, H1b1+16362,
and U5a2a1, respectively, estimated with HaploGrep2
(Weissensteiner et al., 2016b). Please see Supplementary text 1
for more details on the exact commands.

We distinguished between three different variant types,
requiring a variant to be detected with at least two different
variant callers: 1) Common Variants are homoplasmic variants
found in both samples from a mixture.2) Major Variants are all
variants found in the major contribution of a mixture, expected to
be present at 99%, 98%, and 95% in the 1%, 2%, and 5%mixtures,
respectively, further including private mutations at lower levels.
3) Minor Variants are all variants found in the minor
contribution of the mixture, expected to be present at 1%, 2%,
and 5%. Supplementary Table S2 lists the expected variants (gold
standard) for the mixtures.

2.2.2 Comparison of Mixtures and Callers
The performance of two variant callers designed for short-read
data (i.e. Mutserve2 and Freebayes) and one low-level variant
specific for long-read data (Nanopanel2) was compared. We
chose Mutserve2 (Weissensteiner et al., 2016a), as the tool has
performed well in previous work (Fazzini et al., 2021; Ip et al.,
2022) and only NOVOPlasty, exclusively designed for short-read
data, outperformed Mutserve2 (Dierckxsens et al., 2020).
Freebayes (arXiv:1207.3907v2 [q-bio.GN]) was selected because
we were interested in a haplotype-aware variant caller that is also
designed for somatic variants and Freebayes was previously used
for both long-read and short-read data (Ebler et al., 2019). Lastly,
we screened the literature for long-read specific low-frequency
variant callers and Nanopanel2 (Popitsch et al., 2021) was the
only one applicable for our study at the time.

2.2.3 Variant Calling From Nanopore Long-Read
Sequencing
In order to assess the applicability of nanopore long-read
sequencing for low-frequency variant calling, three software
tools, chosen based on various strengths and weaknesses, were

compared (i.e., Mutserve2, Freebayes, and Nanopanel2)
(Figure 1B). The alignments in a BAM format, prepared with
either Minimap2 or Ngmlr, were individually processed with
Mutserve2 (v2.0.0) (Weissensteiner et al., 2016a) and Freebayes
(v1.3.4) (arXiv:1207.3907v2 [q-bio.GN]). To call variants with
Nanopanel2 (v1.01) (Popitsch et al., 2021), the Nanopore FAST5
had to be rebase-called with Guppy v4.5.4 in high accuracy mode.
The rebase-called reads were filtered and trimmed as described
above and subsequently processed with Nanopanel2. The exact
commands for quality filtering, alignment and variant calling are
listed in Supplementary Text 1.

2.2.4 Statistical Analysis
To measure the variant calling performance, we stratified the
detected variants from the nanopore data as false-positive, true-
positive, and false-negative calls. True-positive variants, thus,
variants that we expected to be present in the mixtures, were
determined with the previously generated Illumina short-read
gold standard. On the other hand, false-positive variants are
variants that were not identified in the NGS gold standard. False-
negative variants were expected to be present in the mixtures but
were not detected. Then the F1 score was calculated (F1 score =
2 × (sensitivity × precision) ÷ (sensitivity + precision)). For
calculating the F1 score and the determination of false-positive
calls, we used the following minimum variant level to filter the
output of Mutserve2, Freebayes, and Nanopanel2: ≥0.025 for the
5% mixture, ≥0.015 for the 2% mixture, and ≥0.007 for the 1%
mixtures. In addition, to assess the variant calling performance,
the number of false positives (nFP) was calculated.

3 RESULTS

The NGS gold standard was derived as previously formulated
(Cortes-Figueiredo et al., 2021; Fazzini et al., 2021) by sequencing
on Illumina NextSeq. We tested twomtDNAmixtures (mixture I:
D4e1′3 & J1c2, mixture II: H1b1+16362 & U5a2a1) at three
predefined levels (5%, 2% and 1%) (Figure 1). We compared the
performance of two commonly used aligners (i.e., Minimap2 and
Ngmlr) (Ren and Chaisson, 2021) and subsequent variant calling
with three tools to detect low-frequency SNVs. For our study, we
chose two somatic variant callers originally developed for short-
read sequencing data (i.e., Mutserve2, Freebayes) and one tool
developed for nanopore long-read sequencing (i.e., Nanopanel2)
(Popitsch et al., 2021).

After deep-nanopore sequencing of the mtDNA long-range
PCR products, we obtained a mean read q-score of 13.7 and a
mean read length of 8.6 kb (SD = ±247.6 bp) across all raw
sequencing data, base-called with the Guppy super-accurate
model (Supplementary Figure S2A). After the quality and
length filtering and read trimming, we obtained a mean read
q-score of 14.9 and a mean read length of 11.3 kb (SD =
±350.4 bp) (Supplementary Figure S2B). Next, we separated
the sequencing data by base-calling q-score, and with a
q-score >20, we obtained coverage of 2937X (±1732X)
(Supplementary Figures S3-S5). Rebase-calling with an older
Guppy version (v4.5.4) was required to process the variant caller
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Nanopanel2 and we obtained a mean read q-score of 14.2 and a
mean read length of 11.3 kb (SD = ±307.2 bp) with the high
accuracy base-calling model.

3.1 Comparison of Aligners
For the comparison, we focused on the F1 score, the number of
false-positive calls (nFP), and the number of detected minor (i.e.
low-frequency) variants. The common, major, and minor
variants expected in the mixture were determined using a

previously derived Illumina short-read gold standard. Besides
the variant caller, the utilized aligner affected the outcome. First,
Ngmlr showed a better performance when used in combination
with Mutserve2 with a mean F1 score of 0.83 and a total of 34 nFP
across all mixtures and levels (Table 1). Minimap2 showed a
slightly lower F1 score and a higher nFP with Mutserve2 (mean F1
score = 0.82, nFP = 35). Second, when variants were called with
Freebayes, Minimap2 (mean F1 score = 0.81, nFP = 243)
performed better compared to Ngmlr (mean F1 score = 0.47,

FIGURE 2 | F1 score of tested variant callers. Bar chart that shows the F1 score of the mitochondrial variants detected with two aligners (i.e., Minimap2 and Ngmlr)
and the three variant callers (i.e., Mutserve2, Freebayes, and Nanopanel2).
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nFP = 779). Lastly, for the variant detection with Nanopanel2,
Ngmlr (mean F1 score = 0.65, nFP = 33) showed the slightly better
performance compared to Minimap2 (mean F1 score = 0.64,
nFP = 48).

3.2 Comparison of Variant Callers
In our first benchmarking analysis, Mutserve2 in combination
with the Ngmlr aligner, showed the best performance to detect
low-frequency variants in the mtDNA mixture models. For
mixture I, we obtained higher F1 scores but the same nFP (mean
F1 score = 0.92, nFP = 17) compared to mixture II (mean F1

score = 0.74, nFP = 17) (Figure 2). Mutserve2 in combination
with Ngmlr had the highest F1 scores (5%-level: F1 score = 0.99,
2%-level: F1 score >0.54, 1%-level: F1 score >0.70) and lowest
nFP (5%-level: nFP < 2, 2%-level: nFP < 3, 1%-level: nFP < 14)
across all callers and mixture levels. The lower F1 scores in
mixture II was mainly driven by the overall lower AF of the
minor variants of the 2% mixture (Figure 3). The detected
variant AF of the minor variants in mixture I matched the
expected levels (5% level: median AF = 0.05, 2% level: median
AF = 0.02, 1% level: median AF = 0.01). By contrast, the
detected AF from mixture II differed more from the expected

FIGURE 3 | Allele frequency of variants detected from the mitochondrial DNA nanopore data. Box plots show the allele frequency of the mitochondrial minor
variants detected with two aligners (i.e., Minimap2 and Ngmlr) and the three variant callers (i.e., Mutserve2, Freebayes, and Nanopanel2). The bars and whiskers
represent the median, the interquartile range, and the minimum and maximum.
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corresponding mixture levels (5% level: median AF = 0.08, 2%
level: median AF = 0.01, 1% level: median AF = 0.01). The
overall detected AF of the minor variants was comparable in all
tested variant callers independent of the used aligners. As
expected, the lower the minimum AF, the lower the resulting
F1 score and the higher the nFP (Supplementary Figure S6).

Using Freebayes, we detected significantly higher nFP and
therefore, lower F1 scores. However, we obtained higher F1
scores and lower nFP in the mixture I (mean F1 score = 0.69,
nFP = 115) compared to mixture II (mean F1 score = 0.56, nFP =
128) (Figure 2).

Lastly, Nanopanel2 requires nanopore data from an older
Guppy version. Nanopanel2 also showed lower F1 scores
compared to Mutserve2, which was due to the low number of
true-positive calls. Compared to Mutserve2 and Freebayes,
Nanopanel2 did not detect all common and major variants.
Nanopanel2 performed better with Ngmlr and detected lower
nFP compared to Freebayes. On the other hand, the number of
true-positive variant calls detected with Nanopanel2 was
significantly lower compared to the other two callers
(Figure 2) as well. Subsequently, we obtained overall lower F1
scores with Nanopanel2 (mixture I: mean F1 score = 0.77, nFP =
19; mixture II: mean F1 score = 0.51, nFP = 14).

3.3 Investigation of False-Positive Variants
(Type I Errors)
After removing all expected variants from the results, we further
analyzed Type I errors in more detail. Here, we focused on the
Q20 filtered data for both mixtures, and both mappers were
analyzed withMutserve2 only.We removed variants around 3107
and 302–316 due to reference issues. A total of 189 false-positive
(FP) variants could be observed in the 12 samples (95 FPs with
Minimap2 and 94 FPs with Ngmlr) greater or equal to the 0.7%
level. Ngmlr yielded the highest false-positive variant levels at
17.4% on position 70 (mean overall variant level 1.69%), whereas
Minimap2 showed a 6.2% false-positive variant on position 6991
(mean overall variant level 1.63%). Supplementary Table S6 lists
all false-positive variants, including the annotation provided with
Mutserve2. Variants on 5747G and 2129A were found most often
in the mixtures with both mappers at mean variant levels 0.97%
and 2.41%, respectively. Both variants are in low-complexity
regions (i.e., polymorphic A-stretches). In total, 46.56% of all
false-positive variants are in low-complexity regions (LCR) of at
least length 6. Lowering this length threshold to 4, the percentage
of false-positives variants in LCR increases to 57.67%. One of
such variants is the previously mentioned variant found with
Ngmlr on position 70 (in a G-stretch). Overall, the two mixtures
share 28.4% of all uniquely found false-positive variants,
represented in 100/189 false-positive variants, further
underlying that the errors include systematic artifacts.
Supplementary Tables S7, S8 show a detailed presentation of
false-positive variants per mixture I and II, respectively. The
lower coverage in fragment one manifests a reduced number of
type I errors (8.4%), with fragment two showing 92 (48.68%) and

the overlapping regions 81 (42.85%) false-positive variants
(Supplementary Tables 7 and 8).

3.4 Investigation of False-Negative Variants
(Type II Errors)
For both mixtures, I and II, the expected numbers of variants
are 55 and 43, respectively. Applying a different threshold per
predefined mixture level, the cut-off levels were set at 0.7%,
1.5%, and 2.5% to interpret the 1%, 2%, and 5% mixtures,
respectively, with Mutserve2 (Supplementary Figures S7, 8).
We observed a different variant count between false-negatives
in fragments one and 2 with 78 and 24 missing variants,
respectively (50 variants are missing in overlapping regions,
Supplementary Table S9). This difference can be attributed to
the unbalanced coverage, with more variants missing in the
lower-covered fragment. Although the coverage was higher in
mixture II, the amount of false negatives is more pronounced
here, mainly due to shifted mixture ratios, lower than
originally planned. Lowering the detection cut-off to 0.5%
for both the 1% and 2% mixtures in mixtures II (Figure 3
and Supplementary Table S11), we obtained the mean level
over the minor variants at 1.10% for the 2% mixtures and
1.13% for the 1% mixture in mixture II. Overall, 14 out of the
55 distinct positions show missing variants in at least one of
the six samples in mixture I (Supplementary Table S10),
whereas 28 out of the 43 expected variants show some
missing variants over all six samples in mixtures II
(Supplementary Table S11). For the 5% mixtures, all
variants could be detected for mixture I as expected, while
one variant was missing in mixture II (on position 13827
attributed to strand-bias in Mutserve2). For the 2% level for
mixture I, only one variant was missing when applying the
1.5% threshold over both aligner/mappers, all other variants
were present either one of the two mappers (minimap2 missing
3 or Ngmlr missing 2). For the 1% mixtures with their 0.7%
cut-off, the rate of false negatives for the minor variants varied
between 10/18 and 7/18 in mixture I and 10/23 and 11/23 in
mixture II (for Ngmlr and Minimap2, respectively).

3.5 Accuracy of Common Variants
Finally, common variants were analyzed in more depth with
Mutserve2 by varying the per-base quality filter (Supplementary
Figures S9-S12). We expect the mutual homoplasmic variants
from both samples of a mixture (previously confirmed via NGS)
to be present with an AF of 100%. Thereby we can estimate and
obtain an indication of the noise present in the data. We could
note a significant difference between the variant levels over both
mixtures when comparing the aligner/mapper Minimap2 and
NGMLR. Overall experiments, Minimap2 yielded variant levels
of 99.5% over the common variants, while NGMLR showed
median variant levels at 99.1% (Wilcoxon, p = 2.2e−16). Both
aligner/mapper had the lowest variant levels around 97% in the
mixture I, while all common variants in mixture II were above
98% (Supplementary Figure S9).
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4 DISCUSSION

We aimed to investigate the applicability of nanopore long-read
sequencing to detect low-frequency variants. To our knowledge,
this is the first study that analyzes the performance of nanopore
sequencing to detect variants down to an alternative AF of 1%.
The precise determination of variants with low frequencies is of
great importance across a wide range of fields, e.g. in the context
of cancer research and the investigation of mosaic variants or the
assessment of mitochondrial heteroplasmy (Watson et al., 2013;
Stewart and Chinnery, 2015).

NGS is the most widely used technology for detecting low-
frequency variants, and the accuracy of the method and different
variant callers have been validated in the past (Kroigard et al.,
2016; Fazzini et al., 2021; Pei et al., 2021). Likewise, TGS has
become more accurate in recent years, and because of the longer
read length, this technology holds a greater potential for
structural variant calling. However, an in-depth validation of
low-frequency variant calling from TGS data and evaluation of
current limitations has not yet been performed.

The novelty of our study includes a successful benchmarking
of nanopore long-read mitochondrial mixture models using a
gold standard derived from NGS data. There are limitations to
our gold standard, including sequencing artifacts (i.e.
transversions), phantom mutations, and sequencing quality.
These NGS artifacts could result in Type II errors in this
study. To counteract systematic artifacts arising from NGS
variants calling, three different callers were used and only
variants detected with at least two tools were included in the
gold standard.

Our results show that all steps of the data processing
pipeline are of importance and can affect variant calling.
With the new Guppy five super-accurate base-calling, we
obtained overall higher base-calling q-scores compared to
the older version 4. In addition, we detected fewer false-
positive calls with a higher q-score (Supplementary Figure
S7, 8), though hampered by lower coverage and fewer true-
positive calls (Supplementary Figures S3, S7, S8). Thus, we
used a minimum q-score of 20 for all tested variant callers to
obtain sufficient base-calling quality and coverage,
corresponding to a 1% per-base error rate. In addition to
the q-score improvement in the past few years, a significant
increase in nanopore sequencing accuracy is expected in the
near future due to the advancement of the new R10.4 flow-cells
and Kit 12 and Kit 14 Q20 + sequencing chemistry. Especially
with regard to duplex base-calling (forward and reverse strand
being sequenced and base-called), the accuracy of SNP and
INDEL calling will increase.

We demonstrate the strengths and limitations of each
mapper/aligner and variant caller pairs. For example,
alignment with Ngmlr led to fewer false positives and
higher F1 scores with Mutserve2 as the subsequent caller. In
contrast, alignment with Minimap2 better reflected the
expected variant levels of the common variants and led to
lower variant levels among the false-positive calls. We also
observed some “phantom-mutation” with higher levels for
Ngmlr, compared to Minimap2, where we could identify

homopolymorphic nucleotide stretches as the main cause.
In addition to the aligner, the reference sequence could
impact the variant calling. However, changing the reference
to the major haplogroup would only be beneficial for detecting
the major variants expected at 95%–99% depending on the
mixture ratios from 5% down to 1%, which were all detected
already. Thus, we would not expect an increase in the F1 score,
as the detection of minor variants would not benefit from this
approach.

Lastly and most significantly, the variant callers showed very
different performances regarding the accurate detection of low-
frequency variants. In our study, Mutserve2 showed the highest
overall F1 scores. Using Freebayes, significantly more false
positives were detected in comparison with the other two
tested callers. In contrast, the lower F1 scores obtained with
Nanopanel2 were due to the low number of true-positive
variant calls, also including missing common and major
variants. As Nanopanel2 is incapable of processing nanopore
data from the super-accurate mode, this lower quality base-
calling could be reflected in the lower F1 scores. As previously
mentioned, the majority of false-positive variants calls were
located within homopolymer stretches, which are known to be
especially prone to systematic nanopore sequencing errors
(Harris et al., 2019).

One mtDNA-specific phenomenon, which our data analysis
workflow has not addressed, is transpositions of mitochondrial
DNA into the nuclear DNA. NUMTs (nuclear mitochondrial
DNA) have been challenging to delineate with short-read
sequencing (Dayama et al., 2014), especially rare full-length or
concatenated mtDNA copies in the nuclear genome (Wei et al.,
2020). However, as most NUMTs are shorter than 500bp
(Dayama et al., 2014), long-read sequencing can be beneficial
to discriminate between NUMTs and real heteroplasmy. In our
study, we performed long-range PCR and only included reads
with a length >9kb, reducing the potential NUMTs
contamination. Additionally, we did not find any potential
NUMTs >1% after annotating with 1000 genomes project data
(Dayama et al., 2014).

The validation of the low-frequency variant calling showed
that all tested software had better performance with the mixture
I, mainly due to the lower minor mixture component of the
mixture II at the 2% level, which was, in reality, closer to a 1%
level. This was a limitation from pipetting error at such small
volumes. Thus, the F1 score of the 2% level of mixture I is more
reflective for the future sequencing of real samples. One limiting
factor of our study was that we could not compare all somatic
variant callers. However, we do provide all data so that other
researchers can compare different variant callers or methods in
the post-processing. Another tool exclusively designed for
nanopore sequencing data is Medaka, which creates a
consensus sequence and calls variants (https://github.com/
nanoporetech/medaka). However, using Medaka, we only
detect major and common variants in our data set and no
minor variants (low-frequency variants) (Supplementary
Tables S12-S17), therefore, we did not focus further on this
tool. Another limitation of our study is that we obtained uneven
coverage between the two amplicons (fragments one and 2),
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which could bias the variant calling performance. Again,
equimolar ratios of the PCR product were challenging to
gauge and preferential barcode sequencing hampered the
coverage across both amplicons in each sample. For short-
read data, minimum coverage of 500X was recommended to
detect variants with an AF>1% (Dierckxsens et al., 2020). For
both PCR fragments, we have obtained a coverage >1000X,
however, the base-calling accuracy of nanopore long-read data
is considerably lower compared to Illumina short-read
sequencing. Furthermore, it was noted that recombination
because of PCR amplification could lead to chimeric reads
that could potentially result in artificial mutations
(Dierckxsens et al., 2020). Nevertheless, the high coverage
obtained from the deep sequencing of the PCR amplicons
was a significant benefit with regard to the lower read
accuracy. On the other hand, due to the long-read
sequencing, the coverage of individual fragments was even,
spanning the complete PCR product. This is an essential
advantage of TGS sequencing in comparison to NGS. As new
variant callers will be developed eventually, our study provides a
valuable TGS benchmarking data set for further validation.

5 CONCLUSION

In conclusion, our data show the feasibility of nanopore long-read
low-frequency variant calling. However, the number of Type I and
II errors increases between the 2% and 1% levels significantly. Here,
the rather low per-base quality filtering (compared to current NGS
data) of Q20 yields a higher number of false-positive variants,
especially for variant callers designed for NGS data. Therefore,
novel computational approaches are needed to disregard artifacts
by taking advantage of almost complete haplotypes, as is the case
with the short 16.6 kb mtDNA. Overall, we showed that all post-
processing steps affect the final results, from base-calling and over
aligning/mapping to variant calling tools. As further improvements
in the data analysis pipeline arise and novel tools will become
available for the mentioned steps, we herein provide a novel TGS
benchmarking dataset.
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