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Chronic kidney disease (CKD) is defined as a persistent abnormality in the

structure and function of kidneys and leads to high morbidity and mortality in

individuals across the world. Globally, approximately 8%–16% of the population

is affected by CKD. Proper screening, staging, diagnosis, and the appropriate

management of CKD by primary care clinicians are essential in preventing the

adverse outcomes associated with CKD worldwide. In light of this, the

identification of biomarkers for the appropriate management of CKD is

urgently required. Growing evidence has suggested the role of mRNAs and

microRNAs in CKD, however, the gene expression profile of CKD is presently

uncertain. The present study aimed to identify diagnostic biomarkers and

therapeutic targets for patients with CKD. The human microarray profile

datasets, consisting of normal samples and treated samples were analyzed

thoroughly to unveil the differentially expressed genes (DEGs). After selection,

the interrelationship among DEGs was carried out to identify the overlapping

DEGs, which were visualized using the Cytoscape program. Furthermore, the

PPI network was constructed from the String database using the selected DEGs.

Then, from the PPI network, significant modules and sub-networks were

extracted by applying the different centralities methods (closeness,

betweenness, stress, etc.) using MCODE, Cytohubba, and Centiserver. After

sub-network analysis we identified six overlapped hub genes (RPS5, RPL37A,

RPLP0, CXCL8, HLA-A, and ANXA1). Additionally, the enrichment analysis was

undertaken on hub genes to determine their significant functions. Furthermore,

these six genes were used to find their associated miRNAs and targeted drugs.

Finally, two genes CXCL8 and HLA-A were common for Ribavirin drug (the

gene-drug interaction), after docking studies HLA-A was selected for further

investigation. To conclude our findings, we can say that the identified hub genes
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and their related miRNAs can serve as potential diagnostic biomarkers and

therapeutic targets for CKD treatment strategies.

KEYWORDS

chronic kidney disease (CKD), DEGs, gene ontology, KEGG, network analysis,
molecular docking

1 Introduction

Chronic kidney disease (CKD) is considered among the major

types of nephrosis across the globe, with a successive increase in its

associated patients in recent years (Epstein et al., 1988; Carpenter and

McHugh, 2017). CKD is a highly heterogeneous disease, wherein

kidney structure and function are damaged (Webster et al., 2017;

Tonelli et al., 2006; De Nicola and Zoccali, 2016; Guo et al., 2019;

Wilson et al., 2021). Over recent years, although clinical and

experimental studies have provided knowledge on the CKD

causes (Lovisa et al., 2016; Hewitson et al., 2017; Lajdová et al.,

2016; Johnson and Nangaku, 2016), the underlying mechanisms

leading to the progression and development of CKD remain poorly

understood. After CKDhas been diagnosed, the specific CKD stage is

determined. CKD is categorized into a five distinct stages on the basis

of the glomerular filtration rate (GFR), i.e., G1 (GFR ≥ 90 ml/min/

1.73 m2), G2 (GFR 60–89ml/min/1.73 m2), G3a (45–59 ml/min/

1.73 m2), G3b (30–44ml/min/1.73 m2), G4 (15–29 ml/min/

1.73 m2), and G5 (Kidney International Supplements, 2013). The

early CKD stages (Epstein et al., 1988; Carpenter and McHugh,

2017), show few symptoms, and the disease is not detected till it

reaches later stages (Rajapurkar et al., 2012). The rate of morbidity

and mortality increases with the succession of CKD stages.

Particularly adults suffering from CKD have an increased risk of

hospitalization due to infections (Dalrymple et al., 2012). The

mechanisms linking immune function and kidney function in

earlier stages remain poorly understood. CKD entails the slow but

regular loss of kidney function and leads to late-stage renal diseases.

Transcriptomics is considered a promising strategy for the selection

and detection of biomarkers as well as for monitoring the activity of

diseases (Szabo and Devlin, 2019). Microarray technologies facilitate

the explication of mRNA profiles related to human disease thereby

providing a comprehensive and balanced approach for analyzing the

processes of disease systematically (Hu et al., 2016). Recent gene

expression studies have been successfully carried out on various

diseases, such as cancer (Yang et al., 2018; Liu et al., 2015; Zhai et al.,

2017), angiocardiopathy (Yan, 2018; Guo et al., 2018), asthma

(Modena et al., 2017; Liu et al., 2019), etc. to identify early

diagnostic biomarkers. In this context, an in-depth study of the

CKD-associated mechanisms is required in order to understand its

underlying pathophysiology, which is crucial to identify predictors as

well as the therapeutic targets of the disease. Recently, a study has

been conducted on CKD gene expression profiles which have

identified some of the differentially expressed genes (DEGs)

implicated in the development and progression of this disease

(Nandakumar et al., 2017). However, we performed an integrated

analysis on some of the other unexplored gene expression profiles of

CKD. Thus, our identified DEGs show discrepancies with the

previous study results due to heterogeneity in CKD cases and

control subjects.

The molecular components in human cells are not

functionally independent, i.e., interdependent, which means

that a particular disease or syndrome is due to the

consequence of perturbations of complex intracellular and

intercellular interactions. With the enlargement and

progression of the network biology field, many potential key

genes related to diseases along with their improved drug targets

have been identified (Barabási et al., 2011). Thus, this emerging

field of network medicine methodically explores drug targets,

biomarkers, or key genes of the network through the

identification of modules and pathways, therefore, serving as a

platform for improved diagnosis, prognosis, and the treatment of

complex diseases (Silverman et al., 2020; Conte et al., 2020;

Fiscon et al., 2018; Paci et al., 2021).

The present study reports the bioinformatics analysis of the

Gene Expression Omnibus (GEO) database available at NCBI

(National Center for Biotechnology Information). At first, we

applied the meta-approach to CKD patients and healthy controls

and retrieved data, to identify the signature DEGs. A total of five

gene expression profiling datasets based on CKD (GSE15072,

GSE23609, GSE43484, GSE62792, and GSE66494) were selected

for the present analysis to screen the DEGs. The overlapped

DEGs among all datasets were proceeded to perform the

functional enrichment analysis to explore the molecular

mechanisms associated with CKD. Then, we carried out the

protein-protein interaction (PPI) network analysis to reveal the

potential hub genes for CKD. From the PPI network, the modules

of interest and hub genes in each module were identified and

displayed using Cytoscape. Furthermore, molecular docking of

CXCL8 and HLA-A genes was employed with a common drug

Ribavirin. Our findings established a reliable biomarker for

further research, which may provide a further understanding

of the potential molecular mechanisms associated with CKD.

2 Materials and methods

2.1 The analysis of chronic kidney disease
microarray datasets

The workflow of the integrative network-based method used

for the present analysis is illustrated in Figure 1. The gene
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expression datasets (GSE15072, GSE23609, GSE43484,

GSE62792, and GSE66494), consisting of normal (healthy

control) and treated (diseased patient) samples, were

downloaded from the NCBI GEO database (https://www.ncbi.

nlm.nih.gov/geo/). The criteria for selection of data in the NCBI

website search bar were made using keywords, such as “CKD,”

“chronic kidney disease,” and human (Organism). Subsequently,

the data obtained from these five datasets were used for the

present analysis. The details of the retrieved GSE series are

mentioned in Table 1.

FIGURE 1
The schematic representation of the present study workflow through an integrative network-based approach.
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2.2 Data preprocessing, screening, and
identification of differentially expressed
genes

The retrieved CKD-associated GSE series (the originally

obtained data of gene expression datasets) were further

processed for normalization through the GEO2R (http://www.

ncbi.nlm.nih.gov/geo/geo2r/) tool. It is an interactive web-based

tool that allows a user to identify the genes which are

differentially expressed across samples. The DEGs were

selected by applying default settings, i.e., a p-value < 0.05 after

being adjusted by a false discovery rate and |log2FC| > 0.5–2,

where FC represents fold change. The linear model analysis of the

microarray data package (LIMMA) in R was used to identify

DEGs (by defaults in GEO2R) (Ritchie et al., 2015).

The obtained genes (upregulated and downregulated) from

the meta-analysis were utilized for the construction of the PPI

network. In the process of analysis of DEGs, the Benjamini-

Hochberg correction method was used to correct the significant

P-values obtained by the original hypothesis test.

2.3 Protein-protein interaction network
construction

For further evaluation of the functional interactions

among obtained DEGs, the PPI network was constructed

from these DEGs using an online database STRING (Search

Tool for the Retrieval of Interacting Genes) Version 11.3, of

known and predicted protein-protein interactions. These

interactions include physical and functional associations,

and the data are mainly derived from computational

predictions, high-throughput experiments, automated text

mining, and co-expression networks. In order to build a

native PPI network of the DEGs, the Gene ID/Probe ID

genes were mapped to their respective officially gene

symbol/gene name, and their associated p-value and FC

values were retrieved. Subsequently, Cytoscape 3.8.3 was

used to visualize and construct the PPI network. In the PPI

network, each node represented the gene and edges

represented the connection between nodes.

The following properties in the constructed PPI network

were analyzed to find out important behaviors of the network:

2.3.1 Degree distribution
In a network study, the degree (k) of node (n) constitutes the

total number of connections or links with other nodes (Gursoy

et al., 2008).

2.3.2 Betweenness centrality
In a network, a node’s betweenness centrality reflects the

importance of the flow of information from one node to another

based on the shortest path.

2.3.3 Closeness centrality
In a network, closeness centrality reflects how quickly the

information is passing from one node to another (Przulj et al.,

2004).

2.3.4 Stress
In a network, stress is represented as the addition of all

nearest paths of all node pairs (Shimbel, 1953).

2.4 Hub genes detection based on the
centrality approach

To date, various centrality measures have been anticipated in

the topology-based network to address the difficulty in locating

hub nodes. To discover the most influential nodes or hubs in a

complex network constitutes a major problem for researchers.

The location of an important node or edge in the network

analysis is a major challenge and plays a crucial role. For the

identification of significant modules (based on centrality

measurement), three different software were employed to

identify the significant modules in the PPIN network.

CytoHubba (version 0.1) (Cytoscape plugin cytoHubba, a

user-friendly interface that ranks nodes in a network based on

its features) (Chin et al., 2014), Cytoscape plugin, Molecular

Complex Detection (MCODE Version 1.31), and CentiServer (a

comprehensive resource, web-based application, and the R

Package for the centrality analysis) (Jalili et al., 2015).

TABLE 1 The details of the present analysis GSE series.

Series TS N D UR DR FC I C Year Platform Author

GSE15072 29 8 21 51 38 2 CKD Italy 2009 GPL-96 Palo Pontrelli

GSE23609 24 7 17 219 189 0.5 CKD USA 2010 GPL-6454 Persis P. wadia

GSE43484 6 3 3 134 136 0.5 CKD Sweden 2013 GPL-571 Elham Dadfar

GSE62792 18 6 12 352 262 0.5 CKD Srilanka 2018 GPL-10558 D. N. Magana

GSE66494 61 8 53 102 325 0.5 CKD Japan 2015 GPL-6480 Satohiro Masada

aTS, Total samples; N, Normal; D, Disease; UR, Upregulated; DR, Downregulated; FC, Fold change; I, Illness; C, Country.
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2.5 The gene term enrichment and
pathway analysis

Gene ontology is categorized into three indistinguishable terms,

i.e., themolecular function (MF), biological process (BP), and cellular

component (CC). These terms collectively give researchers a better

idea about the functional annotation of genes. In order to reveal the

functional difference among DEGs, the extracted DEGs were

submitted to three different enrichment analysis tools, i.e., Enrichr

(a comprehensive web server that performs the gene set enrichment

analysis) (Kuleshov et al., 2016); g:Profiler, a web server that carries

out the functional enrichment analysis of the genes; g:Profiler—a web

server for functional enrichment analysis and conversions of gene

lists (ut.ee); ToppGene (a web portal which rank or prioritize

candidate genes on the basis of the similar function of the

training gene list).

2.6 Elucidation of hub gene-associated
miRNAs

After the identification of hub genes, the miRNet

2.0 platform was used to find out the hub gene-associated

miRNAs. MiRNet 2.0 is a web-based platform that helps in

elucidating the miRNA using the integrative existing knowledge

via network-based visual analytics (Fan et al., 2016).

2.7 The gene-drug interaction analysis and
molecular docking studies

The obtained hub genes were mapped onto the Drug-Gene

Interaction database (DGIdb http://www.dgidb.org) (Freshour et al.,

2021). The mapping was undertaken to identify better potential

therapeutic drugs for CKD-associated genes. The drug-gene

interaction complex was visualized using Cytoscape (Version 3.8.

2) software. ADGI (Drug-Gene Interaction) is defined as a

relationship that exists between a therapeutic and genetic variant

and has the possibility to cause an effect on a patient’s treatment in

response to a drug. The 3D modeled structures of the obtained hub

genes, i.e., CXCL8 (PDB ID: 3IL8) andHLA-A (PDB ID: 1AKJ) were

obtained from the RCSB PDB database (https://www.rcsb.org/), and

the drug structures were taken from the PubChem database. Using

ChemBio3DUltra software, the 2D structures were transformed into

3D structures. Furthermore, the drug 3D structures were exported as

pdbqt files for the docking analysis.

2.8 The hub genes analysis in kidney
cancer

GEPIA (the Gene Expression Profiling Interactive Analysis)

(http://gepia.cancer-pku.cn/detail.php) (Tang et al., 2017), a web

server, is used to analyze the expression profiles of tumors (such

as KIRC, KIRK, etc.) and normal samples included in TCGA

(The Cancer Genome Atlas) (http://portal.gdc.cancer.gov/) and

GTEx (the Genotype-Tissue Expression) (http://gtexportal.org/

home/) databases. The default parameters were taken and the

cutoff value was 50%. The sample was selected as the dataset and

the hazard ratio (HR) was calculated based on the Cox

proportional-hazards model. The 95% CI was not calculated

in the present study. For HR, p < 0.05 was considered to indicate

a statistically significant difference. Additionally, the validation

was carried out for the hub genes using box plot analysis and

subsequently their pathological stage was determined.

3 Results

3.1 Identification of chronic kidney
disease-associated differentially
expressed genes

The microarray expression datasets GSE15072, GSE23609,

GSE43484, GSE62792, and GSE66494 were downloaded from the

GEO database. TheDEGs between controls and the diseased samples

were analyzed using the GEO2R tool. Considering the datasets

altogether, our analysis revealed a total of 1793 specific DEGs

which included 851 upregulated genes and 942 downregulated

genes. For each of the datasets, the total number of upregulated

and downregulated genes were also analyzed using the adjusted p

values (p < 0.05) and |log2FC| > 0.5–2., and was further compared

using an online tool (http://bioinformatics.psb.ugent.be/webtools/

Venn/) or Venny 2.0.2. The total number of upregulated and

downregulated genes in each dataset is as follows: GSE15072

(50 upregulated and 38 downregulated genes); GSE23609

(219 upregulated and 189 downregulated genes); GSE43484

(133 upregulated and 135 downregulated); GSE62792

(351 upregulated and 262 downregulated); GSE66494

(102 upregulated and 324 downregulated). The overlapped genes

that were found to be the most common in at least two GSE series

were referred to as final DEGs. The identified overlapped upregulated

and downregulated genes in at least twoCKD series arementioned in

Table 2.

A total of 10 upregulated genes and 27 downregulated genes

were proceeded for further investigation as shown in Figure 2.

3.2 Construction of the protein-protein
interaction network using differentially
expressed genes

The gene and its associated products constitute a biological

system that forms the basis of a complex network wherein cells

interact randomly. During the progression of development of a

particular disease, the investigation at the level of gene expression
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TABLE 2 The identified overlapped DEGs associated with CKD.

GSE series overlapped Common genes count Downregulated genes

GSE15072, GSE62792, GSE66494 1 SELENBP1

GSE15072, GSE62792 3 SLC4A1, EPB42, ALAS2

GSE15072, GSE66494 3 PDZK1IP1, HBB, HBD

GSE23609, GSE62792 3 AES, CAPN1, ALDOA

GSE23609, GSE66494 3 AQP3, COX4I1, KLF9

GSE43484, GSE62792 4 TGM2, E2F2, FAXDC2, PKNOX1

GSE62792, GSE66494 10 RPLP0, ITLN1, AMY1C, RPS5, PTGDS, RPL9, RPL13, HAGH, RPL37A, HLA-A

GSE series Common genes count Upregulated genes

GSE15072, GSE23609 1 CXCL8

GSE15072, GSE62792 1 ANXA1

GSE23609, GSE43484 3 CD79A, ADAM23, IGHD

GSE23609, GSE62792 2 RBM5, THOC1

GSE23609, GSE66494 2 CRYAB, ZMPSTE24

GSE43484, GSE62792 1 STK38

FIGURE 2
The Venn diagram depicts the overlapped data. (A,B) were used for finding overlapped DEGs upregulated and downregulated genes,
respectively. (C) was used for finding the overlapped hub genes using software MCODE, Centiserver, and Cytohubba. (D–F) depict different
centralities methods for overlapped genes.
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is carried out using the biological information approach. The

interrelationship among DEGs was undertaken to identify the

overlapping DEGs. A total of 37 genes (including upregulated and

downregulated) were submitted to the STRING database, which

identified a PPI network that possessed 395 nodes and 17,923 edges.

As a variety of pathways and genes are involved in the occurrence and

development of a disease, enhanced understanding using network-

based approaches is essential for researchers to shed light on disease-

related mechanisms. Some crucial genes and signaling pathways

perform important biological processes, therefore, they are utilized as

therapeutic targets for various diseases. Tracing was applied to the

PPI network for the genes of interest finding, which marks that

20 DEGs (out of 37 selected DEGs) represented as each node of the

disease-specific gene-interaction network. The interactions of the

genes (every single node) formed edges of the network. Then, each

significant gene was extracted with its initial neighbors as shown in

Figure 3.

3.3 Extraction of hub genes based on the
centrality approach

It is important to find the most valuable nodes in the complex

network. To do this, most researchers find the nodes that are based

FIGURE 3
The PPI network was built by the String database. The network contains a total of 322 nodes and 17,239 edges. The PPI network was further
divided into subnetworks by MCODE, Centiserver, and Cytohubba. The green color nodes depict downregulated genes, whereas the nodes in red
color depict upregulated genes. CytoHubba color coding scheme is based on ranking, wherein the top to bottom gene ranks decline from red to
light color.
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on centralities methods. In our study, we used 12 different centrality

methods in Cytohubba, 12 methods (out of 27) in Centiserver, and

one method by MCODE. In our previous research, the most

influential nodes in the CVD and CKD network were identified

using IVI packages in R. Three genes were traced out 12 modules

from the Cytohubba, whereas six genes were traced inMCODE, and

nine genes were traced from the Centiserver (Supplementary Table

S1). It was observed that three hub genes (RPL37A, HLA-A, and

RPS5) were found to be overlapping among three tools/databases

(Cytohubba,MCODE, andCentiserver), whereas six genes (RPL37A,

HLA-A, RPS5, CXCL8, RPLP0, and ANXA1) were overlapping

among two methods/tools/databases (Centiserver and MCODE).

The paradigms were exploited for the selection of the top

30 informative genes.

3.4 The analysis of gene term enrichment
and pathways

It is really important to find, whether a gene is involved in a

process and the function of the gene with the location. For these three

categories (process, function, and localization), the gene ontology

analysis was performed by three different databases (Toppgene,

gProfiler, and Enrichr). Various terms were found by these

databases, so for the obtained huge data in form of GO terms, we

considered only overlapped terms in three categories (MF, BP, and

CC). Therefore, out of hundreds of terms, only 12 terms were found

to be overlapping, of which twowere from themolecular function, six

were from the biological process, and four from the cellular process.

The hub genes that showed significant enrichment are listed in

Table 3. The pathway analysis of the hub geneswas extracted using the

Enrichr database as shown in Table 4. Table 3 lists the significantly

enriched pathways of hub genes associated with CDK. The significant

pathways of hub genes were mainly enriched with Coronavirus

disease, cellular senescence, Kaposi sarcoma-associated herpesvirus

infection, human cytomegalovirus infection, allograft rejection, cancer,

graft-versus-host disease, diabetes mellitus (Type 1), and malaria.

3.5 The survival analysis of key genes using
Gepia2

The survival analysis of the selected genes (ANXA1, CXCL8,

HLA-A, RPL37A, RPLP0, and RPS5) was undertaken. Survival

FIGURE 4
Survival curves of ANXA1, CXCL8, HLA-A, RPL37A, RPLP0, and RPS5 in patients with CKD. Survival curves were used to show the survival ability
with time and survival rate.
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curves are used to show the survival ability with time and

survival rate (Figure 4). The relation between hub genes

expression and pathological stage in CKD patients was

estimated through GEPIA (Figure 5). Further, we utilized

GEPIA tool to validate the expression of hub genes using box

plot analysis (Figure 6).

FIGURE 5
Violin plots of selected hub genes ANXA1, CXCL8, HLA-A, RPL37A, RPLP0, and RPS5 in kidney cancer.

FIGURE 6
Box plots of selected hub genes ANXA1, CXCL8, HLA-A, RPL37A, RPLP0, and RPS5 in kidney cancer (KIRC, KIRP, and KICH).
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3.6 Hub genes associated miRNA and
gene-drug interaction studies

The resultant six hub genes (on the basis of centrality

approaches) were utilized subsequently to find their target

miRNAs see Table 5. For CXCL8 and HLA-A, one miRNA

was common hsa-miR-124-3p. They identified six hub genes

that were submitted to the DGIdb database and formed a

network (the mRNA-Drugs interaction network) with

67 nodes and 61 edges that connected other interacting genes.

The network was further analyzed to identify important hub

genes with their drug targets. Finally, Ribavirin was identified as

the common target for two hub genes (CXCL8 and HLA-A)

(Figure 7).

4 Discussion

CKD affects 8%–16% of the people across the globe. It is one

of the major causes leading to death among individuals

FIGURE 7
The gene-to-drug interaction network was shown in the figure, the red color nodes are key genes, and the green color nodes their targets
drugs. Out of six genes, three genes were making interaction with their target drugs. Ribavirin was a common drug for two genes. This figure shows
the 3D interaction and the 2D interaction with ribavirin and CXCL8, HLA-A genes.
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worldwide. Early diagnosis and staging, with appropriate

management by primary care clinicians are important in

reducing the burden of CKD worldwide. In past few years,

although clinical and experimental studies have provided

knowledge on the CKD causes (Lovisa et al., 2016; Hewitson

et al., 2017; Johnson and Nangaku, 2016), the underlying

molecular mechanisms that lead to the cause and progression

of CKD remain to be explored completely. Studies have

documented the complex and significant role played by

miRNAs in a variety of human diseases including CKD (Liu

et al., 2004; Volinia et al., 2006; Hui et al., 2011). MiRNA belongs

to a class of small, noncoding, highly stable RNAs that regulate

the mRNA and protein expression. Reports have suggested that

miRNAs are associated with the regulation of various biological

processes, such as proliferation, cellular differentiation, and

metabolism (Carrington and Ambros, 2003; Sua´rez and

Sessa, 2009; Hatley et al., 2010). The progression of CKD has

been linked to miRNAs (Ahmed et al., 2022). In light of this, the

primary objective of our study was to predict candidate miRNAs

and hub genes that are associated with the pathogenesis of CKD.

We utilized a global approach for the construction of a network

based on centrality that predicted clusters of candidate genes

involved in CKD.

In this study, five microarray gene expression series

(GSE15072, GSE23609, GSE43484, GSE62792, and GSE66494)

were retrieved from the Omnibus GEO database to study the

relationship between the CKD gene expression and clinical traits.

Specifically, from these five gene chips, a total of 1793 DEGs were

screened including upregulated and downregulated genes. Our

analysis revealed a total of 1,793 specific DEGs which included

851 upregulated and 942 downregulated genes [GSE15072

(50 upregulated and 38 downregulated genes), GSE23609

TABLE 3 The gene term enrichment analysis of hub genes associated with CKD.

GO term Category Function p-value Count Gene names

GO:0019843 MF rRNA binding 9.70E-07 3 RPS5, RPL37A, RPLP0

GO:0003723 MF RNA binding 6.06E-05 5 RPS5,HLA-A,RPL37A,ANXA1,RPLP0

GO:0006614 BP SRP-dependent cotranslational protein targeting membrane 2.69E-06 3 RPS5,RPL37A,RPLP0

GO:0006613 BP Cotranslational protein targeting membrane 3.10E-06 3 RPS5,RPL37A,RPLP0

GO:0045047 BP protein targeting to ER 4.34E-06 3 RPS5,RPL37A,RPLP0

GO:0000184 BP Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 4.03E-06 3 RPS5,RPL37A,RPLP0

GO:0000956 BP Nuclear-transcribed mRNA catabolic process 2.22E-05 3 RPS5,RPL37A,RPLP0

GO:0010629 BP Negative regulation of gene expression 3.61E-05 5 RPS5,RPL37A,CXCL8,ANXA1,RPLP0

GO:0005925 CC Focal adhesion 2.01E-06 4 ANXA1,RPS5,RPL37A,RPLP0

GO:0030055 CC Cell-substrate junction 2.16E-06 ANXA1,RPS5,RPL37A,RPLP0

GO:0022625 CC Cytosolic large ribosomal subunit 1.11E-04 RPL37A, RPLP0

GO:0005840 CC Ribosome 0.018459 1 RPS5

aMF, Molecular function; BP, Biological process; CC, Cellular component. The gene term analysis was performed using different databases Enrichr, gProfiler, and ToppGene.

TABLE 4 The pathway analysis of hub genes in CKD.

Term p-value Count Genes

Coronavirus disease 2.60E-07 4 CXCL8, RPS5, RPL37A, RPLP0

Ribosome 9.51E-06 3 RPS5, RPL37A, RPLP0

Cellular senescence 8.88E-04 2 CXCL8, HLA-A

Kaposi sarcoma-associated herpesvirus infection 0.001354623 2 CXCL8, HLA-A

Human cytomegalovirus infection 0.001834552 2 CXCL8, HLA-A

Allograft rejection 0.011347288 1 HLA-A

Bladder cancer 0.012238541 1 CXCL8

Graft-versus-host disease 0.012535477 1 HLA-A

Type I diabetes mellitus 0.012832 1 HLA-A

Malaria 0.014908 1 CXCL8

aThe pathway analysis was performed using the Enrichr database.
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(219 upregulated and 189 downregulated genes), GSE43484

(133 upregulated and 135 downregulated), GSE62792

(351 upregulated and 262 downregulated), and GSE66494

(102 upregulated and 324 downregulated) in CKD datasets.

Then next, we determined the overlapping genes among GEO

datasets between the upregulated versus upregulated and

downregulated versus downregulated genes. The gene term

enrichment analysis revealed that the hub genes were mainly

involved in RNA binding, co-translational protein targeting, and

mRNA catabolic process activities. After putting it all together, a

miRNA–mRNA interaction network was constructed. After the

construction of the PPI network, we detected the significant

modules/hub nodes in the network. The concept of centrality and

its associated algorithms have been widely used in the

identification of essential nodes in a distinct network. It is

considered a promising approach or principal index in

biological networks. Using the centrality approach, six hub

genes (RPS5, RPL37A, RPLP0, CXCL8, HLA-A, and ANXA1)

were selected from the PPI network and were further

investigated.

It is interesting to mention that of these identified hub genes,

the three hub genes RPS5 (encodes ribosomal protein S5),

RPL37A (encodes ribosomal protein 37A), and RPLP0

(encodes ribosomal protein lateral stalk subunit P0), till date,

have not been reported to show correlation to CKD. Annexin A1

(ANXA1), is an anti-inflammatory protein that is encoded by the

ANXA1 gene. A study has shown the association of ANXA1 with

progression and metastasis of cancer, suggesting its role in

regulating tumor cell proliferation (Gastardelo et al., 2014).

ANXA1 (as an endogenous mediator) has been demonstrated

recently to play an important role in alleviating kidney injury in

patients with diabetic nephropathy by resolving inflammation

(Wu et al., 2021). It has been suggested that intracellular

ANXA1 bond inhibits the activation of transcription factor

NF-κB p65 by binding to its subunit, thereby, modulating the

inflammatory state. Additionally, ANXA1 was found to be

abundantly expressed in renal fibrosis (Neymeyer et al., 2015).

CXCL8 encodes a protein IL-8 (interleukin-8), which belongs to

the CXC chemokine family and is a major mediator of the

inflammatory response. IL-8 is also known to promote tumor

migration, invasion, angiogenesis, and metastasis

(CXCL8 C-X-C motif chemokine ligand 8 [Homo sapiens

(human)]—Gene—NCBI (nih.gov). The encoded protein is

commonly referred to as. Several studies have documented the

role of cytokines in chronic kidney disease (CKD) (Vianna et al.,

2013). Nagy et al. (2016) also confirmed the expression of

CXCL8 in ESRD/ACRD (end-stage renal disease or acquired

cystic renal disease kidney) through an immunohistological

analysis. Previous investigation has shown the involvement of

human leukocyte antigens (HLA) in chronic kidney disease

(CKD) patients (Yamakawa et al., 2014). It was revealed that

HLAs could act as markers that might be involved in the

development of CKD (Yamakawa et al., 2014). Furthermore, a

study has demonstrated the genetic association of HLA with a

variety of kidney diseases (Robson et al., 2018). Several studies

have reported that besides CXCL8 (Noah et al., 2002), other

TABLE 5 The table shows the list of miRNAs associated with six selected hub genes.

miRNA-target and miRTarbase

RPLP0 RPS5 CXCL8 HLA-A ANXA1 RPL37A

hsa-miR-15b-5p hsa-miR-23a-3p hsa-miR-23a-3p hsa-miR-183-5p hsa-miR-335-5p hsa-miR-615-3p

hsa-miR-221-3p hsa-miR-15b-5p hsa-miR-124-3p hsa-miR-124-3p hsa-miR-221-3p

hsa-miR-324-3p hsa-miR-324-3p hsa-miR-335-5p hsa-miR-615-3p

hsa-miR-16-5p hsa-miR-16-5p

hsa-miR-183-5p

common RPLP0 RPS5 CXCL8 HLA-A ANXA1 RPL37A

hsa-miR-15b-5p ✓ ✓
hsa-miR-324b-3p ✓ ✓
hsa-miR-16-5p ✓ ✓
hsa-miR-23a-3p ✓ ✓
hsa-miR-124-3p ✓ ✓
hsa-miR-335-5p ✓ ✓
hsa-miR-221-3p ✓ ✓
hsa-miR-615-3p ✓ ✓

Note: The green tick signifies the presence of miRNA, in the respective gene.
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chemokines including CCL2 (Noah and Becker, 2000), CCL3,

and CCL5 (Smyth et al., 2002), are found to be upregulated

during RSV infection in the nasal fluids. In line with this, Noah

and Becker (2000) reported that the level of these chemokines is

found to be elevated during the period of illness (viral shedding).

A recent investigation has demonstrated that RPL37A and

RPLP0 are among the best reference genes (Asiabi et al.,

2020). Ovaries from healthy individuals all well as from

patients having OEA (ovarian endometrioid adenocarcinoma),

OMA (ovarian mucinous adenocarcinoma), OSPC (ovarian

serous papillary carcinoma), and PCOS (polycystic ovary

syndrome) were identified with some suitable housekeeping

genes including RPL37A and RPLP0. Reference genes or

housekeeping genes (HKGs) are very important in

normalizing mRNA levels between different samples. Since the

use of inappropriate reference gene can lead to undependable

results, the selection of suitable one is vital for gene expression

studies. Therefore, it can be hypothesized that these hub genes

may be potential diagnostic biomarkers and therapeutic targets

for patients with CKD.

Subsequently, these resultant hub genes were utilized to

find their target miRNAs. Moreover, hsa-miR-124-3p was

found to be a common miRNA target for both CXCL8 and

HLA-A. MicroRNA-124a-3p is related to tumor progression

in certain malignant tumors. Esophageal cancer includes a

major subtype, i.e., ESCC (esophageal squamous cell

carcinoma). The downregulated expression of miR-124-3p

has been reported in ESCC tissues, which was found to be

correlated with the inhibition of DNA methyltransferase 1

(Zeng et al., 2019). The previous finding has demonstrated

hsa-miR-124-3p as a potential target for the diagnosis and

prognosis of hepatocellular carcinoma (Long et al., 2018).

Thus, the current study suggested that hsa-miR-124-3p plays

a crucial role in CKD development by targeting CXCL8 and

HLA-A. The investigation of the regulation among hsa-miR-

124-3p and CXCL8, HLA-A may shed light on the knowledge

of underlying molecular mechanisms of CKD.

Furthermore, the gene-drug interaction was also investigated

in order to identify the hub genes and their associated drugs in

the CKD network. It was observed that only three (out of the six

hub genes) hub genes interacted with drugs and ribavirin was

found to be commonly associated with both HLA-A and

CXCL8 genes. Unfortunately, ribavirin is not widely used to

treat CKD. It has been suggested that treatment with ribavirin

prevented RSV-induced CXCL8 production in epithelial cells of

humans (Fiedler et al., 1996). It has been revealed in patients

(suffering from chronic HCV infection), that the HLA allele is

associated with Peg-IFN plus ribavirin therapy (Farag et al.,

2013). Altogether, it can be interpreted that our findings from

the presented study can contribute to an improved

understanding of the mechanisms underlying CKD and the

identified hub genes and miRNAs in our study can serve as

targets for CKD treatment approaches.

5 Conclusion

The present meta-analysis on CKD mRNA expression

datasets might provide clues about the potential biomarkers

in CKD. The six hub genes ANXA1, CXCL8, HLA-A,

RPL37A, RPL3P0, and RPS5 were significantly expressed

in these modules. Furthermore studies are underway to

address the specific mechanisms of these hub genes in

CKD. A detailed understanding of the roles served by

these hub genes may provide insights into CKD, and lead

to diagnostic and therapeutic opportunities for patients with

CKD. Future external validation studies are required to

reproduce our findings and determine whether these

identified mRNAs or hub genes may influence the CKD

progression.
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