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Patients with systemic lupus erythematosus (SLE) present varied clinical

manifestations, posing a diagnostic challenge for physicians. Genetic factors

substantially contribute to SLE development. A polygenic risk scoring (PRS)

model has been used to estimate the genetic risk of SLE in individuals. However,

this approach assumes independent and additive contribution of genetic

variants to disease development. We aimed to improve the accuracy of SLE

prediction using machine-learning algorithms. We applied random forest (RF),

support vectormachine (SVM), and artificial neural network (ANN) to classify SLE

cases and controls using the data from our previous genome-wide association

studies (GWAS) conducted in either Chinese or European populations, including

a total of 19,208 participants. The overall performances of these predictorswere

assessed by the value of area under the receiver-operator curve (AUC). The

analyses in the Chinese GWAS showed that the RF model significantly

outperformed other predictors, achieving a mean AUC value of 0.84, a 13%

improvement upon the PRS model (AUC = 0.74). At the optimal cut-off, the RF

predictor reached a sensitivity of 84% with a specificity of 68% in SLE

classification. To validate these results, similar analyses were repeated in the

European GWAS, and the RF model consistently outperformed other

algorithms. Our study suggests that the RF model could be an additional

and powerful predictor for SLE early diagnosis.
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Introduction

Systemic lupus erythematosus (SLE) is a complex autoimmune disease that affects

multiple organ systems. SLE patients often show varied clinical manifestations, ranging

from mild skin lesion to lethal renal involvement. The clinical heterogeneity of SLE poses

a diagnostic challenge for physicians. Recent studies have shown that it usually takes

4–6 years for SLE patients to be correctly diagnosed from the time the first symptoms start

to appear and more than 60% of the patients were misdiagnosed before receiving a

comprehensive examination (Al Sawah et al., 2015). Primary care physicians (PCPs) play

a central role in early diagnosis. However, a previous study showed that only 56% of SLE

patients diagnosed by PCPs met one of three major criteria for SLE classification

OPEN ACCESS

EDITED BY

Xin Zhou,
Vanderbilt University, United States

REVIEWED BY

Chengsong Zhu,
University of Texas Southwestern
Medical Center, United States
Dag Leonard,
Uppsala University, Sweden

*CORRESPONDENCE

Wanling Yang,
yangwl@hku.hk
Yong-Fei Wang,
yfwangbm@connect.hku.hk

SPECIALTY SECTION

This article was submitted to
Computational Genomics,
a section of the journal
Frontiers in Genetics

RECEIVED 23 March 2022
ACCEPTED 19 July 2022
PUBLISHED 15 August 2022

CITATION

Ma W, Lau Y-L, Yang W and Wang Y-F
(2022), Random forests algorithm
boosts genetic risk prediction of
systemic lupus erythematosus.
Front. Genet. 13:902793.
doi: 10.3389/fgene.2022.902793

COPYRIGHT

© 2022 Ma, Lau, Yang and Wang. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Brief Research Report
PUBLISHED 15 August 2022
DOI 10.3389/fgene.2022.902793

https://www.frontiersin.org/articles/10.3389/fgene.2022.902793/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.902793/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.902793/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.902793&domain=pdf&date_stamp=2022-08-15
mailto:yangwl@hku.hk
mailto:yfwangbm@connect.hku.hk
https://doi.org/10.3389/fgene.2022.902793
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.902793


(Lawrence et al., 1987). Delayed diagnosis and treatment often

result in more severe disease outcomes, increasing the chance of

irreversible organ damages (Kernder et al., 2021). Early detection

and intervention are essential for achieving optimal treatment

outcomes for patients.

Genetic assessment may become an additional tool for early

diagnosis of SLE as genetic factors explain about 43%–66% of

SLE development (Lawrence et al., 1987; Wang et al., 2007; Kuo

et al., 2015). Polygenic risk scoring (PRS) methods have been

applied in SLE prediction and stratification (Reid et al., 2019;

Chen et al., 2020; Wang et al., 2021; Wang et al., 2022). However,

the classic PRS method simply aggregates the number of risk

alleles for a subset of linkage disequilibrium (LD)-independent

variants that exceed an association p-value threshold, and the

contribution of each variant is usually weighted by the effect-size

estimated in the relevant genome-wide association studies

(GWASs) (Choi et al., 2020). This procedure will select the

variants with inflated effects due to the influence of Winner’s

curse (Shi et al., 2016), and the hard filtering will remove multiple

variants with small but non-negligible effects. Recently, a range of

modified PRS methods have been developed (Pain et al., 2021).

These methods apply shrinkage methods to reduce overfitting of

genetic effects caused by Winner’s curse and incorporate

genome-wide variants into a model to maximize the signals

captured. Our recent study showed that the lassosum-based

PRS model (Mak et al., 2017) achieved an overall performance

with the area under the receiver-operator curve (AUC) value of

0.76 for SLE prediction in Chinese population (Wang et al.,

2021).

Despite a great improvement of novel PRS methods, the

assumption of independent and additive contribution of genetic

variants to disease development hinders their further

improvement. Recent studies have shown that non-additive and

epistasis effects could explain a substantial proportion of heritability

for complex diseases (Wei et al., 2014; Guindo-Martinez et al., 2021).

Compared to the PRS model, supervised machine learning (ML)

algorithms, using multivariate and non-parametric methods, may

have stronger power to capture signals from non-linearly and non-

normally distributed data (Ho et al., 2019). Here, we compare the

performances of three widely used ML algorithms, namely, random

forest (RF), support vector machine (SVM), and artificial neural

network (ANN) with the lassosum-based PRS model in predicting

SLE development using the data from our previous GWAS that were

conducted in either Chinese (3,720 cases and 5,303 controls) or

European populations (3,670 cases and 6,515 controls).

Methods

Data source

The individuals with raw genotype data were retrieved from

our previous SLE GWAS (Song et al., 2021; Wang et al., 2021)

(Supplementary Table S1), including a total of 9,023 individuals

with Chinese ancestry (3,720 SLE cases and 5,303 controls) and

10,185 individuals with European ancestry (3,670 cases and 6,515

controls). All the patients fulfilled the revised criteria of the

American College of Rheumatology for diagnosis of SLE (ACR-

97) (Hochberg, 1997). Quality control and imputation analyses

for individual-level genotype data were performed as described in

our previous studies (Wang et al., 2018; Wang et al., 2021; Wang

et al., 2022). To obtain a set of common and well-imputed

variants for subsequent analyses, variants who met the

following criteria were included: 1) minor allele frequency

greater than 1%; 2) imputation INFO scores greater than 0.90;

3) passing the test of Hardy–Weinberg equilibrium

(p-value >1E−04); 4) variants in the HapMap 3 reference

panel. A total of 958,649 and 923,949 variants in autosomes

met these criteria in the Chinese and European datasets,

respectively. These variants were used for subsequent analyses.

Polygenic risk score calculation

The polygenic scores for individuals were calculated using

the lassosum model (Mak et al., 2017), which has been proven to

be one of the best PRS models (Pain et al., 2021). The GWAS

association summary statistics were calculated using the logistic

model in PLINK, and the first three genetic principal

components and batch effects were controlled in the

association analyses. All variants that met the selection criteria

were applied to the lassosum-based PRS model for SLE

prediction in either Chinese or European datasets. The

parameters of “s” and “lambda” in the model were further

tuned using the raw genotyped data of training samples.

Supervised machine learning classifiers

In this study, we constructed three ML models, random

forest (RF), support vector machine (SVM) and artificial

neural network (ANN), for SLE prediction. Considering that

high-dimensional data could overwhelm computational

resources and exacerbate the overfitting problem for these ML

predictors, we performed a two-step SNP selection strategy to

remove the variants that are in high linkage disequilibrium (LD).

We first conducted the clumping function in PLINK to remove

those highly correlated genetic variants (r2 > 0.3). After that, we

performed lasso-logistic regression to further reduce the

dimensionality using the “glmnet” function in the R package

(Friedman et al., 2010). Though the two-step selection process, a

total of 5,317 and 7,713 variants were included in the Chinese and

European datasets, respectively. The numbers were below the

sample size, and these variants were applied to theML predictors.

The RF predictor was constructed using the function of

RandomForestClassifier in the scikit-learn package (Pedregosa
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et al., 2011). The SVM predictor was constructed by using the

function of sklearn.svm.SVC in the scikit-learn package. The ANN

predictor was constructed by using the Keras, a Python library

for developing deep learning models (Gulli and Pal, 2017). To tune

the parameters for ML models, we used a subset of Chinese data

that was collected from Hong Kong (HK; 1,604 cases and

3,324 controls) to train the models with varied settings of

parameters and used the samples collected from Guangzhou

(GZ; 1,604 cases and 985 controls) as a validation dataset.

For the RF model, we evaluated the impact of tree setting on

the performance of SLE prediction. The HK data were used to

train the RF model, with the number of trees ranging from 100 to

1,500.We observed that the AUC values for the validation dataset

were positively associated with the number of trees used, but the

performance nearly leveled off when the number was set to be

800 (Supplementary Figure S1A). Thus, eight hundred trees were

set to construct the RF model for SLE prediction in the following

study.

For the SVM model, we investigated the impact of kernel

functions on the performance of SLE prediction. Three types of

kernel functions, namely, radial basis function (“rbf”),

polynomial (“poly”) and linear kernels were used to train the

algorithm. The model trained by the “poly” function slightly

outperformed other models (Supplementary Figure S1B). Thus,

we selected the “poly” function to build the SVM model in the

following study.

For the ANNmodel, the setting of hyperparameters is shown

in Supplementary Table S2. We assessed the performance of the

model with a depth of two hidden layers (512 and 256 nodes in

respective layers) or three hidden layers (1,024, 512, and

256 nodes in respective layers). Meanwhile, we also evaluated

the effect of varied learning rates (0.1, 0.01, and 0.001), which

controls the magnitude of weight update and is the most

important hyperparameter in the algorithm (Goodfellow et al.,

2016). As shown in Supplementary Figure S1C, we observed that

the model with a setting of three hidden layers and a learning rate

of 0.001 (AUC = 0.626) performed slightly better than the model

constructed by the three hidden layers but with a learning rate of

0.01 (AUC = 0.622). However, the small improvement was made

at the expense of taking nearly an extra hour for training.

FIGURE 1
Performances of the random forests (RF; (A)), support vector machine (SVM; (B)), artificial neural network (ANN; (C)), and the lassosum-based
polygenic risk scoring (PRS) model (D) in predicting the development of SLE in Chinese population. The dashed line indicates the performance for
each repeat. The solid lines indicate the averaged performance among the four repeats.
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Considering the balance between accuracy and resource usage,

we constructed the ANN model with the setting of three hidden

layers and a learning rate of 0.01 for SLE prediction in the

following study.

Evaluating performance of predictors

The overall performance for these predictors was assessed by

the AUC value which is widely used to evaluate how well a

predictor can identify the true state of subjects in a test. The value

ranges from 0 to 1, and a higher value indicates a better

performance in a diagnostic test. Sensitivity and specificity

were also calculated given a specific cutoff to determine cases

and controls.

Results

We first evaluated the performance of three supervised ML

predictors (RF, SVM, and ANN) and the lassosum-based PRS

model using the SLE GWAS from Chinese populations

(3720 cases and 5303 controls). To maximize the power of

these predictors, we randomly selected 200 SLE cases and

200 controls from the GWAS as a testing dataset and trained

the predictors using the remaining samples. This procedure was

repeated four times to overcome estimation bias. The flowchart

of data processes is shown in Supplementary Figure S2. The

results showed that the RF model achieved a mean AUC of 0.84,

significantly outperforming other predictors (Figure 1). The

performance of SVM and ANN models was comparable, with

the mean AUC value of 0.77 and 0.76, respectively, which was

slightly higher than that of the PRS model (mean AUC = 0.74).

In addition, we randomly split the data into two equal parts and

used one half for training and the other half for testing. We

observed similar results, and the RF predictor still

outperformed other models for SLE prediction

(Supplementary Figure S3).

Given the fact that the delayed treatment could result in

irreversible organ damages, a more sensitive diagnostic test

would be preferred for primary assessment. Following this

line, we set a cut-off to classify cases and control at the point

FIGURE 2
Performances of the random forests (RF; (A)), support vector machine (SVM; (B)), artificial neural network (ANN; (C)), and the lassosum-based
polygenic risk scoring (PRS) model (D) in predicting the development of SLE in European population. The dashed line indicates the performance for
each repeat. The solid lines indicate the averaged performance among the four repeats.
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where the predictors can reach a sensitivity of 80% in the

classification. The corresponding specificity at this point was

71%, 59%, 57%, and 43% for the RF, SVM, ANN, and PRS

models, respectively. At the optimal cut-off where the sum of

sensitivity and specificity was maximized, the RF model achieved

a sensitivity of 84% and a specificity of 68% in predicting SLE

development. In addition, the RF model consumes much less

computational time than other models (Supplementary

Figure S4).

To validate these results, we repeated the abovementioned

analyses using the SLE GWAS collected from European

populations. We observed a similar pattern where the RF

model achieved the best performance with a mean AUC value

of 0.76, approximately a 17% improvement compared to the PRS

model (Figure 2). Taken together, these results indicate that the

RF model could be an additional and powerful tool for SLE

classification and early detection.

Discussion

The presence of autoantibodies, like antinuclear antibody

(ANA) and double-stranded DNA (dsDNA), is one of the

diagnostic criteria for SLE. However, these biomarkers are

not specific for SLE (Fitch-Rogalsky et al., 2014), and the

positive tests are likely present in the patients who are in the

active phase of SLE. Genetic assessment could predict the

disease risk long before disease onset as it relies on germline

sequence that is stable throughout lifespan. With genome SNP

genotyping or genome sequencing becoming more readily

accessible, genetic assessment may greatly facilitate early

diagnosis of SLE.

Our previous studies showed that the PRS model could

achieve an AUC value of 0.76 in Chinese population (Wang

et al., 2021). Here, we replicated the performance of the PRS

model (mean AUC = 0.74) and demonstrated that the RF

predictor improves the prediction of SLE development,

achieving a mean AUC value of 0.84 in the Chinese dataset.

In addition, we observed that the SVM and ANN predictors also

slightly outperformed the PRS model, suggesting potential non-

linear effects underlying the disease association. Previous

studies also demonstrated that ML algorithms can boost

predictive power of genetic assessments on inflammatory

bowel disease (IBD) and celiac disease (Wei et al., 2013;

Abraham et al., 2014). Taken together, these studies suggest

an advancement of ML models in predicting the development of

autoimmune diseases.

Unlike the PRS model, the ML models require genotype

data for training, which may be limited by sample sizes that are

available. However, the ML algorithms do not seem as

sensitive to the change of sample size for training. We

observed that the AUC value of the RF model was

decreased from 0.84 when it was trained by nearly all

available samples in the Chinese dataset (Figure 1A) to

0.82 when it was trained by one half of the data

(Supplementary Figure S3A). However, more studies are

needed to examine the effect of sample size on the

performance of the model.

Understanding the relationships between subphenotypes

of SLE and genetic risk may provide more insights into the

clinical use of genetic findings. However, we have not curated

the full clinical data in this study. It would be an intriguing

question if clinical data are available as these ML algorithms

can address multi-class problems and be applied to distinguish

different subtypes of SLE. In summary, we recommend

applying the RF model to estimate the genetic risk of SLE

in individuals.
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