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Background:Diffuse large B-cell lymphoma (DLBCL), which is considered to be

themost common subtype of lymphoma, is an aggressive tumor. Necroptosis, a

novel type of programmed cell death, plays a bidirectional role in tumors and

participates in the tumor microenvironment to influence tumor development.

Targeting necroptosis is an intriguing direction, whereas its role in DLBCL needs

to be further discussed.

Methods: We obtained 17 DLBCL-associated necroptosis-related genes by

univariate cox regression screening. We clustered in GSE31312 depending on

their expressions of these 17 genes and analyzed the differences in clinical

characteristics between different clusters. To investigate the differences in

prognosis across distinct clusters, the Kaplan-Meier method was utilized.

The variations in the tumor immune microenvironment (TME) between

distinct necroptosis-related clusters were investigated via “ESTIMATE”,

“Cibersort” and single-sample geneset enrichment analysis (ssGSEA). Finally,

we constructed a 6-gene prognostic model by lasso-cox regression and

subsequently integrated clinical features to construct a prognostic nomogram.

Results: Our analysis indicated stable but distinct mechanism of action of

necroptosis in DLBCL. Based on necroptosis-related genes and cluster-

associated genes, we identified three groups of patients with significant

differences in prognosis, TME, and chemotherapy drug sensitivity. Analysis of

immune infiltration in the TME showed that cluster 1, which displayed the best

prognosis, was significantly infiltrated by natural killer T cells, dendritic cells,

CD8+ T cells, and M1 macrophages. Cluster 3 presented M2 macrophage

infiltration and the worst prognosis. Importantly, the prognostic model

successfully differentiated high-risk from low-risk patients, and could

forecast the survival of DLBCL patients. And the constructed nomogram

demonstrated a remarkable capacity to forecast the survival time of DLBCL

patients after incorporating predictive clinical characteristics.
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Conclusion: The different patterns of necroptosis explain its role in regulating

the immune microenvironment of DLBCL and the response to R-CHOP

treatment. Systematic assessment of necroptosis patterns in patients with

DLBCL will help us understand the characteristics of tumor

microenvironment cell infiltration and aid in the development of tailored

therapy regimens.

KEYWORDS

diffuse large B-cell lymphoma, necroptosis, prognosis, TME, immunization

Introduction

DLBCL is an aggressive form of lymphoma that accounts for

roughly 33 percent of all non-Hodgkin lymphomas (NHL)

diagnosed each year (Liu and Barta, 2019; Siegel et al., 2019).

Approximately two-thirds of patients with DLBCL are alleviated

by the standard R-CHOP regimen that includes rituximab,

cyclophosphamide, adriamycin, vincristine, and prednisolone.

However, approximately one-third of patients present

unsatisfactory results with this treatment; hence, long-term

remission is achieved only in a small number of patients,

implying that novel molecular targets for DLBCL therapy are

urgently needed, implying that novel molecular indicators for the

therapy of DLBCL patients are desperately needed (Coiffier et al.,

2010; Sehn and Gascoyne, 2015).

Necroptosis is a new kind of programmed cell death that

combines apoptosis with necrosis. It is primarily mediated by

receptor-interacting protein kinase 1 (RIPK1), receptor-

interacting protein kinase 3 (RIPK3), and mixed lineage

kinase domain-like pseudokinase (MLKL) (Degterev et al.,

2008; Pasparakis and Vandenabeele, 2015). Currently,

necroptosis is found to be closely associated with tumors, and

this relationship is two-sided. On the one hand, it can act as a

programmed cell death to inhibit tumorigenesis and

development; on the other hand, necroptosis can activate pro-

inflammatory signals that strengthen cancer cells’ proliferation

andmetastasis and enhance their invasiveness (McCormick et al.,

2016; Strilic et al., 2016). One study found that in

RIPK3 knockout mice, unregulated activation of some

signaling pathways, such as the NF-kB and Wnt-β-catenin
protein pathways, enhanced the capacity of intestinal

epithelial cells (IEC) to multiply abnormally in a continuous

inflammatory microenvironment, hence accelerating colorectal

carcinogenesis (Bozec et al., 2016); Feng X et al. discovered that

patients of colorectal cancer with low RIP3 expression had a

lower overall survival (OS) and progression-free survival (PFS)

than those that expressed high level of RIP3, insinuating that

RIPK3 as a predictor of survival (Feng et al., 2015). Subsequent

in vitro experiments demonstrated that overexpression of

RIP3 significantly stunted the proliferation of cancer cells;

similar to the above reports, Ertao et al. (2016), Sun et al.

(2019) found that the down-regulation of MLKL was

significantly associated with reduced OS in gastric cancer

(GC) patients, implying that MLKL expression may be an

independent predictive indicator for GC patients.

Furthermore, Sun W et al. held that activated MLKL

compromises the integrity of the cancer cell membrane,

resulting in the discharge of intracellular pro-inflammatory

molecules that could exert anti-tumor effects. Thus, by

blocking MLKL-mediated necroptosis, gastric cancer cells

might maintain tumor cell growth (Sun et al., 2019). In

cancer cells, many critical molecules related with necroptosis

are negatively regulated, raising the possibility that cancer cells

may be able to resist necroptosis and hence survive. All

malignancies, on the other hand, did not show

downregulation of necroptosis-related molecules. In

glioblastoma patients, increased RIP1 expression hindered

p53 induction through activating the NF-κB pathway, and this

upregulation was linked with a worse prognosis in this group of

patients (Park et al., 2009). Necroptosis can also be involved in

the tumor microenvironment to influence cancer progression.

Seifert L et al. found in pancreatic ductal adenocarcinoma (PDA)

that RIP3 downregulation in vivo did not promote tumor

progression. Further studies found that RIP3 deletion induced

an immunosuppressive tumor microenvironment with reduced

infiltration of TAM and its M2-like Arg1+CD206+ subset, and

meanwhile found that the lymphocyte infiltration in PDA

increased. The microenvironment mediated by RIP3 deletion

could suppress tumors (Seifert et al., 2016). Whereas alterations

in the expression of these necroptotic molecules might cause

changes in human immune surveillance against cancer. It was

discovered that RIPK3 regulated NKT cell activity and promoted

the generation of antitumor immune responses by these cells.

The expression of RIPK1 and the activation of NF-κB were

critical for the induction of CD8+ T cell adaptive immunity

(Newton et al., 2004; Yatim et al., 2015; Gong et al., 2019). This

suggested that necroptosis might alter the expression of immune

molecules in the microenvironment to affect cancer cell survival.

Changes in necroptosis-related molecules have been found

not only in solid tumors but also in hematologic tumors.

Höckendorf U et al. found in acute myeloid leukemia mice

that cell death induced by RIPK3 and the release of

interleukin-1b (IL-1b) which was mediated by inflammasome,

limited myeloid leukemogenesis via eliminating transformed

Frontiers in Genetics frontiersin.org02

Pan et al. 10.3389/fgene.2022.911443

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.911443


cells and promoting differentiation of leukemia-initiating cells

(Höckendorf et al., 2016); furthermore in the clinical

125 observed patients in chronic lymphocytic leukemia (CLL)

found that the group of patients with low expression of the

CYLD, which is a key mediator molecule in the necroptosis

process, had a worse prognosis. This showed that CYLD might

exert a critical role in the progression of CLL (Wu et al., 2014).

Nonetheless, in DLBCL, it remains to be further discussed

whether and how necroptosis is involved in tumorigenesis

development. Therefore, in the study, we analyzed DLBCL

transcriptomic data to investigate the role of necroptosis in

DLBCL. We looked into the mode of necroptosis in DLBCL

and its relationship with the prognosis of DLBCL. And we

specifically focused on its effect on the immune

microenvironment of DLCBL. Our findings may add to our

understanding of the role of necroptosis in malignancies and

provide new information for the cure of DLBCL.

Materials and methods

Data download and processing

The datas in this study were from public GEO databases. We

first searched by the search term “Diffuse large B cell lymphoma”,

and then by the restrictions 1) Organisms were restricted to

“Homo sapiens”; 2) “Expression profiling by array”was the study

type that we confined; 3) Sample counts >200; 4) Complete

survival information; 5) Treatment with RCHOP regimen, and

we finally included three datasets, GSE31312, GSE181063, and

GSE10846. In addition, the dataset GSE31312 has the

information about the treatment response assessment, where

CR means complete remission, PR means partial remission, SD

means stable disease, and PD stands for progressive disease.

We utilized the robust multiarray average (RMA) method to

normalize the data after downloading the raw CEL files. And we

used the “normalizebetweenarrays” function of the “limma”

package to remove batch effect. After that, we cleaned the

data even further, and the following criteria were employed in

the data cleaning process for all three datasets: 1) data without

complete survival time and survival status were excluded; 2) to

ensure that death was due to tumor as much as possible, we

excluded data with overall survival time <30 days; 3) to ensure

comparability of patients, we excluded data treated with non-

RCHOP regimens. Considering that GSE31312 covered the

richest clinical information, we used it as the dataset for our

main analysis, and to further perform data cleaning, we excluded

sample with missing “IPI score”, “GEP” information in

GSE31312. Finally, GSE31312 included 421 patients with

DLBCL, GSE181063 included 598 patients, and

GSE10846 included 233 patients. Considering batch effects,

combining datasets may cause unnecessary bias, so we kept

the data independent.

Identification of DLBCL-associated
necroptosis-related clusters

We collected 67 necroptosis-associated genes through “GOBP-

NECROPTOTIC-SIGNALING -PATHWAY” and previous

studies (Supplementary Material S1) (Zhao et al., 2021). The

“GOBP-NECROPTOTIC-SIGNALING-PATHWAY” came from

MSigDB (Molecular Signatures Database v7.4). First, we screened

necroptosis-related genes with prognostic significance in the

GSE31312 dataset by univariate cox regression, and genes with

p < 0.05 were considered as DLBCL-associated necroptosis-related

genes and included in the subsequent analysis. Subsequently,

clustering analysis was performed in the GSE31312 dataset using

the R package “ConsensusClusterPlus” (Wilkerson and Hayes,

2010) based on the expression of the above included genes.

Resampling was performed 1000 times to ensure classification

reliability. The clinical correlation study was carried out based

on the clusters that had been identified. We used the survivfit

function of the R package “survival” to analyze the prognostic

differences among the three groups, and used the logrank test

method to evaluate the significance of the prognostic differences

between different groups of samples. And the proportion of cluster

treatment response among different clusters was presented in the

stacked histogram. The R package“gglluvial” was used to visualize

the relationship between the three clusters and IPI as well as GEP

type, and we used Pearson chi square to test the above data.

Immune infiltration analysis

We first collected “NK cell mediated cytotoxicity” and “T cell

receptor signaling pathway” from MSigDB (Molecular Signatures

Database v7.4) and scored each patient in GSE31312 using ssGSEA.

Subsequently, we analyzed the patients according to necroptosis-

related clusters, and compared the differences of the above pathways

between the groups, which were presented in the form of box plots.

After that, we tapped into the R package “ESTIMATE”

(Yoshihara et al., 2013) to assess the “immune score”,

“stromal score” and “tumor purity” of the different clusters.

We conducted Kruskal-Wallis test on the three groups and

adopted Wilcox test between the two groups to evaluate the

significance of the results. What’s more, the differences between

individual immune cells in different clusters were evaluated by

both the “Cibersort” and “ssGSEA” methods. The B cells and

associated cells were removed from the above two analyses in

order to rule out relevant influence.

Identification of differential expression
genes in necroptosis-related clusters

The R package “limma” was utilized to find differential genes

among different clusters, and genes that met “adj.p < 0.001” as
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well as “log FC = 0” were considered differentially significant for

subsequent analysis. After completing the analysis of variance for

all combinations, we took the intersection of the obtained results

and showed them in the form of a Venn diagram. The similar

method has been used to explore related genes in previously

published article (Zhang et al., 2020).

We carried out a secondary clustering analysis on the

GSE31312 dataset using the R package “ConsensusClusterPlus”

based on the intersected differential genes, and resampled

1000 times to ensure classification reliability. Thereafter, we

made on PCA analysis on the three clusters to visualize the

differences in expression patterns among the three clusters.

Similarly, we performed survival analysis on the three clusters

to determine differences in patient prognosis between clusters to

verify necroptotic functional cluster stability. We then integrated

clinical characteristics including Gender, IPI, GEP, and treatment

response to demonstrate the differences in gene expression and

clinical characteristics among the three clusters in a heat map.

Construction and validation of a gene
prognostic model and the evaluation of
prognostic performance

We first applied the univariate Cox regression analysis to

screen the cluster-related differential genes with prognostic

significance in the GSE31312 dataset with p < 0.05 as the

standard. Following that, we exploited Lasso-penalized Cox

regression analysis to further screen for necroptosis-related

genes with the greatest predictive performance and made use

of these genes to build a risk score model. Multivariate Cox

regression was adopted to further identify independent

predictors and calculate regression coefficients. After collecting

regression coefficients about every necroptosis-related gene that

was significant to prognosis, using the following formula, we

derived a risk score for each patient based on the expression of

each gene (Carreras et al., 2020):

Risk score � [(Expgene1 × coefficientgene1)

+ (Expgene2 × coefficientgene2)

+ − + (ExpgeneN × coefficientgeneN)]

The best cut-off value was calculated using the “survminer”

package, and patients were separated into high and low groups

based on this value. The Kaplan-Meier curves (Ranstam and

Cook, 2017)were done to compare the OS of patients in both risk

categories and the Time-ROC analysis (Kamarudin et al., 2017)

was performed to determine the predictive potential of the

model. The regression coefficients produced from

GSE31312 were then applied to the test dataset,

GSE181063 and GSE10846, which included entire clinical

information, in order to level the risk scores of patients for

external validation.

In view of the clinical characteristics, we integrated the

genetic prognostic model grouping with clinical characteristics

consisting of gender, IPI, GEP and treatment response, and

performed lasso regression, and further selected the prognostic

factors by stepwise regression based on the “lambda.min” value,

and chose the final model based on the minimum AIC value. The

final parameters obtained from the above analysis were used to

construct prognostic line plots to forecast the OS of DLBCL

patients at 1, 3, 5 and 7 years, and the stability of the model was

appraised by time-ROC and calibration curve.

Results

Schematic Diagram of the Overall Flow of
the study

Figure 1 is the workflow chart of this study, which basically

describes the process of this study. First, we screened 17 genes

through univariate cox expression analysis in the study. Based on

these genes, cluster analysis was carried out to obtain cluster 1, 2 and

3. And then we carried out clinical survival analysis and clinical

characteristics analysis on the three clusters.We found that the three

groups had heterogeneity in clinical characteristics. So we then

analyzed the TME of the three clusters (Figure 1A). In order to

screen potentially necroptosis-related genes, we took the intersection

of the obtained results through completing the analysis of variance

for all combinations in the necroptosis-related clusters. And we

performed secondary cluster analysis to obtain cluster A, B and C,

and then performed survival analysis on the cluster A, B and C

(Figure 1B). Through lasso penalized Cox analysis, 6 prognostic

genes were included. Patients were divided into high-risk and low-

risk groups according to these genes, and ROC time analysis was

carried out. Finally, the clinical prognostic model was constructed,

and the predictive nomogram was constructed and verified, and the

calibration curve was analyzed (Figure 1C).

Necroptosis-related clusters identified in
DLBCL

Firstly, 67 necroptotic genes were collected based on previous

studies (Zhao et al., 2021), and necroptotic genes associated with

DLBCL prognosis were screened using univariate cox regression

analysis, whose resulte showed in the Supplementary Material S1,

and genes with p-values less than 0.05 were deemed statistically

significant. The final 17 DLBCL-related necroptotic genes were

screened for the follow-up study. We regarded this group of genes

as DLBCL-associated necroptosis-related genes, and the genes with

risk ratio less than 1 were USP22, TNFRSF21, TNF, PANX1,

MAP3K7, KLF9, IDH1, CYLD, BRAF, and ATRX. We believed

that they were potential protective genes. TARDBP, SLC39A7,

RNF31, MYC, EGFR, CASP8 and BCL2 were potential risk genes
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(Figure 2A). According to previous studies, necroptosis had two

sides in tumor (McCormick et al., 2016; Strilic et al., 2016),

suggesting that necroptosis may also be heterogeneous in

DLBCL. In the dataset GSE31312, we used the R package

“ConsensusClusterPlus” to cluster 421 patients according to the

expression of 17 DLBCL-associated necroptosis-related genes in

DLBCL, and for the classification’s reliability, 1000 resamplings

were conducted. Finally, three distinctly different clusters, clusters

1, 2 and 3, were determined. Cluster 1 has 198 patients, cluster

2 has 94 patients, and cluster 3 has 129 patients (Supplementary

Figure S1A). We further compared the expression of these

17 DLBCL-related necroptotic genes in three clusters. Most

potential protective genes were highly expressed in cluster 1,

while most potential risk genes were highly expressed in cluster

3 (Supplementary Figures S2D,E). This suggests that cluster 1 may

be related to good clinical features and prognosis, while cluster 3 is

the opposite. We then compared the prognosis of patients in these

three clusters. Cluster 1 had the best prognosis, followed by cluster

2, and cluster 3 had the worst prognosis, indicating that

necroptosis may have different modes of action in DLBCL

(Figure 2B). Considering that the patients in GSE31312 were all

treated with the same RCHOP regimen, the response to the

regimen was directly related to the prognosis, so we analyzed

the prognosis of the three clusters in which patients’ response to

RCHOP regimen treatment was found. The results showed that

cluster 1 had the best response to R-CHOP treatment and had the

highest CR rate, followed by cluster 2, while patients in cluster 3,

who had the poorest prognosis, had the lowest CR rate. In contrast,

the rate of patients with progressive disease (PD) after RCHOP

treatment reflected an opposite trend, implying that necroptosis

may be associated with RCHOP treatment sensitivity, and drug

resistance (Figure 2C).

FIGURE 1
Schematic Diagram of the Overall Flow of the Study. (A) Identification of DLBCL-associated necroptosis-related clusters and immune
infiltration analysis. (B) Identification of differential expression genes in necroptosis-related clusters. (C) Construction and validation of a gene
prognostic model and the evaluation of prognostic performance.
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To visualize the relationship between the three clusters and

IPI as well as GEP type, we used the package “gglluvial”

(Brunson, 2020) to visualize three. And we used Pearson chi

square to test the above data. The results showed that the

asymptotic significance was less than 0.05, indicating that

cluster 1 had the highest proportion of patients with low IPI

as well as GCB type among the three clusters (Supplementary

Material S4). The results indicated that cluster 1’s possess low IPI

scores and GCB type; it has been reported that the prognosis of

GCB type is superior to ABC type (Schmitz et al., 2018). This

illustrates that cluster 1is associated with favorable survival

characteristics (Figure 2D).

Evaluation of TME

The difference in prognosis suggests that there may be

significant heterogeneity between our necroptosis-related

clusters, so we first scored the necroptosis of the three clusters

through “ssGSEA”, which depicted that cluster 1 had the highest

score, cluster 3 the second-highest, and cluster 2 the lowest

(Figure 3A). This differs from the prognostic trend, with the

best prognosis cluster 1 having the highest level of necroptosis

and the worst prognosis cluster 3 scoring higher than cluster 2,

explaining that necroptosis might exert a “two-sided” function in

DLBCL. The tumor microenvironment (TME) is mainly

composed of tumor cells, surrounding immune and

inflammatory cells, tumor-related fibroblasts, and nearby

interstitial tissues, microtubules, as well as various cell factors

and chemokines. It is a complex integrated system, which can be

divided into immune microenvironment dominated by immune

cells and immune microenvironment dominated by fibroblasts

(Fu et al., 2021). Earlier studies have shown that necroptosis is

linked to TME, and we speculated that the heterogeneity of

necroptosis in DLBCL was correlated with its involvement in

influencing the tumor microenvironment. Subsequently, we

analyzed the differential profile of several immune-related

pathways among the three clusters. The results reflect, for

example, that the NK cell mediated cytotoxicity, T cell

receptor signaling pathway was significantly activated in

FIGURE 2
Identification of necroptosis-related clusters and clinical correlation analysis. (A) Risk ratios of 17 DLBCL prognosis-related necroptosis genes.
Vertical coordinate is gene name, and horizontal coordinate represents risk ratio. Right side is p-value range symbolizing that the lighter the color,
the larger the p-value. (B) Kaplan-Meier plots showing the prognosis of three necroptosis patterns in 421 patients from GSE31312. Blue line
represents cluster 1, red cluster 2, and green cluster 3. Cluster 1 has the best prognosis. (C) Response of patients in the three clusters to RCHOP
regimen treatment, with the vertical axis as a percentage. Red represents CR, yellow PR, green SD, and pink PD. (D) Alluvial is used to observe the
relationship between cluster 1, cluster 2, and cluster 3 with IPI and GEP type. The red part of the middle bar represents cluster 1, pink cluster 2, and
green cluster 3. “L_M”means low-intemediate, and “H_M” means high-intemediate.
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FIGURE 3
Differences in TME between the three necroptosis-related clusters (Cluster 1, Cluster 2 and Cluster 3). (A) Differences in necroptosis scores
between the three clusters. (B) Differences in immune score. (C) Differences in stromal score between the three clusters; (D) Differences in tumor
purity between the three clusters. (E,F)Cibersort was used to assess the infiltration of 19 immune cell types. (E)Overall infiltration of 19 immune cells.
(F)Differences in 19 immune cells between the three clusters. Nsmeans “not statistically significant”; *p < 0.05; **p < 0.01; ***p < 0.001; ****p <
0.0001 (all significance designations that appear in this paper are minor criteria).
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cluster 1 (Supplementary Figure S1B). Chances were that the

immune microenvironment differed between different

necroptosis-related clusters.

To give an insight into the immune microenvironment, we

first valued the immune, stromal, and tumor purity between the

three clusters by “ESTIMATE”. As shown in Figure 2B, Cluster

1 had the highest immune score, and there was no statistically

significant difference between clusters 2 and 3 (Figure 3B); as to

the stromal score, cluster 1 had the highest stromal score,

followed by cluster 2, and cluster 3 had the lowest stromal

score (Figure 3C); cluster 1 had the lowest tumor purity, and

there was no significant difference in tumor purity between

cluster 2 and cluster 3 (Figure 3D). These data showed that

the immunological microenvironment of the three clusters varied

significantly, and we then employed the “Cibersort” package to

further analyze the differences in immune cell composition

among the three clusters. For the purpose of avoiding

unneeded interference, we eliminated B cells and associated

immune cells from the investigation. We first analyzed the

proportion of 19 immune cells in the DLBCL patient

population, and found that T cell follicular helper was the

highest, followed by T cell CD4 memory resting, and

Macrophages-M2 was the third (Figure 3E). Supplementary

Figure S1C shows the different proportion of immune cells

infiltrated in each patient. Next, we compared the differences

in the immune components of the three clusters, and we focused

on the aforementioned cells, and the results indicated that

compared with other clusters, cluster 1 had the highest

relative proportion in T cells CD4 memory resting, T cells

CD4 memory activated, and Macrophages-M1, while

cluster3 with the worst prognosis had the highest relative

proportion in Macrophages-M2. For T cell follicular helper, it

was different from the above cells and inconsistent with the trend

of prognosis. Cluster 2 was the highest, cluster 3 was the second

and cluster 1 was the lowest (Figure 3F).

In order to more rigorously evaluate the immune infiltration,

we analyzed the abundance of different immune cells infiltration

using “ssGSEA”. What we discovered was that cluster1 displayed

a high level of adaptive immune activation, such as CD8+ T cells

as well as CD4+ T cells infiltrated abundantly; meanwhile, in the

three clusters, the level of infiltration of many immune cells,

including T cells CD4 memory activated, NK T cells, and NK

cells, was consistent with the prognostic trend, manifesting the

highest level of infiltration in cluster 1, followed by cluster 2, and

the lowest in cluster 3 (Figure 4A); it was clear that we could

notice differences in immune infiltration between the three

clusters, and we also evaluated differences in antigen

presentation mechanism (APM), which was shown to

correlate with T cell infiltration scores (Şenbabaoğlu et al.,

2016) and CD8+ T cell effector. The results showed that

cluster 1 attained a higher activation level than the other two

clusters, which verified the high level of immune infiltration in

cluster 1 (Figures 3B,C); in addition, we also noted that cluster

2 achieved the highest level of expression in mast cells,

cluster1 got the lower level and cluster3 had the lowest. The

above findings point towards the idea that necroptosis may have

a heterogeneous effect on the immune microenvironment

shaping of DLBCL among different functional clusters.

To further explore the correlation between immune cells and

genes, we analyzed the correlation between M1, M2,CD8+T cells

and 8 classical pathway molecules of necroptosis, as well as

6 modelled genes screened subsequently. The results showed

that M1 cells were positively correlated with FAS, MLKL, RIPK1,

RIPK3 and ACTB; M2 cells associated with poor prognosis were

negatively correlated with SNRPD2,PAICS (Supplementary

Figure S2B).

Identification of differentially expressed
genes in necroptosis-related clusters

By taking the intersection of differentially expressed genes

among the groups, we finally obtained 155 necroptosis-related

cluster-associated genes (Figure 5A). We then carried out

secondary clustering of GSE31312 based on these 155 genes

and again obtained three clusters A, B, C, with 178 people in

cluster A, 173 in cluster B, and 70 in cluster C (Supplementary

Figure S1D). PCA analysis exhibited significant differences

among the three clusters, and subsequent survival analysis

observed similar survival differences to those of the

necroptosis-related clusters (cluster 1, cluster 2, and cluster 3)

— patients in cluster A had the best prognosis of the three, and

cluster B had a better prognosis than cluster C (Figures 5B,C). A

heat map of 155 genes suggested significantly different

expression patterns among patients in the three clusters

(Figure 5D). Among them, the expression patterns of Cluster

A and Cluster C were almost opposite, and the genes with

significantly elevated expression in Cluster A were mostly

downregulated in Cluster C. We also analyzed the expression

of 8 classical pathway genes of necroptosis among the three

clusters, and we found that there was still significant inter-cluster

heterogeneity. Most of the genes were expressed highest in cluster

A and lowest in cluster C. It could be seen in Supplementary

Figure S1E that TLR3, in contrast to the prognostic trend,

experienced a gradual increase in expression level in the three

clusters of A, B and C. Hence, we think that there may be stable

differences in the mode of action of necroptosis in DLBCL.

Prognostic model construction of
necroptosis-related genes

The study included 421 patients from the training dataset

GSE31312.74 prognosis-related cluster differential genes were first

screened by univariate cox regression and then further selected by

Lasso-penalized Cox analysis. Eventually, 6 prognosis genes were
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included and their regression coefficients—FSTL4, ACTB,

SNRPD2, WHSC1L1, PAICS, and CLTC—were calculated.

From the forest plot, FSTL4, SNRPD2 and PAICS could be

potential oncogenes, while ACTB, WHSC1L1, and CLTC were

thought as protective genes (Figure 6A). Next, each patient’s risk

score was computed using the following formula:

[(Exp FSTL4 × (0.807) + (Exp ACTB × (−0.474) + Exp

SNRPD2 × (0.579) + Exp WHSC1L1 × (−0.26) + Exp PAICS ×

(0.207) + Exp CLTC × (−0.239)]. GSE31312 patients were classified

into two groups according to their best cut-off values. The low-risk

group had much superior OS than the high-risk group, as seen by

Kaplan-Meier survival curves. (Figure 6B). The risk score was

significantly connected with prognosis. As the score increased,

the mortality rate of patients jumped (Figures 6C,D). We then

evaluated the differential expression of 6 genes in the two risk

groups and found that the expression of FSTL4, SNRPD2 and

PAICS grew in the high-risk group, while the expression of ACTB,

WHSC1L1 and CLTCwent up in the low-risk group, which further

confirmed the reliability of the selected prognostic genes

(Figure 6E). In order to further verify the reliability of the genes

we screened, we evaluated the differential expression of the 6 genes

in clusters 1, 2 and 3. The results showed that SNRPD2 and PAICS,

FIGURE 4
SsGSEA assessment of immune infiltration in three necroptosis-associated clusters (Cluster 1, Cluster 2 and Cluster 3). (A) Differences in the
abundance of 21 infiltrating immune cells in the three necroptosis-related clusters, with Cluster 1 in blue, Cluster 2 in red and Cluster 3 in green. (B)
Differences in CD8+ T cell effector scores between the three necroptosis-related clusters. (C) Differences in antigen presenting machinery scores
between three necroptosis-related clusters.
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which represents poor prognosis in, creased in cluster3, while

fstl4 had the lowest expression in cluster1 group with good

prognosis. Besides, the expression of ACTB, WHSC1L1, and

CLTC, which represent good prognosis, increased in cluster 1,

further confirming the reliability of the screened prognostic genes

(Supplementary Figure S2A). We then integrated the expression of

necroptosis-related genes, the expression of 6 prognostic genes, and

risk score data to construct a correlation matrix, as shown in

Supplementary Figure S1F, 6 prognostic genes were firmly linked

with the classical pathwaymolecules of necroptosis. Besides, ACTB,

and FSTL4 showed a completely opposite relationship. FSTL4 was

positively linked to FAD, FASLG, and TLR3, and negatively

connected with FAS, MLKL, RIPK1, and RIPK3, while ACTB

had a positive correlation with FAS,MLKL, RIPK1, and RIPK3, and

inverse relation to TLR3 and FASLG. Consequently, we have reason

to conjecture that ACTB and FSTL4 are mutually antagonistic

necroptosis-related genes (Supplementary Figure S1F). The time-

ROC curves depicted that the AUC of OS predicted by the genetic

prognostic model was 0.74, 0.72, 0.71, and 0.74 at 1, 3, 5 and 7 years

respectively, which were all greater than 0.7, demonstrating the

good prognostic ability of themodel (Figure 6F).As presented in the

Kaplan Meier curves in the two external validation sets

GSE10846 and GSE181063, compared to the low-risk group, the

prognosis for the high-risk group wasmuch poorer. (Figures 7A,B),

suggesting that the model was stable.

Construction and validation of a predicted
nomogram

Considering the excellent predictive prognostic ability of

gene models, we further explored their role in clinical

applications. We included several clinical features that were

routinely considered prognostically significant in clinical

practice and were available. Based on the results of lasso

combined with stepwise analysis, we finally incorporated

necroptosis-related genetic model risk groups, GEP type,

RCHOP treatment response, and IPI scoring to construct a

FIGURE 5
(Continued).
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prognostic nomogram (Figure 7C). The C-index of the

nomogram was 0.840. And the Time-ROC analysis showed

that its AUCs for predicting OS at 1, 3, 5, and 7 years are

0.93, 0.87, 0.88, and 0.84, respectively (Figure 7D). According

to a further inspection of the calibration curve, the predicted OS

was generally consistent with the observed OS (Figure 7E). In

conclusion, the above results indicated that the nomogram was

successful in forecasting DLBCL patients’ survival time.

Discussion

DLBCL, the most prevalent kind of NHL, is a heterogeneous

group of diseases with varying biologic characteristics, clinical

manifestations, and therapeutic responses. While 2/3 of DLBCL

patients respond well to R-chop regimens, there is still a lack of

effective treatment for patients with secondary or partial primary

drug resistance. Therefore, it is essential to find new research

FIGURE 5
Cluster-related differentially expressed genes identification and secondary clustering. (A) Three circles represent the pairwise differentially
expressed genes results between clusters, the middle dark blue represents common intersection, containing 155 genes in total. (B) PCA shows the
differential situation of three differential gene related clusters. Blue dots represent cluster A, yellow dots cluster B, and red dots cluster C. (C) Survival
analysis of clusters related to differentially expressed genes. Blue represents cluster A, red cluster B, and green cluster C. Cluster A has the best
prognosis. (D) Heat map of 155 genes integrating clinical features, with yellow representing upregulated expression and blue indicating
downregulation.
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FIGURE 6
Construction and evaluation of a 6 necroptosis-related genes prognostic model. (A) Forest plot of 6 genes multivariate cox regression. (B)
Kaplan-Meier survival analysis for the training set (GSE31312). (C,D) Heat map of risk scores and survival status of 421 DLBCL patients in the training
dataset. (E) Differential expression of 6 modeled genes in the high and low risk groups in the training dataset, where red box represents high risk and
blue represents low risk. (F) A Time-ROC curve analysis of the signature in training dataset.

Frontiers in Genetics frontiersin.org12

Pan et al. 10.3389/fgene.2022.911443

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.911443


directions for DLBCL patients (Coiffier et al., 2010). Necroptosis,

as a combination of apoptosis and necrosis (Tang et al., 2020), is a

programmed cell death mediated mainly by RIPK1, RIPK3, and

MLKL (Pasparakis and Vandenabeele, 2015; Gong et al., 2019).

Currently, necroptosis has been found to be closely associated

with tumors, such as colorectal cancer (Feng et al., 2015; Bozec

et al., 2016), gastric cancer (Ertao et al., 2016; Sun et al., 2019),

glioblastoma (Park et al., 2009), and pancreatic ductal

adenocarcinoma (Seifert et al., 2016), whose involvement in

the tumor microenvironment to influence the development of

cancer has been demonstrated (Seifert et al., 2016). In addition,

necroptosis, reportedly, played a role in the development of

hematologic neoplasms. RIPK3 downregulation could

accelerate leukemogenesis in acute myeloid leukemia mice,

and afterward they found that RIPK3-mediated cell death

could curtail the production of myeloid leukemia via

eliminating transformed progenitor cells and promoting

differentiation of leukemia-initiating cells (Höckendorf et al.,

FIGURE 7
(Continued).
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2016); in a clinical cohort study, chronic lymphocytic leukemia

patients with low expression of the CYLD gene were observed to

have a worse prognosis; before that, CYLD was noticed to

interfere with several key tumor-associated signaling

pathways, particularly the NF-κB pathway, by regulating the

ubiquitination status of its components, and thus the low

expression of CYLD impaired the ability to inhibit CLL tumor

progression leading to a worse prognosis (Kovalenko et al., 2003;

Wu et al., 2014). Yet, in DLBCL, whether and how necrotic

apoptosis is involved in tumor development remains to be

investigated, so our work was aimed to elucidate the function

of necroptosis in DLBCL by analyzing DLBCL

transcriptomic data.

In our research, three different necroptosis-related clusters were

identified according to 17 necroptosis-related genes. We noted

significant prognostic differences between the different clusters.

The best prognosis was found in patients in cluster 1, while the

poorest prognosis was seen in those in cluster 3. This reflected that

heterogeneity may exist among the three clusters. Furthermore,

cluster 1 was shown to have a GCB phenotype and a low IPI

score compared to the other two clusters, which explained that cluster

1 may display favorable clinical characteristics. Following that, we re-

obtained new three clusters, Cluster A, Cluster B, and Cluster C,

based on the secondary clustering analysis of necroptosis-related

differential genes in the three clusters mentioned above. The survival

analysis results were similar to the first cluster analysis, and the

expression of classical molecules of necroptosis in the three clusters

was significantly heterogeneous, indicating that necroptosis may

indeed manifest itself in distinct patterns in DLBCL.

RCHOP is the primary therapy for DLBCL, and a patient’s

reaction to medications is directly tied to their prognosis (Tilly

et al., 2015). Our result of medication response is compatible with

the distinct prognostic aspects of each cluster; whereas the rate of

patients with PD showed an inverse tendency, suggesting that

necroptosis may mediate RCHOP treatment sensitivity and

resistance; in addition high necroptosis scores had lower

mortality in cluster 1 than in cluster 2, yet cluster 3 had a

higher mortality rate than cluster 2, which had the lowest

necroptosis score. This demonstrated that necroptosis

assumed a “double-edged sword” role in DLBCL.

The role of necroptosis in TME is increasingly recognized, as

the immune microenvironment it created was linked to the

development, metastasis, immunity and differentiation of many

tumors (Tang et al., 2020). Therefore, by analyzing the immune

infiltration of the three clusters, we noticed an abundant immune

microenvironment component and a lower percentage of tumor

cells in cluster 1while cluster 3 was opposite. Moreover, we

observed that cluster 1 had the highest abundance of NK

T cells, dendritic cells, and CD8+ T cells among the three

clusters by analyzing the immune components, and we noted

that cluster 1 had a high relative proportion of Macrophages M1.

Previously, necroptosis was found to promote the immunity of

NKT cells by increasing RIP3 gene expression and activating

PGAM5, which exerted a tumor suppressive function (Kang

et al., 2015). After that, Paul S et al. also found that activation

of NKT cells regulated the frequency of M1 macrophages and

Th1 cells effector in secondary lymphoid tissues, further stunting

tumor growth (Paul et al., 2019); reduced antigen presentation

turned out a mechanism of tumor immune escape including

inhibition of dendritic cell antigens, interference with antigen

processing and presentation, but necroptosis, by the release of

DAMPs, could activate dendritic cell releasing cytokines that

activate adaptive immune to suppress tumors (Pasparakis and

Vandenabeele, 2015; Jhunjhunwala et al., 2021). In addition,

FIGURE 7
(Continued). External validation of signature and predicted prognostic nomogram construction. (A,B) Kaplan-Meier survival analysis of the
external validation set, (A) GSE10846; (B) GSE181063. (C) Nomogram for predicting survival of DLBCL patients after 1, 3, 5 and 7 years (D) Time-
dependent ROC assessment of the ability of nomogram to predict survival after 1,3,5,7 years (E) Calibration plots of predicted nomogram.
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Rosenberg et al. found through exploratory translational analysis

that the gene expression of CD8 T cell effector was linked with PD-

L1 immunohistochemical expression on tumor-infiltrating

immune cells (Rosenberg et al., 2016). Thus we considered that

necroptosis in cluster 1 acted as a tumor suppressor in DLBCL

relying on inducing enhanced activation and infiltration of the

immune component for improved prognosis, and analysis of APM

and CD8+ T cell effector indicated that cluster 1 may be responsive

to anti-PD-1/PDL-1 therapy. We also noted in particular that in

cluster 1 high levels of NK cell infiltration, and numerous

experiments demonstrated that NK cells functioned effectively

in fighting transformed and malignant cells (Hodgins et al., 2019),

and in a clinical study by low NK cell counts could contributed to

impaired R-CHOP response and increased risk of cancer

recurrence Zare et al. (2020). In our analysis, patients in cluster

1 had the best therapeutic response to RCHOP, while patients in

the other two clusters with less NK cell infiltration than cluster

1 had a worse therapeutic response. Therefore, it was reasonable to

guess that necroptosis-induced high NK cell infiltration might

potentially impact the responsiveness of R-chop treatment in

individuals with DLBCL.

M2 macrophage was found to promote tumor cell survival,

invasion, metastasis and angiogenesis, and their increased

numbers gave rise to poor prognosis in patients (Pollard, 2004;

Najafi et al., 2019). Some investigators found in patients with rectal

cancer a potential link to increased tumor resistance to anticancer

drugs by M2 (Lan et al., 2021). Such a prognostic relationship was

seen in malignant lymphoma as well. Nam SJ, et al. found in a

retrospective study of patients with follicular lymphoma that

Tumor-associated macrophage (TAM) was observed at higher

levels in the poor prognosis group than in the good prognosis

group, suggesting that the downregulation of genes associated with

macrophage activity in the mRNA transcriptome predicted a

favorable outcome. What’s more, such TAM had a phenotype

and function that was similar to that of M2 macrophage (Nam

et al., 2016). The team subsequently identified M2 in DLBCL as a

possible significant predictor of poor patient prognosis (Nam et al.,

2018). In our study, we found that the cluster 3 with the worst

prognosis possessed the highest M2 infiltration, on the one hand

further confirming that M2 took a negative role in the

microenvironment of DLBCL, and on the other hand, notably,

necroptosis in the cluster 3 characterized by relatively high levels of

necroptosis seemed to play a role in contrast to cluster 1 which

induced inhibition of the tumor microenvironment. Targeting

TAM therapy including repolarization of TAM from M2 to

M1 phenotype was gaining attention (Zheng et al., 2017) and

in our study we found different levels of M1/M2 cell infiltration in

different necroptotic functional clusters, and targeting necroptosis

to induce M2 to M1 could be a promising therapeutic idea.

Meanwhile, we found the lowest abundance of mast cell

infiltration in cluster 3 and the highest in cluster 2. Mast cells

were reported to suppress immunity and promote tumor growth

by releasing pro-angiogenic cytokines, interleukins and other

cells in DLBCL patients, but previous studies showed that mast

cell infiltration was a favorable prognostic factor in DLBCL

(Hedström et al., 2007; Marinaccio et al., 2016). We believed

that there was a certain association between mast cells and the

reason why high levels of necroptosis in cluster 3 did not bring

better survival than cluster 2. In other words, appropriate levels

of mast cells could exert a positive effect in the TME

microenvironment of DLBCL patients towards a good

prognosis, while too high or too low levels of mast cells may

play the opposite role. Notwithstanding this role in TME of

DLBCL was not clear, it would a direction of our future research

that deserved attention.

We also found that necroptosis-related genes were dependable

predictors of prognosis. Our study identified six potential necroptosis

genes of prognostic value, among which the ACTB-FSTL4

antagonistic relationship might be related to the mode of action

of necroptosis in DLBCL, for patients with high expression of ACTB

possessed a better prognosis, while upregulation of FSTL4 tended to

indicate a poor prognosis. Previously, ACTB, in head and neck

squamous carcinoma (HNSCC) and other cancers, was found to

impact tumor metastasis as well as tumor invasion through NF-κB
and Wnt-β-catenin protein pathways (Frontelo et al., 1998; Rubie

et al., 2005; Popow et al., 2006); Wright A et al. reported that CYLD

could limit the persistent activation of NF-κB signaling by

deubiquitinating RIPK1, thus activating necroptosis-related

pathways (Wright et al., 2007; Gong et al., 2019). Nonetheless,

whether ACTB is engaged in the activation or inhibition of the

necroptosis pathway in DLBCL by influencing RIPK1-mediated

changes in the NF-κB pathway has not yet been investigated, and

this is a direction worth exploring. Meanwhile, the 6 necroptosis-

related gene prognostic model could successfully differentiate

between high- and low-risk individuals of DLBCL. Such

differences were validated in an external independent validation

set, proving that themodel was reliable. Further integration of clinical

features could further appreciate the prognostic significance of the

model, and the predictive prognostic nomogram constructed after

combining with prognosis-related clinical features could effectively

achieve individualized risk assessment.

However, our study has shortcomings. First, our study is based

on a public database and lacks further validation of an independent

prognostic cohort, and we included patients with baseline data

prior to RCHOP treatment, and whether necroptosis is involved in

tumor killing by the RCHOP regimen remains to be further

investigated. Furthermore, the role of necroptosis in DLBCL

still needs to be validated by further experiments.

Conclusion

In summary, our study found different modes of action of

necroptosis in DLCBL, especially in the impact on TME. Clusters

that induced abundant immune cell infiltration had a better

prognosis, whereas clusters with a poorer immune
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microenvironment component had a worse prognosis. Increased

necroptosis-inducedNK cell infiltration promised a better response

to RCHOP treatment, while increased induction of M2 cell

infiltration indicated a potential poor prognostic factor. The

position of necroptosis in DLBCL could not be ignored, and a

proper understanding of its role remained a worthwhile direction

for our future studies. Systematic assessment of necroptosis patterns

in DLBCL patients will facilitate our understanding of the cellular

infiltration characteristics of the tumor microenvironment and the

establishment of personalized therapy for DLBCL patients.
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