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Spatial transcriptomics is an emerging technology widely applied to the

analyses of tissue architecture and corresponding biological functions.

Substantial computational methods have been developed for analyzing

spatial transcriptomics data. These methods generate embeddings from

gene expression and spatial locations for spot clustering or tissue

architecture segmentation. Although the hyperparameters used to produce

an embedding can be tuned for a given training set, a fixed embedding has

variable performance from case to case due to data distributions. Therefore,

selecting an effective embedding for new data in advance would be useful. For

this purpose, we developed an embedding evaluation method named message

passing-Moran’s I with maximum filtering (MP-MIM), which combines message

passing-based embedding transformation with spatial autocorrelation analysis.

We applied a graph convolution to aggregate spatial transcriptomics data and

employed global Moran’s I to measure spatial autocorrelation and select the

most effective embedding to infer tissue architecture. Sixteen spatial

transcriptomics samples generated from the human brain were used to

validate our method. The results show that MP-MIM can accurately identify

high-quality embeddings that produce a high correlation between the

predicted tissue architecture and the ground truth. Overall, our study

provides a novel method to select embeddings for new test data and

enhance the usability of deep learning tools for spatial transcriptome analyses.
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Introduction

Spatial transcriptomics is a method for profiling the

transcriptome of tissues within the spatial context. The method

combines spatial information and tissue morphology with the

transcriptional profiles of individual cells/spots in the tissue. This

novel method is gaining ground through the 10x Genomics Visium

(Stahl et al., 2016; Asp et al., 2019; Burgess, 2019) to characterize

tissue architecture, which provides a basis for studying spatial

heterogeneity and the underlying biological process. This research

direction includes discovering tissue architecture, inferring cell types,

detecting spatially variable genes, and explaining biological

mechanisms by using spatial transcriptomics data (Svensson et al.,

2018; Queen et al., 2019).

Several methods have been proposed for spatial transcriptome

analysis. SpaGCN (Hu et al., 2021) and stLearn (Pham et al., 2020)

are deep learning models used to identify tissue architecture.

BayesSpace (Zhao et al., 2020) employs a Bayesian approach for

spot clustering analysis by imposing prior knowledge. Giotto (Dries

et al., 2019) applied graph-based clustering methods for

characterizing tissue spatial organization and data visualization.

RESEPT (Chang et al., 2021) provides a deep learning framework

for characterizing and visualizing the tissue architecture by

reconstructing and segmenting a transcriptome-mapped RGB

(red, green, and blue) image. These tools can be used to analyze

and visualize many spatial transcriptomics data for developing new

hypotheses, such as linking tissue architecture with biological

functions. These methods typically use generative embeddings for

performing different tasks of downstream analyses. Rich features are

learned and converted into embedding values by deep learning

models using both gene expressions and spatial location information.

Among these spatial transcriptome analyses, graph neural

networks (GNNs) (Wu et al., 2020; Zhang et al., 2020; Zhou et al.,

2020) have been widely employed recently (Chang et al., 2021;

Hu et al., 2021). GNNs learn graph embeddings in spatial

transcriptomics data with spatial location information. The

efficient embeddings are generated by neighborhood

information aggregation involving pushing messages from

surrounding spots around a given reference spot (Cai et al.,

2018). Several spatial transcriptome analysis tools, such as

SpaGCN and RESEPT, use a popular type of GNN, the graph

convolutional network (GCN) (Kipf and Welling, 2016), in their

workflows to learn effective embeddings for the downstream

analyses of clustering and image segmentation. For these tools, it

is possible to adjust hyperparameters to produce better

embedding to improve model performance. This study focuses

on evaluating embeddings sampled from a deep learning model

with different hyperparameter settings and selecting high-quality

embeddings to enhance the performance of a spatial

transcriptome analysis model. For this purpose, we adapt

spatial autocorrelation, which describes the correlation among

values of a single variable based on their proximity in space to

reflect a pattern of attribute values that is nonrandom over a set

of spatial units (Griffith, 1987). Moran’s I and Geary’s C (Moran,

1950; Geary, 1954) are two leading measuring indices used to

detect spatial relevance. In addition, the Getis-Ord G index (Getis

and Ord, 2010) measures the degree of clustering for hot or cold

spots. Spatial autocorrelation is widely used in various research

fields, such as georeferenced data (Griffith and Chun, 2016),

remote sensing for information extraction (Curran, 1988;

Warner and Shank, 1997), landslide susceptibility (Lee, 2005),

and hazard modeling (Pardeshi et al., 2013). Spatial

transcriptome analysis, such as SpaGCN, employs Moran’s I

to detect spatially variable genes.

This study presents a novel embedding evaluation method

named MP-MIM (message passing-Moran’s I with maximum

filtering), which employs message passing and the spatial

autocorrelation index to evaluate embeddings from deep

learning models used for spatial transcriptome analysis. The

message passing part generates a more accurate and

representative embedding. The global Moran’s I index is

applied to indicate the spatial correlation intensity to measure

the quality of each dimension, and the maximum value of

Moran’s I is used to select the most effective embedding. We

used 16 spatial transcriptomics samples (Chen et al., 2021;

Maynard et al., 2021) for our study. According to the test

results, our proposed method accurately identified high-

quality embeddings, thereby enhancing the tissue architecture

identification of spatial analysis models.

Materials and methods

The main workflow of MP-MIM is aimed at assessing the

embeddings generated from deep learning models with different

hyperparameters on spatial transcriptomics data and identifying

high-quality embeddings. As shown in Figure 1, the embedding

generation panel illustrates the process of embedding sampling

by deep learning models. The overall workflow of integrating

MP-MIM into spatial models includes four parts: (A) data

preprocessing to convert the input embedding into graph-

structured data, (B) embedding transformation by message

passing, (C) embedding evaluation by using Moran’s I with

maximum filtering, and (D) the graph embeddings and

ranking used for the downstream analysis of the respective

models. To validate the proposed method, MP-MIM, the

panel of method validation also details the baseline

comparison methods and evaluation metrics used in this study.

Conversion of input data into graph-
structured data

Figure 1A shows that our method takes each embedding

generated from spatial transcriptomics data as the input. Each

spot that contains one or more cells is used as a node unit in our
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k-nearest neighbor (KNN) graph. We first convert the

embedding of cell spot features (gene expression) into an

undirected graph employing the KNN algorithm (Hastie and

Tibshirani, 1996) in the graph. In the KNN graph, the preset

parameter k is used to decide the degree of interaction between

each node. Each node creates edges to its neighbors with the

k-nearest Euclidian distances. To maintain a more efficient graph

structure, we further search for an adaptive number of neighbors

for each node by pruning the graph (Wang et al., 2021), where the

outliers in k neighbors of each node are deleted. We can generate

the final adjacency matrix based on the aforementioned KNN

graph for the next step of MP-MIM.

Embedding transformation

We employ the message-passing framework used in a

popular deep learning model, GAT (Velickovic et al., 2017),

to transform embedding layer by layer. The input is a set of node

features from each sample; this set is denoted as h =

{h1, h2, . . . , hN}, where N represents the number of nodes. The

message passing process for each node in embedding with the

graph structure is shown in Figure 1B, where every node

aggregates features from its neighborhood nodes with different

weights. We consider that long-distance dependency in spatial

space can also contribute to tissue architecture identification, but

FIGURE 1
Workflow of the proposedmethod MP-MIM andmethod validation. MP-MIM takes the embedding generated from the deep learning model by
using spatial transcriptomics data as the input. (A), (B), (C), and (D) show the process starting from converting the input into the KNN graph. Message
passing based on graph convolution transforms the original embedding with the KNN-graph structure to graph embedding. Moran’s I evaluated the
multiple transformed embeddings with maximum filtering according to all the dimensions of each embedding. Finally, the graph embeddings
and quality ranking are the output for the downstream analysis in their respective models. The method validation panel shows the baseline
comparison methods and the specific evaluation metrics.
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existing GNN-based methods usually pay more attention to

short-distance dependency. To generate an enhanced and

complementary embedding for ranking embeddings, we define

the initial weight between two nodes by using the Euclidian

distance as follows:

eij � distance(hi, hj). (1)

Then, the softmax function is used to make the weight easily

comparable among different nodes:

αij � softmaxj(eij) � exp(eij)
∑k∈Ni

exp(eik), (2)

whereNi denotes the neighborhood of node i in the graph. αij, as

a long-distance dependency, can balance the contributions of the

short-distance dependency in the GNN. The aggregated feature

of each node that uses the distance-based graph convolution of

message passing to execute the feature transformation in each

layer is calculated as in Eq. 3:

h′i � ∑
j∈Ni

αijhj. (3)

In the case of a large value that cannot be used in the softmax

function, we also employ a basic graph convolution assigning the

same importance to each neighbor.

In MP-MIM, with the increase in the number of stacked layers,

we can obtain the transformed embeddings based on different

degrees of neighborhood information aggregation. We set the

hyperparameters k_num and l_num when the appropriate

message passing type was used in different cases. The

hyperparameter settings of MP-MIM are shown

in Supplementary Table S1. The maximum values of k_num

and l_num in the value range are recommended to be set in

MP-MIM.

Embedding evaluation by using Moran’s I
statistics

Gene expressions at different spatial locations may be

interdependent, and the expression values of a nearby gene may

be more relevant than those farther apart according to spatial

autocorrelation. Positive spatial autocorrelation means that

geographically nearby values tend to be similar in space and vice

versa. Spatial autocorrelation can evaluate whether a potential spatial

variable gene exhibits an organized pattern and spatial layout (Hu

et al., 2021). In the embedding space, the embedding integrates the

input from the expression values of all genes through a deep learning

model. Each dimension in the embedding space contains the

underlying spatial information of all genes. For downstream

analysis based on the latent variables of the embeddings, such as

clustering and image segmentation, spatial autocorrelation (Griffith,

1987) provides an estimate for information content. The higher the

spatial autocorrelation is, the clearer the spatial pattern is, thus

indicating that the underlying embedding contains more diverse

information with a suitable contrast. This process is similar to the

automatic exposure correction of photos (Yuan and Sun, 2012).

Therefore, the global spatial autocorrelation index can be used to

evaluate the quality of embeddings with different spatial information.

Global Moran’s I is a commonly used correlation coefficient

that measures global spatial autocorrelation. To evaluate the

quality of a given dimension in the embedding, we calculate

Moran’s I as follows:

MI � n∑n
i�1∑n

j�1wij(xi − �x)(xj − �x)
(∑n

i�1∑n
j�1wij)∑n

i�1(xi − �x)2 , (4)

where xi and xj denote the values of spots i and j, respectively; �x

denotes the mean of all values; n denotes the number of spots;

and wij denotes the predefined spatial weight. The value range of

Moran’s I is [−1,1], where a value close to 1 indicates a strong

spatial dependence, which represents a positive correlation; a

value close to −1 indicates a weak spatial dependence, which

represents a negative correlation; and a value close to 0 indicates a

random spatial distribution. We implement two kinds of spatial

weight matrices (each denoted as wij) used in Moran’s I. One is

the radius distance weight matrix, which is defined as follows:

wij � { 1, dij ≤ dradius,
0, dij > dradius,

(5)

where dij denotes the Euclidian distance between two spots based

on spatial coordinates and dradius denotes the distance threshold.

The other kind of spatial weight matrix is the KNN weight

matrix, in which the k-nearest neighbors of each spot using

spatial coordinates based on the Euclidian distance are selected.

We assign wij = 1 between spots and their nearest neighbors;

otherwise, wij � 0.

In MP-MIM, we use global Moran’s I with the highest

correlation among different dimensions as the final evaluation

result for each embedding. Global Moran’s I is calculated as

follows:

MIembedding � max(MI0,MI1, . . . ,MIi), (6)

where i denotes the number of dimensions in embedding. When the

transformed embeddings are generated with a certain

hyperparameter setting of message passing, Moran’s I with

maximum filtering is used to produce the final evaluation result

for each embedding. Different settings of spatial weight matrices in

Moran’s I are recommended according to the message passing types.

The details are shown in Supplementary Table S1.

Embedding sampling

A deep learning model can sample multiple embeddings with

different hyperparameter settings by using spatial
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transcriptomics data. In this study, embedding sampling

methods were used in the deep learning models RESEPT and

SpaGCN to generate embeddings for experimental analysis. All

hyperparameters in RESEPT were kept as the default except for

two hyperparameters of the feature autoencoder, which

integrates a variational autoencoder with positional encoding

(Zhong et al., 2021). Zdim represents the number of latent space

dimensions, and PEalpha represents the degree to which location

information is used. RESEPT takes the spatial gene expression

data as the input. RESEPT keeps the genes expressed as nonzero

in more than 1% of spots and further selects the top

2,000 variable genes. Gene expression based on raw counts

was used when we implemented the data preprocessing. We

kept all the default parameters except for several

hyperparameters in SpaGCN, including PCA_num (the

number of dimensions of GCN input), Resolution (the setting

of initial Louvain’s clustering), and L_value (the percentage of

total expression contributed by neighbors). As a result, 56 three-

dimensional RESEPT embeddings with different hyperparameter

settings were generated for 16 samples. In total, 36 three-

dimensional SpaGCN embeddings with

varying hyperparameter settings were generated for six

samples. Supplementary Tables S2, S3 list the details about

the hyperparameter settings in RESEPT and SpaGCN,

respectively.

Evaluation metrics

The adjusted Rand index (ARI) (Hubert and Arabie, 1985)

reflects the agreement between two divisions. The index

measures the performance between the predicted tissue

architecture and its ground truth. The index can be described

as follows:

ARI �
∑ij( nij

2
) − [∑i( ai

2
)∑j( bj

2
)]/( n

2
)

1
2[∑i( ai

2
) + ∑j( bj

2
)] − [∑i( ai

2
) + ∑j( bj

2
)]/( n

2
)

,

(7)

where nij denotes the number of objects in classes i and j

simultaneously; and ai and bj represent the number of objects

in classes i and j, respectively. The value range of ARI is [−1,1],

where a larger value indicates a higher consistency.

The Spearman correlation coefficient with the associated p

value (Kokoska and Zwillinger, 2000) is used to measure the

performance between the baseline ranking we set in this study

and the ranking generated by our evaluation method. The

Spearman correlation coefficient is a nonparametric rank

correlation calculated using the following equation:

rs � 1 − 6∑d2
i

n(n2 − 1), (8)

where n denotes the number of observations and di marks the

difference between the two rankings of each observation. The

value range of the Spearman correlation is [−1,1], where a larger

value means a stronger correlation. The p-value indicates the

statistical significance of the Spearman correlation. The range of

the p-value is [0,1], where the smaller the p-value is, the more

significant the Spearman correlation is.

We also use global Geary’s C as the baseline for comparing

different methods in the Spearman correlation analysis. Global

Geary’s C is another classical index used for global spatial

autocorrelation and that is defined as

GC � n − 1
2∑n

i�1∑n
j�1wij

.
∑n

i�1∑n
j�1wij(xi − xj)2

∑n
i�1(xi − �x)2 . (9)

The value range of Geary’s C is [0,2]. To make this range the

same as that of Moran’s I, we convert the result of Geary’s C by 1-

GC, where 1 means perfect positive autocorrelation, −1 means

perfect negative autocorrelation, and 0means no autocorrelation.

The radius distance spatial weight matrix is used for Geary’s C

(see the Embedding evaluation by using Moran’s I statistics

section).

Dataset and experimental settings

We analyzed 12 published and four 10x Genomics Visium

samples generated from the human brain in this study. The four

postmortem human brain samples were obtained from the study

program at Banner Sun Health Research Institute (Beach et al.,

2015) and New York Brain Bank at Columbia University Medical

Center (Vonsattel et al., 2008). Two samples are from non-AD

cases at Braak stages I and II (namely, samples 2–5 and 18–64),

and the other two are from early-stage AD cases at Braak stages

III and IV (namely, samples 2–8 and T4857). The details about

the number of ground-truth labels and spots for each sample are

shown in Supplementary Table S4.

The proposed methodMP-MIM and other algorithmmodels

were implemented by Python 3.6.8. All algorithms were run on a

computing server with 2.2 GHz, 144-core CPU, and 503 GB

RAM under an Ubuntu 18.04 operating system.

We implemented the K-means algorithm (MacQueen., 1967)

on 56 embeddings for each sample by using the cluster number

from the ground-truth labels and measured ARI by the result of

K-means and the ground-truth labels. The value of ARI was

considered the quality representation of each embedding, and the

ranking of ARI was used as the ground-truth ranking in this

study. To validate our proposed method, we evaluated three

performance metrics, which are the top 5 results of the ranking,

the Spearman correlation (which is measured by the rankings of

different comparison methods and ground-truth ranking), and

the effectiveness of integrating MP-MIM into the SpaGCN and

RESEPT models. In the case of the top 5 metric, using native
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Moran’s I to measure the first, second, and third dimensions of

each embedding is set as the baseline method. In the case of the

Spearman correlation metric, both native Moran’s I and native

Geary’s C were used to measure the first, second, and third

dimensions of each embedding as the baseline methods. Finally,

the baseline method that can obtain the highest Spearman

correlation among all dimensions is used for comparison with

MP-MIM.

Results

Our proposed method performed competitively on three

evaluation metrics in this study. The top 5 rankings generated

by MP-MIM can identify high-quality embedding on most

spatial transcriptomics samples. Integrating MP-MIM into two

bioinformatics tools used for spatial transcriptome analysis

shows that the performance of tissue architecture

identification can be improved in most cases.

High-quality embedding can be identified
among the top 5

To set a comprehensive comparison metric, we used the

quality of the top 5 embeddings rather than the top 1 in the

ranking to assess an evaluation method. The top 5 evaluation is

also applied to other research problems (Xiong et al., 2017;

Chang et al., 2020). The top 5 in the ranking represents the

first five high-quality embeddings among all input embeddings

identified by our evaluation method. The higher the quality of

each of the top 5 embeddings is, the more capable our evaluation

method is considered. This study mainly validated the top

5 RESEPT embeddings according to native Moran’s I and

MP-MIM for 16 samples. In MP-MIM, a distance-based

graph convolution was used by setting k_num to be 90 and

l_num to be 15. To better show the effect before and after

message passing, the original and corresponding graph

embeddings were transformed into RGB images by the

conversion method in RESEPT (Chang et al., 2021).

RGB images of the original and the transformed embeddings that

are top 5 ranked byMP-MIMare visualized in Supplementary Figure

S1. As shown in Supplementary Figure S1, the top 5 RGB images

have a consistent pattern in almost all 16 samples, with better color

contrast and clearer architectures in the transformed embeddings

than the original embeddings. Message passing as a process of

smoothing information can help aggregate more original graph

information. The embedding values are converted into pixel

values by using the RESEPT method. RGB images can be better

visualized after embedding transformation. Supplementary Figure S2

shows the ARI comparison results between the top 5 original

embeddings and the corresponding transformed embeddings on

the 16 samples. As shown in Supplementary Figure S2, the top

5 original embeddings can obtain a higher ARI when transformed by

MP-MIM in most cases. Among the 12 samples (151507, 151508,

151509, 151670, 151671, 151672, 151673, 151674, 151676, 2–5,

18–64, and T4857), the embedding transformation based on the

message passing ofMP-MIM can improve at least over three original

embeddings in the top 5 in terms of ARI results when using the

embedding; in the two samples (151671 and 151673), the embedding

transformation improved all original embeddings in the top 5.

Comparison results of top-, medium-, and bottom-ranked RGB

images based on transformed embeddings in MP-MIM rankings on

five samples are shown in Figure 2. The results of the remaining

11 samples are shown in Supplementary Figure S3. Compared with

the medium and bottom RGB images, the top RGB images are clear

with less noise, as shown in Figure 2. Image layout and architecture

can be clearly visible from top-ranked RGB images. The underlying

spatial patterns of the embeddings are shown in the transformed

RGB images. The clearer the spatial pattern of the RGB image is, the

more diverse information and features the embedding contains, thus

indicating that the embedding is a higher-quality embedding.

Disorganized and fuzzy patterns are shown in the bottom-ranked

RGB images. The image effects of medium-ranked RGB images are

between those of top- and bottom-ranked images. MP-MIM can

accurately identify the embeddings with different qualities.

The top 5 embeddings in the rankings of native Moran’s I

and MP-MIM for RESEPT are shown in Supplementary Table

S5. Among the comparison methods, the embedding achieving

the clustering result closest to the ground truth is among the top

5 selected by MP-MIM on 10 out of 16 samples (151507, 151508,

151509, 151510, 151669, 151670, 151671, 151672, 151673, and

18–64). By applying message passing, each node aggregates

information constantly from its neighborhood, and the

underlying biological information of each embedding can be

explicitly expressed. Message passing helps Moran’s I with

maximum filtering to evaluate and identify the high-quality

embeddings. Therefore, the overall high-quality top

5 embeddings can be obtained when MP-MIM is used.

In addition, Supplementary Table S7 compares the top

5 embeddings of the SpaGCN model for native Moran’s I and

MP-MIM methods based on the ground truth on six samples

(151507, 151508, 151509, 151510, 18–64, and T4857). In MP-

MIM, the basic graph convolution was used with setting k_num

to be 9 and l_num to be 15 for SpaGCN embedding. Overall, the top

5 selections have some good results, but are not as good as in

RESEPT.

MP-MIM predicts accurate rankings
according to high Spearman correlation
with the ground truth

A higher Spearman correlation means that the two rankings

are more similar. First, we measured the Spearman correlation

between the ground-truth ranking and the ranking evaluated by
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the baseline method (see the “Dataset and experimental settings”

section) and MP-MIM on the RESEPT embedding for

16 samples. MP-MIM was used by a distance-based graph

convolution of message passing with the values of k_num to

be 90 and l_num to be 15. Then, the SpaGCN embedding on six

samples was applied with the basic graph convolution, and the

setting k_num to be 9 and l_num to be 15 in MP-MIM. If the

Spearman correlation is a negative value, we set the value at zero.

Figure 3 shows the comparison results between the baseline

method and MP-MIM. A higher-correlation ranking with the

ground truth can be obtained by MP-MIM in which the

hyperparameters k_num and l_num are 90 and 15,

FIGURE 2
Comparison results of top-, medium-, and bottom-ranked RGB images based on transformed embeddings in MP-MIM on (A) 151508, (B)
151509, (C) 151673, (D) 151674, and (E) 151675 samples.

FIGURE 3
Comparison between the baseline method (without applying MP-MIM) and MP-MIM on the 16 samples. In this study, Spearman correlation
coefficients of the baseline ranking are measured between the ground-truth ranking based on embedding quality according to the ARI and the
ranking of the baselinemethod. The Spearman correlation coefficients of the MP-MIM ranking aremeasured using the ground-truth ranking and the
ranking of the MP-MIM.
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respectively. The Spearman correlations on 13 out of 16 samples

are improved to different degrees, especially on sample 151671,

the performance of MP-MIM is two times higher than the

performance of the baseline method using the original

embedding. In most samples, except for 151669, 151670, 2–8,

and T4857, the Spearman correlations are larger than 0.5, thus

indicating that the rankings are highly consistent with the

ground truth. Supplementary Table S6 compares the baseline

method in terms of Moran’s I or Geary’s C on each dimension

of the original embedding and MP-MIM. In this study, the

baseline ranking is generated by the best performance of

the baseline methods. In most cases, the Spearman

correlations of Moran’s I are higher than those of Geary’s C

on the same dimension of the original embedding. The highest

Spearman correlation can be obtained using Moran’s I to

measure the first dimension (emb0) and the third dimension

(emb2) on samples 151669 and T4857, respectively. Using

Geary’s C to measure the second dimension can obtain the

best Spearman correlation among all comparison methods on

sample 151670.

The sensitivities of the hyperparameters k_num and l_num

in message passing on four samples are shown in Figure 4. These

sensitivities reflect the value of Spearman correlation changes

with the hyperparameters k_num and l_num in MP-MIM. The

Spearman correlation becomes larger as the degree of message

passing increases, and in most cases, the correlation reaches the

maximum when k_num is 90 and l_num is 15. With message

passing, each embedding can express more representative

features and be more suitable for Moran’s I to rank. When

the number of aggregation layers is larger, the rankings are more

consistent with the ground truth. As k_num increases, the spots

can obtain more neighborhood nodes in the graph and aggregate

more information in each iteration. When k_num is 90, MP-

MIM usually outperforms the other hyperparameter settings of

k_num. Only when k_num is 10 does message passing not

constantly help MP-MIM for ranking, such as on samples

18–64. Supplementary Figure S4 demonstrates the significance

of each Spearman correlation and reflects the p-value changes

with the hyperparameters k_num and l_num in MP-MIM. In

12 samples (151507, 151508, 151509, 151510, 151671, 151672,

FIGURE 4
Sensitivities of the hyperparameters k_num and l_num inmessage passing to the Spearman correlation on the following samples: (A) 151510, (B)
151672, (C) 151674, and (D) 18–64. The horizontal axis represents the number of layers in the message passing. The vertical axis represents the
Spearman correlation measured by the ground-truth ranking and the ranking of the MP-MIM. k denotes the number of nearest neighbors, which is
the predefined parameter in the KNN graph.
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151673, 151674, 151675, 151676, 2–5, and 18–64), all of the

p-values are smaller than 0.01. The p-value decreases as the

degree of message passing increases, and in most cases, the

p-value reaches the minimum when k_num is 90 and l_num

is 15. Our results show a significant Spearman correlation

between the ranking of MP-MIM and the ground truth.

The sensitivities of more settings of hyperparameters k_num

and l_num in message passing are shown in Supplementary

Figures S5–S7. As shown in Supplementary Figure S5, the

changing trend of sensitivity continues when the

hyperparameters k_num and l_num are increased. In most

cases, the greater the degree of message passing, the more

accurate identification MP-MIM can achieve on all input

embeddings. More neighborhood information aggregation

helps the embeddings better express features and are

accurately evaluated. Supplementary Figures S6, S7 detail the

cases of large settings of hyperparameters k_num and l_num.

They show that the increasing trend of the Spearman correlation

can eventually plateau and that the Spearman correlation

converges when the hyperparameters k_num and l_num are

large enough. Therefore, to reduce the complexity of MP-

MIM and obtain a promising result, the hyperparameter

settings of k_num = 90 and l_num = 15 are used in this study.

During the experiments, we also compared the Spearman

correlations of minimum and average filtering on Moran’s I.

Figure 5 details the comparison results of different

dimensions and minimum, average, or maximum filtering

on Moran’s I by applying message passing on four samples.

Compared with minimum filtering, the maximum and

average filtering on Moran’s I can contribute more to the

evaluation method when message passing is applied.

However, the minimum filtering negatively affects the

evaluations of embeddings. The variation ranges of the

maximum filtering based on message passing are larger

FIGURE 5
Comparison of different methods for measuring Moran’s I on the following samples: (A) 151510, (B) 151672, (C) 151674, and (D) 18–64. The
horizontal axis shows the methods of directly measuring Moran’s I on the first dimension (emb0), second dimension (emb1), and third dimension
(emb2) in each embedding and the methods of combining Moran’s I with the minimum, average, and maximum filtering in all dimensions. The
vertical axis shows the Spearman correlation measured by the ground-truth ranking and the ranking by MP-MIM. Each box shows all results in
message passing with k_num values from 10 to 90 and l_num values from 1 to 15.
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than those of the average filtering, and the optimal Spearman

correlation can be obtained in most cases. Hence, the

maximum filtering on Moran’s I is the most effective

method. Spearman correlations of three dimensions within

the independent variation range change inconsistently, thus

indicating that different dimensions of this embedding

contain individual and diverse information and features.

Supplementary Figure S8 lists the sensitivity results on the

hyperparameters k_num and l_num in message passing, and

Supplementary Figure S9 shows the same comparison results

as Figure 5 on the remaining 12 samples. In addition,

Supplementary Table S8 compares the baseline method in

terms of Moran’s I or Geary’s C on each dimension of the

original embedding and MP-MIM for SpaGCN.

Supplementary Figure S10 shows the sensitivity of the

hyperparameters k_num and l_num in message passing on

six SpaGCN embedding samples.

Result analysis in embedding data
distribution

We selected samples 151507, 151510, and 151673 with

promising Spearman correlations and samples 151669,

151670, and 2–8 with poor Spearman correlations to

further analyze the distribution of graph embedding.

Supplementary Figure S11 lists the distributions of top-,

medium-, and bottom-ranked graph embeddings in MP-

MIM rankings on six RESEPT embedding samples.

As shown in Supplementary Figure S11, the distributions

of top embeddings are scattered and well-proportioned under a

stable density change of all dimensions in most cases, and the

distributions of bottom-ranked embeddings have nonuniform

density variations with an apparent accumulation around zero.

The distributions of medium embeddings are usually between

top-ranked embeddings and bottom-ranked embeddings. For

samples 151669 and 2–8, there is one dimension with a poor

proportion distribution in the top embedding, and there are

two dimensions with density distribution accumulation

around zero in the top embedding. The ranks of the last

embeddings of samples 151669, 151670, and 2–8 in the

corresponding ground-truth rankings are shown in the

front. After observing all distributions of 56 embeddings for

each sample, the percentages of embeddings under

nonuniform density distribution with an obvious

accumulation around zero of 151669, 151670, and

2–8 samples are larger than those of other samples. The

higher percentage of low-quality embeddings may confuse

Moran’s I to evaluate and mislead the final output ranking

of MP-MIM. In this study, a few cases have poor Spearman

correlations, and we can obtain competitive performance in

the top 5 but only with low Spearman correlation results, such

as on sample 151669.

Effectiveness of integrating MP-MIM into
models

To validate the effectiveness of integrating our proposed

method into the model by using spatial transcriptomics data,

SpaGCN and RESEPT were used as the validation objects. We

kept all the hyperparameters of SpaGCN and RESEPT as default

and took the gene expression based on raw count as the input for

bothmodels. Supplementary Table S1 details the hyperparameter

settings ofMP-MIM. The histology and the ground truth for each

sample are shown in Supplementary Figures S12, S13,

respectively. Compared with the performances of the original

models, the performances improved after integrating MP-MIM

in both cases of RESEPT and SpaGCN.

SpaGCN uses GCN to generate embedding based on gene

expression, spatial location, and histology information of

spatial transcriptomics data and then employs unsupervised

iterative clustering based on the embedding of GCN to separate

spots into different spatial domains. We inserted MP-MIM into

the model to enhance the spatial tissue architecture

identification before implementing unsupervised iterative

clustering. The K-means algorithm with the cluster number

of corresponding sample labels was used for the initial

clustering in SpaGCN. MP-MIM started to transform the

embedding of the original SpaGCN into multiple

embeddings with different degrees of message passing and

selected the transformed embedding with the highest value

of Moran’s I with maximum filtering in the next training step. A

basic graph convolution of message passing was applied in MP-

MIM. We compared the ARI of the original SpaGCN integrated

with MP-MIMwith the ARI calculated by the original SpaGCN.

The comparison details of the 16 samples are shown in Figure 6,

and the tissue architecture identifications of SpaGCN and

SpaGCN integrated with MP-MIM are illustrated in

Supplementary Figure S12. MP-MIM improves the

performance of SpaGCN on 9 out of 16 samples. Embedding

transformation using message passing can enhance identifying

the spatial tissue architecture. Some samples, such as

151669 and 151673, have a more obvious improvement.

In the case of RESEPT, MP-MIM was used to evaluate the

generative embeddings with multiple hyperparameter settings

before being converted into RGB images. RESEPT semantically

segmented these RGB images converted by the original

embeddings to identify the spatial tissue architecture. The

ranking of the embeddings with the corresponding tissue

architecture identification results can be obtained after

integrating MP-MIM into the original RESEPT. Measuring

the results of the top 5 is commonly used in spatial analysis.

We defined the median value of all ARIs obtained by RESEPT as

the baseline ARI. Figure 7 details the spatial tissue architecture

identifications on the 16 samples. The top 5 ARI values are

marked in different colors and shapes. As shown in Figure 7,

compared with the ARI value of the baseline, the higher ARI
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value can be obtained from the top 5 ARI values of MP-MIM on

15 out of 16 samples. On three samples (151509, 151670, and

2–5), all the top 5 ARI values obtained by MP-MIM are higher

than those obtained by the baseline method. On samples 151508,

151671, and 2–5, RESEPT obtains the best architecture

identifications from the top 5 ARI values after the method is

integrated with MP-MIM. Supplementary Figure S13 illustrates

the baseline segmentation with the median value of all ARIs and

the top 5 segmentations from RESEPT integrated with MP-MIM

for each sample.

FIGURE 6
Comparison between the original SpaGCN and the SpaGCN integrated with MP-MIM. The results of the original SpaGCN are obtained by
keeping all hyperparameters of SpaGCN as default, and SpaGCN integratedwithMP-MIM shows the results after integratingMP-MIM into the original
SpaGCN.

FIGURE 7
Top 5 tissue architecture identifications of integrating MP-MIM into RESEPT. The blue horizontal line indicates the median ARI of all values, and
this median value is set as the baseline on each sample in this study. The top 5 ARI values are marked in different colors and shapes.
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In the two cases, each sample took more than several hours

and a half hour of computing time on a desktop machine when

MP-MIM was integrated into SpaGCN and RESEPT. The

computational scalability of embedding sampling methods and

MP-MIMdepends on the numbers of cells, genes, and tissue types.

Software tool

The proposed method, MP-MIM, can be used as a software

tool to support tissue architecture identification in spatial

analysis; the software tool is available at https://github.com/

YuLin-code/MP-MIM. The software tool can be easily

integrated with high compatibility for computational methods

involving generating embeddings for tissue architecture

identification by using gene expression and spatial locations as

the input. Additionally, MP-MIM provides a novel perspective to

evaluate and enhance the embeddings generated by the deep

learning model by using spatial transcriptomics data.

MP-MIM can be used as two kinds of software tools

according to different cases. For spatial methods, such as

SpaGCN, generative embedding during training is directly

used for clustering. Our tool can be a supplement to generate

graph-based embeddings and identify the most effective

embedding for further clustering. For spatial methods such as

RESEPT, generative embeddings with various hyperparameter

settings are used to produce RGB images and conduct image

segmentation. We can apply the tool to select high-quality

generative embeddings for downstream analysis.

Discussion and conclusion

This study proposed an embedding evaluation method, MP-

MIM, used for spatial transcriptome analysis. MP-MIM can

accurately evaluate multiple sampling embeddings with different

hyperparameter settings and identify high-quality embeddings by

producing a high correlation between the predicted spatial

architecture and the ground truth. The combination of message

passing and Moran’s I with maximum filtering was used for

selecting the most effective embedding. Sixteen spatial

transcriptomics samples based on the human brain were used

to validate the proposed method in our experiments. The method

of directly using Moran’s I or Geary’s C to measure different

dimensions of the evaluated embeddings was set as the baseline.

We also integrated the proposed method into two models,

SpaGCN and RESEPT, to validate performance.

The experimental results show that compared with the

baseline method on most samples, MP-MIM can accurately

identify higher-quality embeddings from the top 5 results and

rank embeddings with a higher and more significant Spearman

correlation between MP-MIM’s output ranking and the ground

truth. Using message passing, the MP-MIM can predict a more

precise ranking for evaluating embeddings. With a greater degree

of message passing employed, the ranking closer to the ground

truth can be output by the MP-MIM. Compared with Geary’s C,

Moran’s I obtains a higher Spearman correlation between the

predicted ranking and the ground-truth ranking of the original

embeddings. Moran’s I appeared to be better suited to measure

spatial autocorrelation for spatial transcriptome analysis.

Integrating MP-MIM improves the performance of SpaGCN

and RESEPT on 9 out of 16 samples and 15 out of

16 samples, respectively. The promising results are usually

based on sufficient message passing in MP-MIM. Overall,

MP-MIM enhances the identification of spatial tissue

architecture in spatial transcriptome analysis.

In summary, the main innovations of this study are message

passing-based embedding transformation for better expressing

the underlying information and using spatial autocorrelation

indices to evaluate embedding quality. In message passing, the

graph built using the expression values of each spot offers the

communication path for neighborhood information aggregation.

With message passing, each spot can aggregate more information

from the spot’s neighborhood with further distance, and the

original information of the entire graph can be presented more

obviously. The original embeddings are commonly generated by

a deep learning model with a few stacked layers. In this study, the

transformed embeddings based on aggregating information from

the remote neighborhood can represent comprehensive values

involving near and remote neighborhood information of the

input spatial transcriptomics data. Moran’s I is used to evaluate

embedding quality rather than to detect spatially variable genes

in general spatial analysis. Moran’s I can obtain the most

representative result of spatial autocorrelation among different

dimensions of each embedding with maximum filtering.

Consequently, the proposed method MP-MIM can accurately

identify high-quality embeddings.

Sample dependency is the main limitation for cases in which the

training and validation data sizes are relatively small. Selecting the

most representative embedding can help improve the performance

by using few spatial transcriptomics data, as MP-MIM produces a

sampling of each data and identifies a high-quality embedding by

selecting the appropriate embedding to better represent the

experimental data to serve for downstream analysis. The method

of MP-MIM can also be extended and recommended to any spatial

transcriptome analysis tool. In this study, the ground-truth labels are

manually annotated by expert, and the spatial spots in the tissues can

be assigned to different layers. The ARI values are low in most cases,

probably due to the clustering method we employed. The purpose of

this article was not to explore the best clustering methods, and our

study can be applied to any clustering method. However, MP-MIM

may not always improve analysis performance. In several cases in this

study, integrating a method with MP-MIM did not improve sample

performances, such as the performance of SpaGCN integrated with

MP-MIM on 151674 and the performance of RESEPT integrated

with MP-MIM on T4857. Improving the computing time of
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MP-MIMand using it as a built-in regularization in deep architecture

design need to be further explored. More types of spatial

transcriptomics data with different sequencing methods will be

used for analysis and verification in the future.
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