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Background: Increasing evidences show a clinical significance in the

interaction between hypoxia and prostate cancer. However, reliable

prognostic signatures based on hypoxia have not been established yet.

Methods: We screened hypoxia-related gene modules by weighted gene

co-expression network analysis (WGCNA) and established a hypoxia-

related prognostic risk score (HPRS) model by univariate Cox and

LASSO-Cox analyses. In addition, enriched pathways, genomic

mutations, and tumor-infiltrating immune cells in HPRS subgroups were

analyzed and compared. HPRS was also estimated to predict immune

checkpoint blockade (ICB) therapy response.

Results: A hypoxia-related 22-gene prognostic model was established.

Furthermore, three independent validation cohorts showed moderate

performance in predicting biochemical recurrence-free (BCR-free)

survival. HPRS could be a useful tool in selecting patients who can

benefit from ICB therapy. The CIBERSORT results in our study

demonstrated that hypoxia might act on multiple T cells, activated NK

cells, and macrophages M1 in various ways, suggesting that hypoxia

might exert its anti-tumor effects by suppressing T cells and NK cells.

Conclusion: Hypoxia plays an important role in the progression of prostate

cancer. The hypoxia-derived signatures are promising biomarkers to
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predict biochemical recurrence-free survival and ICB therapy responses in

patients with prostate cancer.
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Introduction

Prostate cancer (PC) is the third common cancer among all

cancers and the second cancer among men worldwide (Sung

et al., 2021). In 2020, 1,414,259 people suffered from PC and

375,304 patients died of PC globally (Sung et al., 2021). Existing

evidence suggests that the proliferation and progression of PC are

strongly dependent on androgen receptor (AR) signaling (Tan

et al., 2015; Crawford et al., 2018). Although androgen

deprivation therapy (ADT) is the standard clinical therapy

and most patients initially respond to hormone therapy, they

eventually relapse and progress to biochemical recurrence (BCR).

Therefore, it is urgent to find methods that can better predict

tumor prognosis and therapy response than the existing ones.

One of the main reasons that cancers are difficult to treat

is that cancer cells constantly adapt to the adverse

environment in which they live. Hypoxia is one such

adverse environment, which can impair the function of the

tumor. On the contrary, hypoxia drives the tumor to produce

more malignant characteristic behavior (Chae et al., 2016).

We presumed that perhaps hypoxia-related features could be

used to predict tumor prognosis and drug response. However,

hypoxia gene signatures were successfully obtained in

multiple tumors including clear cell renal cell carcinoma,

hepatocellular carcinoma, bladder cancer, lung

adenocarcinoma, glioma, and breast cancer, and these gene

signatures not only independently predicted prognosis in

lung adenocarcinoma but also predicted therapeutic

resistance (Gui et al., 2021; Mo et al., 2021) (Gong et al.,

2020; Lin et al., 2020; Sun et al., 2020; Cao et al., 2021).

Recently, immunotherapy has emerged as a new type of

therapy that has brought hope to cancer patients, but there

are also many patients who do not respond to this treatment.

Hypoxia also affects the immune system through multiple

pathways, such as induction of transcription factors or target

genes to suppress T-cell proliferation and induction of

mitochondrial stress that drives T-cell exhaustion

(Scharping et al., 2021) (Barsoum et al., 2014).

In this study, we performed hypoxia assessment on

samples in the training dataset, screened out hypoxia-

related genes using weighted gene co-expression network

analysis (WGCNA), and finally established a 22-gene

signature and validated it in multiple independent

datasets. As hypoxia affects the immune system, we also

evaluated risk models and immune checkpoint blockade

(ICB) therapy.

Materials and methods

Data acquisition

Public gene-expression data and full clinical annotation were

searched in the Gene Expression Omnibus (GEO; https://www.

ncbi.nlm.nih.gov/gds/), The Cancer Genome Atlas (TCGA;

https://portal.gdc.cancer.gov/), and the Array Expression

(https://www.ebi.ac.uk/arrayexpress/) databases. The procedure

used for dataset selection in the GEO database was as follows.

The following search parameters were used: [“prostatic

neoplasms” (MeSH Terms) OR prostate cancer (All Fields)]

AND “Homo sapiens” (porgn) AND [“gse” (Filter) AND

“Expression profiling by array” (Filter)]. In the initial search,

924 items were recognized. The eligible criteria included: 1)

owning BCR time information and 2) at least 50 PC patients.

We removed the datasets that do not meet the criteria by

checking them one by one carefully and gathered three

patient cohorts from GEO. We searched the Array Expression

(https://www.ebi.ac.uk/arrayexpress/) and found a dataset that

met the criteria. In total, we gathered five patient cohorts for this

study: TCGA-PRAD, GSE116918 (Jain et al., 2018), GSE46602

(Mortensen et al., 2015), GSE70770 (Ross-Adams et al., 2015),

and E-MTAB-6128. Three GEO datasets are processed

expression matrices downloaded from GEO. The CEL files

from E-MTAB-6128 were downloaded and normalized using

a robust multichip average (RMA) algorithm (Irizarry et al.,

2003). All microarray data included in our study were log2-

transformed. The TCGA-PRAD RNA-seq data and clinical data

were downloaded using the “TCGAbiolinks” package in R

((Colaprico et al., 2016)). The RNA-seq data were converted

to transcripts per million (TPM) after removing duplicated genes

and zero expression genes. The dataset GSE116918 was used as

the training set because it is an independent microarray dataset

with an appropriate sample size (Jain et al., 2018). Moreover,

another three datasets from different response platforms were

used as three independent validation sets including GSE46602,

GSE70770, E-MTAB-6128, and TCGA-PRAD. TCGA-PRAD

somatic mutation data were downloaded from TCGA using

the package TCGAbiolinks in R. Somatic mutation data were

analyzed using the R package “maftools” (M ayakonda et al.,

2018). In order to analyze the relationship between 22 gene

signatures and immunotherapy, we found an ICB therapy dataset

(IMvigor210) with 299 tumor samples and survival information.

Raw transcriptome and clinical data were retrieved from the

IMvigor210 dataset (http://research-pub.gene.com/
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IMvigor210CoreBiologies) using the R package

“IMvigor210CoreBiologies” (Mariathasan et al., 2018). The

hypoxia-associated gene sets (HALLMARK_HYPOXIA and

HARRIS_HYPOXIA) were obtained from the MSigDB (http://

www.gsea-msigdb.org/gsea/msigdb/index.jsp).

Screening of hypoxia-related genes and
establishment of a risk model

The levels of hypoxia in each sample from

GSE116918 were quantified using a single-sample gene set

enrichment analysis (ssGSEA) algorithm based on hallmark

gene sets and chemical and genetic perturbation sets

(Hänzelmann et al., 2013). To find modules highly

correlated with hypoxia, WGCNA was performed using the

“WGCNA” R package (Langfelder and Horvath, 2012) and

carried out on the top 50% most variable genes. We calculated

that the most β-value is 3, and the minimum number of genes

in the module is set to 50. After screening the hypoxia-related

modules, univariate Cox regression analysis was performed

on the genes in the modules. The genes with p < 0.01 were

defined to be related to BCR time. Then, we used the R

software package “glmnet” to integrate BCR time, BCR

status, and gene expression data for regression analysis

using the LASSO-Cox method. In addition, we also set up

10-fold cross-validation to obtain the optimal model. Finally,

a hypoxia-related prognostic risk score (HPRS) was

constructed: HPRS = ∑(C×EXP), where EXP is the

expression value of the gene and C is the regression

coefficient for the corresponding gene in the LASSO-Cox

model.

Hypoxia signature validation

We used the R package “maxstat” to calculate the optimal

cutoff value of HPRS, setting the minimum number of

grouped samples to be greater than 25% and the maximum

number of samples to be grouped less than 75%. Based on

this, the patients were divided into two groups, high-risk and

low-risk, and the prognostic difference between the two

groups was further analyzed using the Kaplan–Meier (KM)

method. The log-rank test method was used to evaluate the

significance of the prognostic difference between samples in

different groups. Also, the receiver operating characteristic

(ROC) curve is also used to evaluate the prediction

performance of the hypoxia-related signature in the

training set and the validation set. We used the R package

“rms” to integrate data on BCR time, BCR status, and other

clinical characteristics and constructed a nomogram using

the Cox method and assessed the prognostic significance of

these characteristics in GSE116918.

Estimation of immune cells

The CIBERSORT algorithm (https://cibersortx.stanford.

edu/) with the B-mode of batch correction mode, relative

mode, and 1,000 permutations was used to estimate the

fraction of 22 immune cell types in PC samples (Newman

et al., 2019). The Wilcoxon test was used to look for

significantly differential immune cells between high and

low HPRS.

Gene enrichment analysis and GSEA

To illustrate the functional annotations of target gene set,

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses were performed using the KOBAS

3.0 online database (Bu et al., 2021). Pathways with adjusted

p < 0.05 were considered significant. We downloaded GSEA

software (version 4.3) from the GSEA website (http://software.

broadinstitute.org/gsea/index.jsp). We downloaded the latest

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

data using the R package “KEGGREST.” The prepared KEGG

gene sets were used as the reference set. We grouped samples

according to HPRS as the phenotypic input file. NOM p-value <
0.05 was considered statistically significant.

Additional bioinformatic and statistical
analyses

The violin plot is used to compare the differences between

two groups with the Wilcoxon test. In order to test the efficacy of

HPRS in predicting ICB therapy and avoid overfitting of the

predicting model, the ICB therapy was divided two groups on the

basis of 8:2, the one in front was named as the train cohort and

the one in back was named as the test cohort. Support vector

machines (SVMs) are a very good machine algorithm that can be

used to distinguish between two variable outcomes. So, we used

SVM for the evaluation of HPRS for predicting ICB therapy

response. All of the aforementioned analyses were performed

using R software (version 4.0.2, http://www.rproject.org).

Statistical significance was set at p < 0.05.

Gene expression verification

We analyzed the RNA expression differences of 22 genes in

the Gene Expression Profiling Interactive Analysis (GEPIA)

database. In addition, we collected 20 pairs of PC samples and

adjacent normal samples in our hospital to analyze the RNA

expression differences of these genes using RT-PCR, all of which

were approved by the patient’s informed consent and the Ethics

Committee of Zhejiang Provincial People’ Hospital. TRIzol
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(Thermo Fisher, United States) was used to extract the total RNA

in the sample, and the reverse transcription kit, RR047A kit

(Takara, Japan), was used to convert it into cDNA. Finally, the

RR820A kit (Takara, Japan) was used to perform RT-PCR

analysis on the 7900HT system (Thermo Fisher,

United States), and the ACTB gene was used as the internal

reference gene to calculate the expression of hub genes for each

pair of tissues.

FIGURE 1
Schematic diagram of the study design.
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Result

Estimation of hypoxia level and
characteristics of different hypoxia levels

The procedures used in this study are summarized in Figure 1.

Based on ssGSEA scores of hallmark hypoxia, we divided patients

in the GSE116918 cohort into high and low groups by the median

score. GSEA results indicated that the high hypoxia score group

was mainly enriched in multiple viral and bacterial infection-

related pathways, such as pathogenic Escherichia coli infection,

Salmonella infection, bacterial invasion of epithelial cells, viral life

cycle—HIV-1, shigellosis and viral carcinogenesis, indicating that

hypoxia correlates with malignant behavior of tumors

FIGURE 2
Characteristic between different hypoxia levels andweighted gene co-expression network analysis. (A)GSEA analysis of different hypoxia levels.
(B) CIBERSORT results of different hypoxia levels. (C) Analysis of the scale-free fit index and the mean connectivity for various soft-thresholding
powers. (D) Correlation of module eigengenes with two hypoxia scores.
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(Figure 2A). The low hypoxia score group was mainly enriched in

linoleic acid metabolism, nicotine addiction, taste transduction,

neuroactive ligand–receptor interaction, olfactory transduction,

maturity onset diabetes of the young, and phototransduction

(Figure 2A). We performed CIBERSORT, and the results

indicated that there were significant differences in a variety of

immune cells, including CD8+ T cells, CD4+ memory resting

T cells, follicular helper T cells, activated NK cells,

M1 macrophages, resting dendritic cells, and activated

dendritic cells (Figure 2B).

FIGURE 3
Development of HPRS in the train set. (A) Trajectory of each prognosis-related candidate gene’s coefficient was observed in the LASSO
coefficient profiles with the changing of the lambda in LASSO algorithm. (B) After the 10-fold cross-validation, a confidence interval was obtained for
partial likelihood deviance as the lambda changed. (C) Mutation status was analyzed of 22-gene signature in the TCGA-PRAD.
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Detection of gene co-expression modules
correlated with hypoxia

Top 50% most variable genes were used for WGCNA. The soft

threshold = 3 was selected to construct a scale-free network (Figure 2C).

A total of 7 modules were identified after setting the minimum cluster

size at 50 (Figure 2D). Among thesemodules, the greenmodule (r= 0.5,

P = 6e−17), the black module (r = 0.6, P = 5e−26), and the brown

module (r = 0.66, P = 8e−32) exhibited the highest correlation with the

hypoxia score andwas considered the “hypoxia-relatedmodule.” Finally,

FIGURE 4
Validation of HPRS. (A) Kaplan–Meier analysis and ROC analysis of the hypoxia-related score based on GSE116918. (B) Kaplan–Meier analysis
and ROC analysis of the hypoxia-related score based on GSE46602. (C) Kaplan–Meier analysis and ROC analysis of the hypoxia-related score based
on GSE70770. (D) Kaplan–Meier analysis and ROC analysis of the hypoxia-related score based on E-MTAB-6128.
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we obtained 831 hypoxia-related genes and found that they are

significantly enriched in cancer-related pathways, such as pathways in

cancer, PI3K-Akt signaling pathway, phagosome, transcriptional mis-

regulation in cancer, and proteoglycans in cancer.

Development of HPRS in the train set

First, we performed univariate Cox regression on the genes of

the three modules and found 91 genes with p < 0.01.

Subsequently, LASSO-Cox algorithm was used to identify the

most robust prognostic genes. The optimal λ value of 0.04 was

selected (Figures 3A,B). Finally, the risk scores of each PC patient

were measured using the following method: HPRS =

−0.0299179376392757*ADRA2C + 0.320877677041365*AKAP12

+ 0.157921193186689*C3 + 0.133671046325701*CCDC3 + 0.048

5939928513679*COMP−0.263511901072997*CRISPLD2 + 0.2020

66976480225*EPSTI1 + 0.210803303885677*FAP + 0.019083620

7797853*FCER1G-0.0275655761387271*GSTM2-0.124475388639

999*HLF−0.235913610478483*HOXA13 + 0.0633028925180767*

LRRC32 + 0.135931506683704*LTBP2 + 0.203447730218895*

LUM + 0.334111004412106*MB21D1 + 0.0631829402327768*

OLR1−0.227346268601104*PCDH18–0.0345544068599357*PTN−

0.0618838003001662*SRD5A2 + 0.0052758696780799*THBS4−

0.0883863753799873*TMEM158. The mutation data of these 22

genes in the TCGA-PRAD dataset are shown in Figure 3C. The

22 genes were significantly correlated with the phagosome

pathway (corrected p = 7.96e−05).

FIGURE 5
Nomogram was generated to improve risk stratification and estimate survival probability. (A) Comprehensive nomogram for predicting
probabilities of PC patients with 3-, 5-, and 7-year BCR-free survival in GSE116918 dataset. (B) ROC analyses of 3-, 5-, and 7-year BCR-free survival
for this nomogram. (C) Calibration plots for predicting PC patients with 5- and 7-year BCR-free survival in GSE116918.
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Validation of HPRS

As shown in Figure 4, Kaplan–Meier analysis demonstrated that

patients with higherHPRS exhibited BCR-free survival in the training

set (HR = 9.09, 95% CI = 5.11–16.18, p = 2.6e-19). Then, the

prognostic value of HPRS was validated in four independent cohorts

(GSE46602: HR = 10.39, 95%CI = 3.02–35.79, p = 6.2e-6; GSE70770:

HR = 1.75, 95% CI = 0.99–3.10, p = 0.05; and E-MTAB-6128: HR =

FIGURE 6
Comprehensive analyses of enriched pathways and genomic alterations between different risk groups. (A)GSEA analysis of high- and low-HPRS
groups (top 20 pathways). (B)CIBERSORT result of high- and low-HPRS groups. (C) Top 20most frequently mutated genes were illustrated in TCGA-
PRAD.
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4.30, 95% CI = 0.95–19.53, p = 0.04; Figure 4). To evaluate the

predictive efficiency of the hypoxia signature, we performed a ROC

curve utilizing the data from the train and validation cohorts. The

area under the ROC curve (AUC) is shown in Figure 4. HPRS has

excellent predictive performance in the train set and also has

moderate prognostic ability in the validation datasets (Figure 4).

Patients with high HPRS appear to have more BCR (Figure 4).

HPRS could be utilized as an independent
prognostic factor in PC

As the HPRS was significantly correlated with high

malignancy, we sought to determine whether the HPRS was a

clinically independent prognostic factor for PC patients through

multivariate Cox regression analysis. The HPRS, together with

other clinical features, including age, Gleason score, pathological

T stage, and prostate-specific antigen (PSA), were enrolled as

covariates to perform the analysis. The results demonstrated that

HPRS, Gleason score, and pathological T stage were independent

factors that could be utilized to predict the prognosis of PC

patients. By combining the aforementioned prognostic factors,

we constructed a nomogram that served as a clinically relevant

quantitative method by which clinicians could predict mortality

in PC patients (Figure 5). Each patient would be assigned a total

of points by adding points for each prognostic parameter. The

higher the total score, the worse the patient’s prognosis. The

overall C-index of the model was 0.80, with a 95% CI of

0.74–0.87 and a p value of 1.4e-20. The capacity of the

nomogram to distinguish survival was tested using AUC

values (Figure 5). In the calibration analysis, the prediction

lines of the nomogram for 5- and 7-year survival probability

were extremely close to the ideal performance (45-degree line)

(Figure 5), indicating a high accuracy of the nomogram.

Comprehensive analyses of enriched
pathways and genomic alterations
between different risk groups

To further verify the activation of related signaling pathways

in the different hypoxia risk groups, we performed GSEA in the

FIGURE 7
RT-PCR verified the expression of genes in 20 pairs of prostate cancer clinical samples. (A–F) Relative gene expression level in the normal group
and tumor group. All data are displayed as means ± SD; mean values for the normal group were normalized to 1.0; NS, no significant difference vs.
normal group; **p < 0.01 and *p < 0.05 vs. normal group. @*p < 0.05 vs. normal group. #*p < 0.05 vs. normal group. $*p < 0.05 vs. normal group.
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GSE116918 cohort. The results showed that the high-risk group

was mainly enriched in immune cell regulation-related pathways,

including human T-cell leukemia virus 1 infection, leukocyte

trans-endothelial migration, B-cell receptor signaling pathway,

and neutrophil extracellular trap formation (Figure 6A). The

low-risk group was mainly enriched in metabolism-related

pathways, including beta-alanine metabolism, propanoate

metabolism, glycine, serine, and threonine metabolism, histidine

metabolism, tyrosine metabolism, fatty acid degradation, valine,

leucine, and isoleucine degradation, arginine biosynthesis, and

arginine and proline metabolism (Figure 6A).

In addition, the low-risk group was also significantly

enriched in the prostate cancer pathway (Figure 6A).

Accumulating evidence suggests that hypoxia is an important

feature of cancers that can modulate the cancer’s immune

response. Using the CIBERSORT method, we estimated

differences in the immune infiltration of 22 immune cell types

between low- and high-risk PC patients in the

GSE116918 cohort. We found that CD4+ naive T cells, CD4+

memory resting T cells, activated CD4+ memory T cells, follicular

helper T cells, gamma delta T cells, activated NK cells,

monocytes, M1 macrophages, resting dendritic cells, and

resting mast cells differed between the two groups (Figure 6B).

To investigate whether there was evidence of differences at

the genomic level between low- and high-risk PC patients, we

investigated the distribution differences of somatic alterations in

the TCGA-PRAD cohort using the R package “maftools.”

Waterfall plots integrated with 20 highly variant mutant genes

were utilized to show the mutation landscape. As shown in

Figure 6C, among the top 20 mutated genes, the high-risk

group appeared to have a higher mutation rate relative to the

low-risk group.

Verification of 22 genes in this model

We verified the expression levels of 22 genes. In the GEPIA

database, we found that 11 genes were differentially expressed in

tumor tissues and adjacent tissues, of which 9 genes were

downregulated and 2 genes were upregulated in PC. In the

20 pairs of clinical samples we collected, RT-PCR results

showed that the expression of ADRA2C, AKAP12, CCDC3,

CRISPLD2, GSTM2, HLF, LRRC32, PTN, and SRD5A2 were

reduced in PC. COMP and THBS4 were overexpressed in PC

(Figure 7). These results are consistent with our analysis.

HPRS predicted ICB therapeutic response

The aforementioned analysis of tumor-infiltrating immune

cells showed that multiple T cells were significantly different

between high- and low-HPRS groups, implying that HPRS may

be predictive of ICB therapeutic response. As there is no

immunotherapy cohort for prostate cancer, we estimated the

performance of predicting ICB therapeutic response based on

HPRS in the IMvigor210 cohort, consisting of 299 samples.

Kaplan–Meier analysis showed that high HPRS had worse

survival than low HPRS, although the p-value was 0.06, and

this might be due to the usage of BCR-free survival when

formulating HPRS and the usage of overall survival (OS) in

this dataset (Figure 8A). We then found a significant difference in

hypoxia scores between the immunotherapy response and non-

response (Figure 8B). To assess the effect of HPRS in predicting

ICB therapeutic response, we used the SVM algorithm to

construct a model. The best effect was obtained when the

kernel function was “radial.” We trained the model on the

FIGURE 8
HPRS predicts ICB therapeutic response. (A) Kaplan–Meier analysis of HPRS in the IMvigor210 dataset. (B)Differences in hypoxia levels between
ICB therapy-response and non-response groups.
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training set, and this model also achieved a good accuracy

(0.7879) on the test set, indicating that HPRS is a good

predictor of ICB therapeutic response.

Discussion

The precise definition of hypoxia is a pathological

phenomenon that occurs when the body tissue cannot get

enough oxygen or cannot use oxygen. Hypoxic

microenvironment can lead to upregulation of HIF-1α
expression in tumor cells, which in turn activates downstream

target genes and promotes metabolic reprogramming,

epithelial–mesenchymal transition, invasion, metastasis, cancer

stem cell maintenance, immune evasion, and resistance to

chemotherapy and radiation therapy (Schito and Semenza,

2016; Farina et al., 2020). To date, some hypoxia gene

signatures for prognosis have been developed in different

cancer types, such as clear cell renal cell carcinoma (Gui et al.,

2021), bladder cancer (Cao et al., 2021), lung adenocarcinoma

(Sun et al., 2020), breast cancer (Gong et al., 2020), and

hepatocellular carcinoma (Mo et al., 2021). Prostate cancer

has been shown to be a tumor characterized by hypoxia

(Bhandari et al., 2019). Therefore, in this study, we focused

on finding hypoxia-related genes and exploring whether they

could be used as prognostic markers.

The WGCNA algorithm, designed to study the relationship

between genes and sample phenotype, can be used to identify

complex mechanisms responsible for target phenotypes.

Through the preliminary screening of WGCNA, we obtained

a set of hypoxia-related genes, which were significantly

enriched in cancer-related pathways, demonstrating the

reliability of our method. In the end, we obtained a

signature consisting of 22 genes for predicting prognosis.

Whether in the training dataset or in several other

independent datasets, HPRS showed good performance in

predicting prognosis.

GSEA results of different hypoxia levels, KEGG enrichment

results of 22 gene signatures, and GSEA results of different HPRS

groups, all suggested that phagosomes might play an important

role in tumor hypoxia. In addition, the high-HPRS group was

also associated with many pathways related to tumors, which

proves that high hypoxia levels can promote tumor metastasis.

We hope to verify this in subsequent studies. However, the low-

HPRS group was mainly related to metabolism-related pathways,

which means that there is a dynamic metabolic feature. The

immune micro-environment plays a critical role in the

tumorigenesis and progression. CIBERSORT, in our study,

demonstrated that hypoxia might act on multiple T cells,

activated NK cells, and M1 macrophages by various ways,

suggesting that hypoxia might exert its anti-tumor effects by

suppressing T cells and NK cells.

We observed that high HPRS was significantly correlated

with more aggressive molecular changes such as TP53 mutation

and amplifications of driver oncogenes. During the PC

progression, these genomic alterations drive rapid

proliferation rates by depleting oxygen and producing

abnormal vasculature. The mutation of TP53 has an effect on

cancers evading targeted therapies through a mechanism known

as lineage plasticity (Mu et al., 2017).

In order to escape the pursuit of T cells, tumor cells also

produce some inhibitory signals on their own surface, thereby

inhibiting the immune function of T cells through immune

checkpoints. ICB therapy such as PD-1 antibody can

significantly improve the survival of patients with various

tumors by blocking these inhibitory signals, but only some

patients respond. Finding a good marker to predict response

to ICB therapy is critically essential for patients. As the

aforementioned CIBERSORT result demonstrated that

hypoxia might act on multiple T cells and activated NK cells,

we are more convinced that hypoxia-related genes have a good

effect in predicting ICB therapeutic response. Our SVM model

also proved that HPRS had a good performance on predicting the

therapeutic response.

Our research also inevitably has some limitations. Our analysis

data are derived from tumor tissue as a whole, but tumor tissue

contains not only cancer cells but also other non-cancer cells such

as immune cells. Themultiple datasets used are data from different

platforms, which makes these data naturally different. As there is

no ICB therapy cohort for PC, we used the largest cohort

consisting of 299 urothelial carcinoma samples for analysis.

Conclusion

Our study illustrates the crucial role of hypoxia in PC.

Hypoxia gene-related prognostic model has been established

and found to have good performance. HPRS could be a useful

tool to select patients whomay benefit from ICB therapy and thus

to facilitate personalized management of PC.
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