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Background: Genomic and antigenic heterogeneity pose challenges in the precise
assessment of outcomes of triple-negative breast cancer (TNBC) patients. Thus, this
study was designed to investigate the cardinal genes related to cell differentiation and
tumor malignant grade to advance the prognosis prediction in TNBC patients through an
integrated analysis of single-cell and bulk RNA-sequencing (RNA-seq) data.

Methods:We collected RNA-seq and microarray data of TNBC from two public datasets.
Using single-cell pseudotime analysis, differentially expressed genes (DEGs) among
trajectories from 1534 cells of 6 TNBC patients were identified as the potential genes
crucial for cell differentiation. Furthermore, the grade- and tumor mutational burden (TMB)-
related DEGs were explored via a weighted correlation network analysis using the
Molecular Taxonomy of Breast Cancer International Consortium dataset. Subsequently,
we utilized the DEGs to construct a prognostic signature, which was validated using
another independent dataset. Moreover, as gene set variation analysis indicated the
differences in immune-related pathways between different risk groups, we explored the
immune differences between the two groups.

Results: A signature including 10 genes related to grade and TMB was developed to
assess the outcomes of TNBC patients, and its prognostic efficacy was prominent in two
cohorts. The low-risk group generally harbored lower immune infiltration compared to the
high-risk group.

Conclusion: Cell differentiation and grade- and TMB-related DEGs were identified using
single-cell and bulk RNA-seq data. A 10-gene signature for prognosis prediction in TNBC
patients was constructed, and its performance was excellent. Interestingly, the signature
was found to be closely related to tumor immune infiltration, which might provide evidence
for the crucial roles of immune cells in malignant initiation and progression in TNBC.
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INTRODUCTION

Triple-negative breast cancer (TNBC) is defined as the absence of
estrogen receptor (ER) and progesterone receptor (PR) expression
and human epidermal growth factor receptor (HER2) amplification.
TNBC patients could not benefit from endocrine or anti-HER2
therapies, and chemotherapy is currently one of the few proven
therapeutic choices. Considering the unfavorable prognosis and
aggressive clinicopathological characteristics of TNBC, new
treatments are warranted and clinical therapeutic options should
be individualized to optimize benefits.

Traditional molecular subtypes based on ER, PR, and HER-2
expression could partly explain the distinction; however, they
might have limitations for patient-tailored treatment strategies
(Yersal and Barutca, 2014). In this regard, the microarray (Abd-
Elnaby et al., 2021) and next-generation sequencing (NGS)
(Hong et al., 2020) technologies with high accuracy and
reduced cost might be optimal choices in cancer screening and
treatment. Furthermore, individual gene expression analysis
could provide new chances for individualized cancer prognosis
prediction in addition to clinicopathological features (Lal et al.,
2017). The question now, of course, is how we translate the RNA-
sequencing (RNA-seq) data into clinical application.

Another problem is that RNA-seq of the bulk tissue only
indicates an average gene expression of all cells in a tumor
microenvironment (TME). The advent of single-cell RNA
sequencing (scRNA-seq), first issued in 2009 (Tang et al.,
2009), has facilitated our understanding of the TME at an
individual cell level and in terms of cell–cell interplay (Chen
et al., 2019). In recent years, rapid progress in the development of
scRNA-seq has provided insights into the heterogeneity of
hundreds of thousands of cells in multiple tumors (Chung
et al., 2017; Zheng et al., 2018; Fu et al., 2020). By bridging
the gap between single-cell and bulk RNA-seq (Malikic et al.,
2019), scRNA-seq will contribute to the illumination of
tumorigenesis, thereby advancing the identification of new
therapeutic targets.

Hereby, in this study, we identified the differentially expressed
genes (DEGs) among trajectories through pseudotime analysis and
utilized DEGs to construct a robust prognostic signature through an
integrated analysis of single-cell and bulk RNA-seq data. The
signature also correlated with immune infiltration, which suggests
a potential connection between the crucial genes in tumor malignant
grade and immune infiltration of TNBC patients.

MATERIALS AND METHODS

Data Collection
The scRNA-seq data of 1534 cells from 6 TNBC patients were
downloaded from the Gene Expression Ominibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/, GSE118389)
(Karaayvaz et al., 2018).

The microarray data of female TNBC patients and clinical
information of one validation cohort (including 107 samples)
were collected from the GEO database (GSE58812) (Jézéquel
et al., 2015).

The microarray data of 299 TNBC patients and the
corresponding clinical data were collected from the Molecular
Taxonomy of Breast Cancer International Consortium
(METABRIC) project in the cBioPortal database (http://www.
cbioportal.org/) (Pereira et al., 2016).

Single-Cell RNA-Sequencing Data Analysis
We used the “Seurat” R package (version 4.0.4) to remove
unqualified cells with a threshold (the gene counts per cell
>50 and the percentage of mitochondrial genes per cell <5).
We normalized the expression of cells using the LogNormalize
function and identified 2000 most highly variable genes among
the cells.

We conducted principal component analysis (PCA) and
calculated the p-value of each principal component (PC). We
selected 20 as dimensions of reduction and performed the
t-distributed stochastic neighbor embedding (t-SNE) analysis.
Then, we clustered cells with the identified marker genes (|log
fold change (FC)| ≥1 and adjusted the p-value ≤0.05). Next, we
utilized the “SingleR” (version 1.8.1) to annotate cell types. To
validate the accuracy of the cell annotation, we summarized some
cell markers, such as CD3D for T cells, and displayed the cell
markers in a cell landscape.

We envisaged that some genes were crucial for cell
differentiation in the TME and, therefore, conducted
pseudotime analysis with the “Monocle” R package (version
2.22) (Qiu et al., 2017). Cells were ordered along different
trajectories, which meant a different developmental stage. The
DEGs among the trajectories were identified for subsequent
analyses.

Identification of the Grade- and Tumor
Mutational Burden-Related Differentially
Expressed Genes Through Weighted Gene
Coexpression Network Analysis
To explore the genes associated with tumor progression and
malignant grade, we conducted weighted gene coexpression
network analysis (WGCNA) to pick out grade- and tumor
mutational burden (TMB)-related genes from the DEGs
(Langfelder and Horvath, 2008). The expression data of DEGs
and clinical data of the METABRIC project were imported and
analyzed using the “WGCNA” R package (version 1.70-3). We
calculated the optimal softPower with the pickSoftThreshold
function (Zhang et al., 2018) and classified genes in different
modules. We calculated the correlations among gene modules,
grade and TMB using Pearson’s correlation analysis and
visualized them in a heatmap. We selected the modules that
were significantly correlated with grade and TMB for
further study.

Construction and Validation of a Prognostic
Signature
We normalized the bulk RNA expression data of the METABRIC
and GEO cohorts using the “limma” and “sva” R packages (Yang
et al., 2018).
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FIGURE 1 | Flowchart of data processing and analyses.

FIGURE 2 | Normalization, filtration, and dimension reduction of single-cell RNA-seq data. (A) The gene counts per cell (nFeature_RNA), number of unique
molecular identifiers (UMIs) per cell (nCount_RNA), and percentage ofmitochondrial genes per cell (percent.mt) of the single-cell RNA-seq data. (B) The top 2000 variable
DEGs between cells are marked in red color, and the 10 most highly variable DEGs are labeled. (C) The top two dimensions of all tumor cells. (D) An elbow plot of the
standard deviation of each principal component (PC) to help PC selection.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9281753

Wang and Chen Prognosis of Triple-Negative Breast Cancer

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


We randomly selected 70% of TNBC patients in the
METABRIC cohort as a training cohort. We conducted
univariate Cox regression in the “survival” R package to screen
out genes related to prognosis in the training cohort. Then, we
applied the least absolute shrinkage and selection operator
(LASSO) regression in the “glmnet” R package to develop a
prognostic signature. The risk score of each patient was
calculated as ∑ (expression of genei p βi), where β denotes the
coefficient of every gene in the signature.

We stratified TNBC patients in the training, test, and GEO
cohorts separately into low- and high-risk groups based on the
median risk score of the training cohort and compared overall
survival (OS) using the Kaplan–Meier (KM)method (“survival”R
package).

To further validate the efficacy of the signature, we employed
the “survminer” and “time-ROC” R packages to perform 3-, 5-,
and 8-year receiver operating characteristic curve (ROC)
analyses.

To assess the performance of the signature in
independent prognosis prediction, we extracted clinical
information (age, stage, and grade) and TMB in the

METABRIC cohort and conducted univariate and
multivariate Cox regression.

Nomogram Construction and Validation
To improve the efficacy of the signature, we considered
significant clinical factors (age and stage) and constructed a
nomogram via “rms” R package in the METABRIC cohort.

To validate the efficacy of the nomogram, we drew a
calibration plot to visualize the consistency of the predicted
and observed OS. We also plotted 3-, 5-, and 8-year ROC
curves to assess the efficacy of the nomogram.

We used the concordance index (C-index) to assess the
prognostic efficacy of the nomogram compared to clinical
factors using the “pec” R package.

Exploration of the Expression of the Genes
in Particular Cells
To determine the expression of the signature genes in particular
cells, we further visualized the expression levels of the signature
genes in a single-cell atlas.

FIGURE 3 |Cell clusters and types of annotation and pseudotime analysis. (A) Fourteen different cell clusters were identified by performing t-distributed stochastic
neighbor embedding (t-SNE). (B) Cell types were further annotated and labeled by exploiting the cell markers. (C) All cells were ordered along trajectories to construct a
pseudotime axis. Different colors represent different states. (D) The deeper the color, the earlier the beginning of cell progressions.
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FIGURE 4 | Identification of genes related to the TNBC grade and tumor mutational burden (TMB) through weighted gene coexpression network analysis
(WGCNA). (A) All samples were clustered and displayed. We selected 35 as the cutHeight. (B) A gene dendrogram was generated, and genes were clustered into
different modules with different colors. (C) The correlations between gene modules and grade and TMB were calculated using Pearson’s correlation and exhibited in a
heatmap. Blue and turquoise gene modules containing 831 genes were found to be significantly related to grade and TMB (p < 0.05).

FIGURE 5 | Identification of a prognostic signature in the training cohort. (A,B) Through LASSO regression, a signature including 10 genes was developed based
on the optimal λ.
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Gene Set Variation Analysis
We calculated and compared the different enrichment pathways
between different risk groups using the gene set variation analysis
(GSVA) R package (Hänzelmann et al., 2013). We visualized the
differences in a heatmap.

Immune Infiltration Differences Between
Different Risk Groups
Considering the differences in immune-related pathways through
GSVA, we calculated the immune infiltration score of every
TNBC sample from the METABRIC dataset. We also
compared the differences in the immune cells and pathways
between different risk groups.

We calculated the correlations among the risk score, the genes
in the signature, and immune cells and pathways. We displayed
the correlations using a heatmap.

Given the close correlations above, we also calculated the
correlations among the risk score, the genes in the signature, and
immune checkpoint genes.

Statistical Analysis
The Wilcoxon test was utilized to compare the differences between
the two groups. Association between variables was determined using
the Spearman correlation test. The chi-square test was used to
compare the categorical variables. All statistical analyses were

TABLE 1 | Genes involved in the signature and their coefficients.

No. Gene Coefficient

1 RMND5A 0.581127231277829
2 ZNF829 0.568292268207948
3 KDM5B 0.391798557667475
4 NCBP2 0.339989521789735
5 GPI 0.250924449438002
6 BGN 0.181013977037171
7 CCND2 −0.262004038399515
8 PLBD1 −0.410074410432122
9 ZYG11A −0.461328087202662
10 IL17RD −0.608201023192413

FIGURE 6 | Validation of the risk signature. (A–D) KM curves displayed a significantly better OS of the low-risk group in the training cohort (A), the test cohort (B),
the whole METABRIC cohort (C), and the GEO cohort (D).
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performed using the R software (v4.1.0), and p < 0.05 was considered
statistically significant. Furthermore, we utilized the “set.seed”
function to guarantee the reproducibility of the research.

RESULTS

Cell Differentiation-Related Genes
Obtained Through Analysis of
scRNA-Sequencing Data
The flowchart of this study is displayed in Figure 1. We selected
cells with >50 gene counts per cell (nFeature_RNA) and <5%
mitochondrial gene counts (percent.mt, Figure 2A).
nFeature_RNA showed a positive correlation with
nCount_RNA (number of detected molecules/unique
molecular identifiers, Supplementary Figure S1A), which
indicated the influence of sequencing depth and rationalized
the normalization of data. The top 2000 variable DEGs
between cells were marked with red color, and the 10 most
highly variable DEGs were labeled (Figure 2B). For the 2000
highly variable genes, we conducted PCA and visualized the top
30 feature genes of the top four PCs (Supplementary Figure

S1B). Figure 2C shows the top two dimensions of all tumor cells.
We calculated the p-values of each PC (Supplementary Figure
S1C) and plotted an elbow plot (Figure 2D), which assisted in the
selection of 1–20 PCs in the downstream analyses.

Variable genes helped classify all cells into 15 clusters that were
presented through t-SNE (Figure 3A). We annotated 10 cell types
and labeled them as shown in Figure 3B. To validate the accuracy
of cell annotation, we summarized some marker genes and
displayed their expressions in different clusters
(Supplementary Figure S2A).

Pseudotime analysis simulated the cell developmental states
based on the gene expression. All cells were ordered along
trajectories to construct a pseudotime axis (Figures 3C,D).
Cell types are annotated in Supplementary Figure S2B and
the significant DEGs among the different trajectories that
indicated differences in cell differentiation are listed in
Supplementary Table S1.

Identification of Genes Related to Grade
and TMB
All samples from the METABRIC dataset were clustered
(Figure 4A). We chose 35 as the cutHeight to remove outliers

FIGURE 7 | Assessment of the performance of the risk signature. (A) The area under the ROC curve (AUC) values were 0.760, 0.766, and 0.744 for the 3-, 5-, 8-
year survivals, respectively, in the training cohort. (B) AUC values were 0.661, 0.625, and 0.650 for the 3-, 5-, and 8-year survivals, respectively, in the test cohort. (C)
AUC values were 0.736, 0.729, and 0.716 for the 3-, 5-, and 8-year survivals, respectively, in the whole METABRIC cohort. (D) AUC values were 0.663, 0.651, and 0.665
for the 3-, 5-, and 8-year survivals, respectively, in the GEO cohort.
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from all samples. By calculation, 4 was selected as the optimum
soft threshold power (Supplementary Figure S3A) to generate
five modules (Supplementary Figure S3B). A gene dendrogram
was generated, and genes were clustered into different modules
with different colors (Figure 4B). The correlations among gene
modules, grade, and TMB are displayed in Figure 4C. Among the
modules, the blue and turquoise gene modules containing 831
genes were found to be significantly related to grade and TMB,

which may correlate with tumor progression and malignant
grade. These genes were collected for the downstream analyses.

Identification and Validation of a 10-Gene
Signature
Through univariate Cox regression, 55 genes were prognostic and
are listed in Supplementary Table S2. Through LASSO

FIGURE 8 | Nomogram construction and validation. Univariate (A) and multivariate (B) Cox regression analysis indicated that age, stage, and risk score were
independent prognostic factors in the METABRIC cohort. (C) Age, stage, and risk score were included to construct a nomogram . The points of age, stage, and risk
score were calculated with reference to the nomogram, and the total points could facilitate the prediction of prognosis. (D) A calibration curve indicated a prominent
consistency between the actual observed OS and the predicted OS. (E) The efficacy of the nomogram was also assessed using the ROC curves and the AUCs
were 0.764, 0.778, and 0.744 for the 3-, 5-, and 8-year survivals, respectively. (F) The nomogram exhibited an advantage in C-index versus other clinical traits in
prognosis prediction.
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regression, a signature including 10 genes was developed based on
the optimal λ (Figures 5A,B). Table 1 lists the 10 genes and their
coefficients that could be applied to calculate the risk score of
every sample.

The KM curves exhibited a significantly better OS of the low-
risk group in the training cohort (Figure 6A). We also validated
the same in the test cohort (Figure 6B), the whole TCGA cohort
(Figure 6C), and the GEO cohort (Figure 6D), which showed
that the signature could stratify patients into different risks well.

The areas under the ROC curve (AUC) values were 0.760,
0.766, and 0.744 for the 3-, 5-, and 8-year survivals, respectively
(Figure 7A), in the training cohort. The AUC values were 0.661,
0.625, and 0.650 for the 3-, 5-, and 8- survivals, respectively, in the
test cohort (Figure 7B); those in the whole METABRIC cohort
(Figure 7C) were 0.736, 0.729, and 0.716 for the 3-, 5-, and 8-year
survivals, respectively; and those in in the GEO cohort
(Figure 7D) were 0.663, 0.651, and 0.665 for the 3-, 5-, and 8-

survivals, respectively, which demonstrated that the efficacy of
the signature was notable.

Both univariate (Figure 8A) and multivariate (Figure 8B) Cox
regression analyses indicated that age, stage, and risk score were
independent prognostic factors in the METABRIC cohort.

Nomogram Construction and Validation
Age, stage, and risk score were included to construct a nomogram
to improve the efficacy and facilitate the clinical application of the
signature (Figure 8C). The points of age, stage, and risk score
were calculated with reference to the nomogram, and the total
points could facilitate the prognosis prediction. A calibration
curve indicated a prominent consistency between the actual
observed and predicted OS (Figure 8D).

The efficacy of the nomogram was also assessed using ROC
curves, and the AUC values were 0.764, 0.778, and 0.744 for the 3-,
5-, and 8-year survivals, respectively (Figure 8E). The nomogram

FIGURE 9 | Gene expression in particular cell types. The expression of the 10 signature genes in the cellular landscape.
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showed an advantage in the C-index versus other clinical traits in
prognosis prediction (Figure 8F).

Gene Expression in Particular Cell Types
We further investigated the cell populations in which the 10 genes
were expressed (Figure 9). CCND2 was highly expressed in
T cells. KDM5B, RMND5A, PLBD1, and NCBP2 were highly
expressed in mesenchymal stem cells and epithelial cells.
ZYG11A and ZNF829 were highly expressed in epithelial cells.
BGN was highly expressed in chondrocytes and fibroblasts, and
IL17RD was highly expressed in epithelial cells and tissue stem
cells. Finally, GPI was highly expressed in multiple cell types.

GSVA Differences Between Different
Groups
GSVA was conducted to investigate the differentially enriched
pathways between different risk groups, and it revealed that high-
risk groups harbored lower immune-related pathways such as
graft versus host disease and antigen processing and presentation
(Figure 10).

Immune Infiltration Differences Between
Different Groups
Considering the differences in immune-related pathways through
GSVA, we also investigated the immune infiltration differences
between different risk groups. Immune infiltration scores of every
sample in the METABRIC dataset are listed in Supplementary
Table S3. Nearly all immune cells (Figure 11A) and activities
(Figure 11B) were higher in the low-risk group.

The correlations among the risk scores, genes in the signature,
and immune infiltration are presented in Figure 11C.

As the close correlation between the signature and immune
infiltration, we investigated the correlations between the risk
score, genes in the signature, and immune checkpoint genes,
and they are displayed in Figure 12. CCND2 and PLBD1
generally exhibited positive correlations, whereas other genes
and risk scores showed the opposite.

DISCUSSION

TNBC, as an aggressive subtype of breast cancer, has been
frequently associated with high rates of mortality. As it is
difficult for clinicians to identify the patients who are more
vulnerable to therapy failure or disease progression, novel
methods are warranted. With the advancements in technology,
the NGS technology has been increasingly applied in routine
clinical practice (Kamps et al., 2017). Furthermore, the scRNA-
seq technology provides precise insight into the cell-specific gene
expression and interplay among cells (Packer and Trapnell,
2018). Based on these technologies, we identified DEGs among
trajectories that indicated genes related to cell differentiation and
further investigated gene-related grade and TMB that might
indicate the progression of malignancy. We also developed a
signature and demonstrated its efficacy. The signature proved to
be an excellent tool to predict the prognosis of TNBC patients in
two independent cohorts. We also constructed a nomogram that
contained age, stage, and risk to facilitate the clinical practice. The
nomogram was more prominent than the signature, as
determined through the ROC analysis.

FIGURE 10 | Gene set variation analysis (GSVA) differences between the different groups. The GSVA differences indicated that high-risk groups harbored lower
immune-related pathways.
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Pseudotime analysis arranges cells based on expression
patterns and orders cells along with trajectories, which
provides a quantitative measure of cell-type differentiation
(Saelens et al., 2019). In this study, through pseudotime
analysis of different cells, we endeavored to identify the
crucial genes in cell differentiation. Then by WGCNA, we
obtained histological grade- and TMB-related genes. The
histological grade is closely related to tumor cell atypia and

degree of malignancy (Komaki et al., 2006). TMB could
indicate the genomic instability (Halbert and Einstein,
2021) and prognosis of breast cancer patients (Thomas
et al., 2018). Conjoint analysis might provide clues for the
identification of genes that play cardinal roles in tumor
initiation and progression.

GSVA is a method used to detect subtle pathway changes over
samples through an unsupervised method (Hänzelmann et al.,

FIGURE 11 | Immune infiltration differences between different groups. Nearly all immune cells (A) and activities (B) were higher in the low-risk group. (C) The
correlations between the risk score and genes in the signature and immune infiltration (* p < 0.05, ** p < 0.01, *** p < 0.001).
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2013). As the GSVA results indicated immune differences
between different risk groups, we investigated the correlations
between the risk score and immune infiltration. Interestingly, the
results mostly indicate a close correlation between the signature
and immune infiltration. The signature composed of genes that
might play important roles in tumor progression also exhibited
immune infiltration. These findings suggest the essential roles of
immune cells in tumor progression and the interplay with tumor
cells, which warrant an in-depth understanding. Moreover, all of
the above findings might contribute to the notion of cancer
immunoediting. Breast cancer has traditionally been
considered less immunogenic except TNBC, which is regarded
as the optimum subtype for immunotherapy because of high
mutational frequency and increased concentrations of tumor-
infiltrating lymphocytes (Agostinetto et al., 2022). Our study also

showed that immune cells and related activities were lower in the
high-risk group. It is reasonable to assume that the high-risk
group is relatively more subjected to immune escape.

In our signature, some genes contribute proportionally
more to the risk score and deserve further attention and
analysis. IL-17RD restrains the motility and invasion of
cancer cells and functions as a tumor suppressor (He et al.,
2016). IL-17RD mRNA is downregulated in breast cancer,
which is significantly correlated with tumor progression
(Zisman-Rozen et al., 2007). The ZYG11A expression is
negatively correlated with the epithelial ovarian cancer
histological grade, which suggests its potential as a
candidate tumor suppressor (Achlaug et al., 2021). KDM5B
is upregulated in breast cancer and is positively correlated with
metastasis (Zhang et al., 2019). However, some genes in

FIGURE 12 | Correlations between the risk score and genes in the signature and immune checkpoint genes.
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previous studies are inconsistent with our study; for instance,
upregulated lncRNA GACAT3 in breast cancer enhances its
endogenous target CCND2 through sponging miR-497, which
was found to be correlated with a poor prognosis (Zhong et al.,
2018). This suggests that many genes might play complex roles
in different cancer subtypes, contexts, and even different stages
of a particular patient’s treatment (Ben-David and Amon,
2020). Still, many genes in our signature are understudied,
such as RMND5A and ZNF829. As our studies indicate their
roles as oncogenes and contribute considerably to the increase
in risk score, they deserve further research.

In summary, during multistep tumorigenesis and
progression to higher pathological grades, the genes in the
signature might play cardinal roles. Furthermore, when viewed
from an immune perspective, the risk score indicates a close
correlation with immune infiltration. We believe that our
study will facilitate an in-depth understanding of the
mechanism of tumor initiation, progression, and
immunogenicity and confer an advantage in the rational
designing of targeted therapies. In the future, multiomics
studies and experiments should be conducted based on the
results.

CONCLUSION

Cell differentiation and grade- and TMB-related genes were
identified using single-cell and bulk RNA-seq data. A 10-gene
signature for prognosis prediction in TNBC patients was
constructed, and its performance was found to be excellent.
Interestingly, the signature was also revealed to be closely
related to tumor immune infiltration, which might suggest the
crucial roles of immune cells in malignant initiation and
progression of TNBC.
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