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Most of the human genome, except for a small region that transcribes protein-

coding RNAs, was considered junk. With the advent of RNA sequencing

technology, we know that much of the genome codes for RNAs with no

protein-coding potential. Long non-coding RNAs (lncRNAs) that form a

significant proportion are dynamically expressed and play diverse roles in

physiological and pathological processes. Precise spatiotemporal control of

their expression is essential to carry out various biochemical reactions inside the

cell. Intracellular organelles with membrane-bound compartments are known

for creating an independent internal environment for carrying out specific

functions. The formation of membrane-free ribonucleoprotein condensates

resulting in intracellular compartments is documented in recent times to

execute specialized tasks such as DNA replication and repair, chromatin

remodeling, transcription, and mRNA splicing. These liquid compartments,

called membrane-less organelles (MLOs), are formed by liquid–liquid phase

separation (LLPS), selectively partitioning a specific set of macromolecules from

others. While RNA binding proteins (RBPs) with low complexity regions (LCRs)

appear to play an essential role in this process, the role of RNAs is not well-

understood. It appears that short nonspecific RNAs keep the RBPs in a soluble

state, while longer RNAs with unique secondary structures promote LLPS

formation by specifically binding to RBPs. This review will update the current

understanding of phase separation, physio-chemical nature and composition of

condensates, regulation of phase separation, the role of lncRNA in the phase

separation process, and the relevance to cancer development and progression.
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Introduction

Human genome sequencing came up with a massive surprise

that only less than 2% of the genome is translated and the

remaining ~98% does not encode a protein, creating loopholes

in the central dogma. This non-coding part of the genome was

considered “junk or dark matter,” with the exceptions of rRNAs,

tRNAs, snRNAs, and snoRNAs (Lander et al., 2001). It was

unknown that this junk would belong to a new and larger class of

transcripts called lncRNAs (long non-coding RNAs). This class

represents transcripts of more than 200 nucleotides in length,

lacking coding potential; however, some can encode small

peptides (Zhang et al., 2018). LncRNAs have unique

biochemical properties such as their interaction with DNA,

RNA, and protein and their ability to fold into intricate

secondary structures that allow them to interact with multiple

RBPs (RNA-binding proteins). After the discoveries of gene-

regulatory lncRNAs H19 (Brannan et al., 1990) and Xist

(X-inactive specific transcript) (Brown et al., 1991) in the 90s,

the number of reports of functionally important lncRNAs has

increased continuously. From the nucleus to the cytoplasm, they

have been linked to the regulation of several cellular processes

such as DNA replication and repair, chromatin remodeling,

transcription, mRNA splicing, translation, turnover, and

signaling pathways. Over the past 2 decades, extensive

research has resolved various queries related to lncRNAs.

Moreover, a new concept of LLPS (liquid–liquid phase

separation) is coming to light, which is believed to answer

countless unanswered questions about the cellular world.

Moreover, a bridge between LLPS and lncRNA has been formed,

giving a newmeaning to the subcellular localization of lncRNA,where

it can perform its functions. It has been shown that phase condensates

have a dynamic character, and this property can give lncRNAs the

ability to perform their regulatory roles rapidly and transiently. Several

functional lncRNAs have been known for years, but whatmakes them

unique if they participate in phase condensation will be discussed in

this review. It will also be discussed how condensates aid the lncRNAs

in playing a pivotal role in fine-tuning many physiological and

pathological activities. The content below will also talk about the

connection between LLPS and lncRNA in cancer.

Phase separation

The presence of a lipid bilayer helps in compartmentalization

and allows eukaryotic cells to organize biochemical reactions in

space and time. But one fundamental question remains: how do

cells maintain biomolecular interactions and homeostasis in the

cytoplasm and nucleus. One way to coordinate spatiotemporal

regulation is to control the localization of specific biomolecules at

one place while excluding others, thereby creating a

heterogeneous environment. Work from past years has shown

the existence of such functional membrane-less compartments in

the nucleus and cytoplasm. These compartments include the

pericentriolar matrix which plays a role in microtubule

nucleation (Woodruff et al., 2017), the nucleolus which

produces and assembles ribosomes (Boisvert et al., 2007),

Cajal bodies for assembling spliceosome machinery (Gall,

2003), and so on. Even though these compartments were

discovered decades ago, the involvement of physio-chemical

forces and biological contents driving the formation of these

bodies is still unfolding. Research has shown that such

compartments form through liquid–liquid phase separation

(LLPS) or condensation. Because of diversity in their

molecular composition, location, and function, “biomolecular

condensates” is considered an umbrella term for these

membrane-less cellular compartments that form because of

condensation (Table 1, Banani et al., 2017; Shin and

Brangwynne, 2017).

Physio-chemical nature of
condensates

Numerous studies using in vitro and in vivo approaches have

provided a solid foundation for understanding the structural and

functional aspects of condensates. LLPS can be described as “a

thermodynamically driven, reversible, de-mixing process

wherein, above a threshold macromolecule concentration,

components separate into coexisting dense and dilute liquid

phases with different solute concentrations” (Boeynaems et al.,

2018; Lyon et al., 2021).

How does the system allow the formation of de-mixed

phases? Let us think about the behavior of the multiple copies

of two different proteins (X, Y) in a solution. If the interaction

between X and Y is energetically more favorable than that

between X and X or Y and Y molecules, then the solution will

be homogenously mixed, and the system’s entropy will be

maximum. However, suppose X and X molecular interaction

is energetically favorable over X and Y interaction, in that case, X

will get de-mixed from neighboring Y molecules after reaching a

critical threshold concentration. Entropy, which generally favors

the homogenous distribution of X and Y molecules, gets

counteracted by energetically favorable interactions between X

and X molecules. The living system also undergoes similar

changes where interactions between different molecules lower

the energy, driving them to get phase-separated (Mitrea et al.,

2018; Hyman et al., 2014; Bhat et al., 2021).
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TABLE 1 List of known phase condensates.

S.
No.

Location Occurrence Name Function References

1 Nucleus Ubiquitous Nucleolus Ribosomal biogenesis Boisvert et al. (2007)

2 Ubiquitous Promyelocytic leukemia (PML) body/
Kremer body/PML oncogenic domain

Regulates transcription, apoptosis and
anti-viral defense

Lallemand-Breitenbach and de
Thé (2010)

3 Ubiquitous Cajal body RNA processing and spliceosomal
machinery assembly

Gall. (2003), Nizami et al. (2010),
Handwerger et al. (2004)

4 Ubiquitous Polycomb group (PcG) bodies Repression of transcription Pirrotta and Li (2012)

5 Ubiquitous Nuclear speckle/Splicing factor (SF)
compartment

RNA processing such as mRNA
splicing

Spector and Lamond (2011)

6 Ubiquitous Gems/Gemini of cajal bodies Storage histone mRNA processing Morimoto and Boerkoel, (2013),
Cauchi, 2011

7 Ubiquitous Cleavage bodies mRNA processing Li et al. (2006)

8 Ubiquitous Histone locus bodies Histone mRNA processing Nizami et al. (2010), Duronio and
Marzluff (2017)

9 Cell-type specific Paraspeckle Transcription regulation and storage
of certain RNAs

Fox and Lamond (2010, Henning
et al. (2015)

10 Condition-
dependent

OPT domains/53P1-OPT domains Transcription regulation Spector (2001), Harrigan et al.
(2011)

11 Condition-
dependent

DNA damage foci DNA damage pathway Altmeyer et al. (2015)

12 Condition-
dependent

Nuclear stress bodies Transcriptional and splicing
regulation

Biamonti and Vourc’h, (2010),
Niemela et al. (2019)

13 Condition-
dependent

Peri-nucleolar compartment RNA metabolism, linked with
malignancy

Pollock and Huang (2010), Norton
and Huang (2013)

14 Condition-
dependent

Amyloid bodies/A-bodies Protein storage in response to stress Audas et al. (2016), Wang et al.
(2018)

15 Cytoplasm Ubiquitous P body/RNA processing bodies/GW
bodies/decapping bodies

mRNA degradation and silencing Decker and Parker (2012)

16 Ubiquitous Pericentriolar matrix Microtubule nucleation Mahen and Venkitaraman (2012),
Woodruff et al. (2017)

17 Ubiquitous TIS granule Helps in 3’ UTR-mediated protein-
protein interactions

Ma and Mayr (2018)

18 NA* cGAS condensates Immune signaling pathway Du and Chen (2018)

19 Condition-
dependent

Stress granule Regulation of transcription, Storage of
RNA in response to stress

Decker and Parker (2012); van
Leeuwen and Rabouille (2019)

20 Condition-
dependent

Sec bodies Storage Zacharogianni et al. (2014),
Aguilera-Gomez et al. (2016)

21 Condition-
dependent

U-bodies/Uridine-rich snRNP bodies Storage and assembly of snRNPs Liu and Gall (2007), Tsalikis et al.
(2015)

22 Condition-
dependent

Viral factories/Viroplasm/Virus
inclusions

Replication and assembly of virus Heinrich et al. (2018), Alenquer
et al. (2019)

23 Cell-type specific
(Germ cells)

Balbiani body Storage Boke et al. (2016), So et al. (2021)

24 Cell-type specific
(Germ cells)

P-granules/Germ granule/polar granule/
Chromatoid bodies

Storage Brangwynne et al. (2009), Marnik
and Updike (2019)

25 Membrane-
associated

Ubiquitous Nuclear pore complex Facilitate selective export/import in
nucleus

Schmidt and Gorlich (2016)

26 NA* ZO-mediated tight junction Assembly of tight junction Beutel et al. (2019)

27 Condition-
dependent

TCR microcluster T-cell mediated signal transduction Su et al. (2016)

28 Condition-
dependent

Nephrin cluster Glomerular filtration barrier Jones et al. (2006), Banjade and
Rosen (2014)

29 Cell-type specific Synaptic density Neurotransmission Zeng et al. (2016), Zeng et al.
(2018)

*NA-information not available
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These interactions between molecules such as X and Y can be

of both high and low affinity. Most of the high-affinity

interactions provide specificity compared to the low-affinity

interactions, but multiple weak, cooperative interactions at a

higher concentration can also help in the formation of the

condensate. These high- and low-affinity interactions include

intramolecular and intermolecular interactions such as π–π,

π–cation, cation–anion, dipole–dipole, hydrogen–hydrogen,

and hydrophobic forces that influence the spatiotemporal

arrangement of the molecules in condensates (Figure 1)

(Boeynaems et al., 2018; Dignon et al., 2020).

Pioneer studies show that P granules and the nucleolus have

liquid-like properties typical of phase condensates. These

condensates are 1) spherical, due to interfacial tension

between two phases; 2) can undergo fission and fusion

processes; 3) have diffuse nature, thereby allowing molecular

exchange from the nearby environment to support biological

function; and 4) can wet other surfaces upon contact

(Brangwynne et al., 2009; Brangwynne et al., 2011; Shin and

Brangwynne, 2017).

Composition of condensates

In a living cell, forces that favor phase separation are

mediated by the cell’s biopolymers, such as proteins and

nucleic acids. Condensate components such as protein and

RNA can be of two types: scaffolds and clients. Scaffold

molecules have higher valency, thereby acting as drivers of

phase separation, providing a platform for other proteins.

These molecules, abundant in condensates, decide the

condensate threshold, and their removal likely prevents

condensate assembly. Client molecules are recruited for

condensation based on their relative stoichiometry with the

scaffold. They perform their function by interacting with

scaffolds and other client molecules and are generally

dispensable for phase separation. For example, in

paraspeckles, a nuclear phase condensate, NEAT1 (nuclear-

enriched autosomal transcript 1) lncRNA acts as a scaffold,

while the RNA binding protein, FUS (fused in sarcoma), is a

client protein (Figure 1) (Banani et al., 2017; Dignon et al., 2020).

The central feature of the phase-separated condensate is the

presence of multivalent molecules to orchestrate intra- or inter-

molecular interactions necessary for phase separation. The

multivalency in condensates can be achieved by intrinsically

disordered regions (IDRs), RNA-binding domains, and

posttranslational modifications (Wiedner and Giudice, 2021).

Protein features for phase separation

Two important features that govern phase separation are the

presence of IDR and modular domains. The IDR is a region of

amino acids that exhibit low-sequence complexity, are present in

a heterogeneous ensemble of conformations, and do not fold into

a well-defined three-dimensional structure. They have a higher

polar and charged amino acid ratio, including glycine, serine,

glutamine, proline, glutamic acid, lysine, and arginine. Even

though they have low hydrophobic amino acid content,

aromatic amino acids such as tyrosine and phenylalanine are

generally interspersed in these regions. These characteristics

fulfill the multivalent nature required for phase separation. To

phase separate, IDRs can interact with other IDRs of the same

protein and/or other proteins. For example, in paraspeckles,

FIGURE 1
Molecular components and forces involved in condensate formation. Inset 1 illustrates the assembly of paraspeckle comprising scaffolds and
clients and interactions between these components. Inset 2 depicts molecular forces with in inter and intramolecular interactions with in phase
condensate.
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RBM14 (RNA binding motif 14) and FUS interact via their IDRs,

namely, prion-like domain (Figure 1). These IDRs are present in

many proteins such as FUS, YAP (yes-associated protein), and

NICD (nephrin intracellular domain) (Banani et al., 2017;

Boeynaems et al., 2018; Martin and Holehouse, 2020).

Modular domains exhibit discrete secondary and tertiary

protein conformations and can interact with other molecules

based on their sequence and structure specificity. These domains

include RNA recognition motif (RRM), arginine–glycine–glycine

motif (RGG), and zinc finger domain. For example, FUS and

RBM14 have RRMs, which help them interact with NEAT1

(Figure 1).

RNA features for phase separation

Studies on phase separation reveal the presence and

importance of RNA in condensates. RNA can interact with

other RNAs and proteins by virtue of its flexible and variable

properties. 1) The most fundamental property imparting

multivalency is the negative charge of the RNA backbone

through which it can mediate electrostatic interactions with

other molecules. Also, the single-stranded nature of RNA

exposes its bases and phosphate group to interact with multiple

positively charged amino acids or molecules. 2) Flexibility also

favors attaining multiple confirmations such as G-quadruplexes,

hairpin loops, and helix motifs which provide protein or RNA

binding sites. RBPs containing RRMs can recognize these

structures. 3) Longer lengths of RNAs like long non-coding

RNAs (Figure 1) can provide scaffolding property to the

condensate as they can offer multiple binding sites. RNA–RNA

interactions are important for mediating phase separation, like in

the case of paraspeckle and stress granule formation. In addition to

promoting phase separation, excessive or high-affinity RNAs can

also prevent phase separation. This inhibition can be due to charge

repulsion or blocking protein–protein interactions. RNA can

regulate condensate assembly by regulating its dynamic nature

or acting as a buffer to prevent abnormal aggregations (Roden and

Gladfelter, 2021; Su et al., 2021). For example, RNA can prevent

the aggregate formation of FUS in the nucleus since it is present in

higher concentrations (Maharana et al., 2018).

Regulation of phase separation

Apart from the concentration and multivalency of

biopolymers, environmental factors such as pH, temperature,

hypoxia, and other stress factors can affect the process of

condensation. It can also be regulated by different parameters

such as posttranslational modifications (PTMs), the presence of a

membrane, molecular chaperones, and other active processes.

PTMs affect the physio-chemical nature of amino acids, thereby

affecting the strength and multivalency of molecules. Membrane

surfaces affect the concentration of molecules by either

hampering diffusion or promoting transport or crowding of

condensate molecules. Similar to PTMs of proteins,

modifications of RNA bases alter essential aspects of RNA

functions. These posttranscriptional modifications, such as N6-

methyladenosine modification, can also impact condensate

assembly. These modifications can influence phase separation

in multiple ways. 1) The modifications give the potential for

dynamic and adaptive nature to the RNA. 2) It affects the

sequence information and has a substantial impact on the

structure of RNA molecules. 3) RNA modifications also affect

the processing of RNAs. These changes altogether mediate

adaptive RNA–RNA and RNA–protein interactions. These

factors cumulatively make condensation an adaptive process

and only happen upon receiving specific cues from the

environment nearby. Thus, the relative stoichiometry of

condensate components controls their dwell time within

condensate and consequently fine-tunes functions performed

by them. (Darino and Schaefer, 2018; Snead and Gladfelter,

2019; Lu et al., 2021; Riback et al., 2017; Roden and

Gladfelter, 2021; and Wiedner and Giudice, 2021).

LncRNA, “the anchor” of phase
separation

LncRNAs are emerging as important players in the formation

of biomolecular condensates. Other RNAs such as mRNAs,

rRNAs, and tRNAs have been shown to play important roles

in various condensates such as stress granules and P bodies

(Protter and Parker, 2016), but decoding the essentiality of

lncRNA in phase separation is in its initial stage. LncRNAs do

not perform an enzymatic function like a protein nor do they

code for a polypeptide like an mRNA, but they have the ability to

bring the components together required for a particular

biological function, holding them firmly and

compartmentalizing them in their contour of action where

they can perform their tasks more efficiently. This potential of

lncRNAs makes them emerge as anchors of phase separation.

Several features within these anchors have been shown to aid

them in organizing a phase condensate. One of these features is

their length. LncRNAs being longer than other non-coding

RNAs such as miRNA can provide a larger platform for

binding RBPs (RNA-binding proteins), as with NORAD

lncRNA that has 18 Pumilio binding motifs (Elguindy and

Mendell, 2021), providing them better sequestration capacity.

They do not contain a specific domain similar to IDRs (Wright

and Dyson, 2015) present in proteins forming condensates, but

their ability to bind RBPs having IDRs can assist in undergoing

phase separation. For example, HNRNPA1 in HSATIII lncRNA

nuclear stress bodies has an IDR that mediates protein–protein

interaction between numerous HNRNPA1 molecules to cause

phase separation (Aly et al., 2019).
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The presence of lncRNAs within a condensate makes it less

viscous, thus giving a more liquid-like nature compared to the

increased protein component, which imparts a solid nature to the

condensate (Elbaum-Garfinckle et al., 2015). This protein-to-RNA

ratio increase may also prevent condensate formation (Maharana

et al., 2018). The fluidity generated in the condensate due to the

presence of lncRNAs makes it more dynamic, enhances the rate of

molecular exchange, and eases the assembly and disassembly

process. Studies on several biomolecular condensates suggest

poorly translated mRNAs favor phase separation (Khong et al.,

2017). Aptly, lncRNAs, known for their inability to code, hint at

their essential role in phase separation.

For any protein or RNA, reaching a threshold concentration

for phase separation is necessary (Banani et al., 2017). Therefore,

the lncRNAs that form part of condensates are generally

upregulated, which may be associated with a cancerous

condition such as TNBL (tumor-associated NBL2 transcript)

upregulated in colorectal cancer (Dumbovic et al., 2018) or

during normal processes such as DIGIT upregulated during

endoderm differentiation (Dhaneshvar et al., 2020).

In addition, several reports suggest that inhibiting lncRNAs

either by knockdown, antisense oligonucleotides, RNases, RNA

pol II inhibitors, or deleting their protein-interacting regions

hinders condensate formation, thereby negatively affecting the

normal function of the condensate and its components (Pessina

et al., 2019; Huo et al., 2020; Lee et al., 2021). This again points

toward the importance of lncRNAs in biomolecular condensates

and suggests they are the anchors of phase separation. Various

other features of lncRNAsmay facilitate the compartmentalization

process, such as sequence or nucleotide composition, length,

TABLE 2 LncRNAs that are associated with phase condensates.

S.
No.

LncRNAs Subcellular
localization

Interacting
proteins

Process
affected

Biological function Salient features References

1 DIGIT Nuclear BRD3, SMARCD1 Transcription Endoderm differentiation Interaction with
histone reader domain

Dhaneshwar et al.
(2020)

2 dilncRNA Nuclear 53BP1 DNA repair DNA damage response Processing into shorter
RNAs

Pessina et al.
(2019)

3 eRNA Nuclear YTHDC1 Transcription Proinflammatory gene
expression

Interaction with
histone reader domain;
m6A modification.

Lee et al. (2021)

4 HSATII Nuclear MeCP2 Transcription Cancer associated
sequestration of
chromatin regulatory
proteins

Repetitive sequences Hall et al. (2017)

5 HSATIII Nuclear HNRNPA1, HNRNPH1,
HNRNPM

Pre-mRNA
processing

Sequestration in response
to stress

Repetitive sequences Aly et al. (2019)

6 hsrω-n Nuclear HNRNPs—HRB87F,
Hrp40, Hrb57a, S5

Pre-mRNA
processing

Prevent promiscuous
RNA processing in
response to heat shock

Repetitive sequence Prasanth et al.
(2000)

7 MajSat Nuclear SAFB Chromatin
remodelling

Heterochromatin
stabilization

Repetitive sequence Huo et al. (2020)

8 meiRNA Nuclear Mei2p, Mmi1 Transcription and
pre-mRNA
processing

Decoy Mmi1 to promote
meiosis

Two isoforms;
hexanucleotide repeats
in 3’ region

Shihcino et al.
(2015)

9 NEAT1 Nuclear NONO, SFPQ, RBM14,
FUS, HNRNPH3

Pre-mRNA splicing,
mRNA nuclear
retention

Role in specific tissue
development and cancer

Two isoforms; 3’ triple
helix instead of poly-A
tail

Clemson et al.
(2009), Hirose
et al. (2019)

10 NORAD Nuclear PUM1/2 Genomic stability Sequester destabilizing
proteins PUM1/2

Repeated PUM
binding motifs

Elguindy et al.
(2021)

11 PNCTR Nuclear PTBP1 Splicing Control Alternate splicing
and promote cell survival

Short Tandem repeats Yap et al. (2018)

12 SNGH9 Cytoplasmic Phosphatidic acid,
LATS1

Cell signalling Promote oncogenic YAP
signalling

Association with a
lipid

Li et al. (2021)

13 TERRA Nuclear RAD52, BLM DNA repair Alternative lengthening of
telomeres in cancer

Form RNA-DNA
hybrid and acts as a
template

Min et al. (2019)

14 TNBL Nuclear NPM1, SAM68, CELF1 Genome
organisation,
splicing and mRNA
stability

Sequestration of proteins
in response to cancer.

Repetitive sequence Dumbovic et al.
(2018)

15 Xist Nuclear PTBP1, MATR3, TDP43,
CELF1

Transcription X chromosome
inactivation

Repetitive sequences Pandya-Jones et al.
(2020)
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secondary structures, and modifications. Some of the important

features associated with lncRNAs that form condensates like their

subcellular localization, their interacting partners, and the

biological functions they assist in are summarized (Table 2).

Some of the lncRNAs reported to be the mainstay in phase

separation (Figure 2) are briefly discussed in the sub-sections below.

The heterochromatin stabilizer

MajSAT lncRNA is transcribed from heterochromatin-

abundant repetitive elements with which a nuclear matrix

(NM)–associated protein, SAFB (scaffold attachment factor B),

interacts via its R-/G-rich region. This association forms foci in

DAPI-dense regions of the nucleus (heterochromatin region),

where SAFB mediates pericentromeric heterochromatin (PCH)

stabilization. Downregulation of MajSAT lncRNA with antisense

oligonucleotides leads to dissociation of the SAFB condensate,

thereby causing weakening of PCH foci as indicated by

H3K9me3 staining (Huo et al., 2020).

The transcription activator

Enhancer RNAs (eRNAs), as the name suggests, are long

non-coding RNA transcribed from enhancer regions and have a

crucial role in transcriptional regulation. They have a heavy

deposition of m6A (N6-methyladenosine) modification, as

characterized by methylation-inscribed nascent transcript

sequencing (MINT-seq) (Lee et al., 2021). These modified

eRNAs mark the enhancer regions for the recruitment of m6A

reader YTHDC1, forming a phase condensate that facilitates the

formation of the BRD4 coactivator condensate, causing

transcription activation. Knocking down eRNA or

METTL3 and METTL14 (leading to the removal of m6A

marks) causes a reduction in YTHDC1 binding to the

enhancer, thereby reducing the gene expression. In vitro

analysis of YTHDC1/m6A-eRNA suggested that

YTHDC1 cannot form the condensate alone.

The cell signaling attenuator

The role of phase condensates in cell signaling is beginning to

be deciphered. SNHG9 (small nucleolar RNA host gene 9)

lncRNA is now known to regulate the Hippo pathway (Li

et al., 2021) by physically interacting with phosphatidic acid

(PA) and LATS1 (large tumor suppressor kinase 1) to form a

puncta. SNHG9 within this puncta promotes PA-mediated

inactivation of LATS1, which causes increased YAP (yes-

associated protein) activation and nuclear localization, leading

to cancer progression. Knocking down SNHG9 or deleting its

FIGURE 2
LncRNAs are anchors of phase condensates. LncRNAs orchestrate the formation of phase condensates and execute various processes such as
(A) DNA repair (dilncRNA), (B) transcription activation (eRNA), (C) pre-mRNA splicing and transcription regulation (HSATIII), (D) genome stabilization
(NORAD), (E) alternative lengthening of telomeres (TERRA), and (F) cell signaling (SNHG9).
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PA-interacting region leads to reduced LATS1 puncta formation

and sequestration of YAP in the cytoplasm.

The genome guardian

NORAD (non-coding RNA activated by DNA damage)

lncRNA is localized in the cytoplasm and sequesters Pumilio

proteins (PUM1 and PUM2) in a condensate. Pumilio proteins

are RNA-binding proteins that are posttranscriptional repressors

and cause translation inhibition and degradation of several

mRNAs that include important regulators of mitosis. Negative

regulation of PUM proteins by NORAD prevents abnormal

mitosis and maintains genomic stability in mammalian cells.

NORAD is a perfect example of RNA imparting multivalency in

biomolecular condensate as it has 18 PUM response elements

(PRE) where PUM proteins bind. A decrease in PREs leads to

reduced phase separating ability and requires higher PUM

concentration to form condensates (Elguindy and Mendell,

2021). Knockdown of NORAD leads to diffused localization

of PUM proteins, significant repression of PUM targets, and

higher chromosomal segregation errors.

The template imitator

LncRNAs such as TERRA (telomeric repeat-containing

RNA) are known to be a part of ALT-associated pro-

myelocytic leukemia bodies (APBs) clustered on the

telomeres. Along with TERRA, other DNA replication and

repair proteins such as BLM (helicase) and RAD52 (RNA-

templated DNA repair) are present in APBs. These bodies

mediate telomerase-independent telomere maintenance

known as alternative lengthening of telomeres (ALT) in

cancer cells, where TERRA acts as a template for telomeric

DNA synthesis. Knockdown of associated proteins leads to a

reduction in APBs (Min et al., 2019), but the effect of TERRA

depletion on it is not known. However, it is known that loss of

TERRA results in telomere dysfunction and instability (Chu

et al., 2017). Higher expression of TERRA in ALT cells

(Episkopou et al., 2014) may have a role in phase separation,

but this needs to be further elucidated.

The DNA mender

Double-strand breaks (DSBs) in DNA are sensed by the MRE11-

RAD50-NBS1 (MRN) complex, which recruits RNA polymerase II at

the damaged sites. This recruitment leads to the synthesis of dilncRNAs

(damage-induced long non-coding RNAs) (Sharma et al., 2021), which

are further processed into shorterDDR(DNAdamage response)RNA.

These RNAs form a DNA–RNA hybrid with damaged ends favoring

repair by homologous recombination and causing accumulation of

DDR factors, such as 53BP1, into foci. Treatment with RNAase A,

RNA pol II inhibitors, or antisense oligonucleotides against dilncRNA

inhibits this foci formation and even disrupts already formed foci. This,

in turn, causes reduced DNA repair efficacy (Pessina et al., 2019).

The double role player

As mentioned earlier, lncRNAs provide binding platforms for

various RBPs, but it is not necessary that a particular lncRNA

interacts with only a single type of RBP. Various features of lncRNA,

especially the repetitive nature, give them the liberty to bindmultiple

RBPs. One such versatile long non-coding RNA is HSAT III (highly

repetitive satellite III) which is now known to provide architecture to

two distinct types of nuclear stress bodies under thermal stress. First

is nSB-S, in which SAFB associates with HSAT III for the

transcription of heat shock proteins. The second is nSB-M,

where HNRNPM (heterogeneous nuclear ribonucleoprotein M)

interacts with HSAT III and affects pre-mRNA splicing.

Knockdown of HSAT III with antisense oligonucleotides causes

the disappearance of both types of stress bodies (Aly et al., 2019).

Importance of phase separation in
cancer

Over the years, people have been trying to understand the role of

cancer driver mutations and their role in cancer progression.

Interestingly, it was found that specific mutation that leads to

oncogene activation also results in the formation of super-

enhancers, which is a type of phase condensates that are formed

by a clustered DNA element (Bradner et al., 2017; Cho et al., 2018).

Many reports documented the involvement of phase condensation

in regulating several functions of cancer cells (Boija et al., 2021).

However, further investigation is needed on themechanistic detail of

phase separation involvement in cancer development and

progression, which will help improve the therapeutic strategies.

Cancer-associated LncRNAs in phase
separation

Long-noncoding RNAs are dysregulated in cancer and have

an important role in cancer development and progression. It is

challenging to completely understand lncRNA’s function due to

its large size, conformational flexibility, and low abundance.

However, the specific subcellular localization of lncRNA leads

to stoichiometrically measurable effects (Wu et al., 2021).

LncRNA has the potential to induce phase separation, but the

role of lncRNA on phase separation for cancer development and

progression is now at the stage of its infancy.

The NEAT1 lncRNA, a dysregulated lncRNA in cancer, is an

architectural component of the paraspeckle nuclear body. In the
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presence of DNA damage response (DDR), p53 protein is activated,

which leads to the NEAT1-mediated paraspeckle formation that

attenuates oncogene-dependent activation of p53 (Adriaens et al.,

2016). MALAT1 (metastasis-associated lung adenocarcinoma

transcript 1) is known to form nuclear speckles comprising pre-

mRNA splicing and transcription factors (Hutchinson et al., 2007;

Miyagawa et al., 2012). Moreover, MALAT1 has an essential role in

metastasis and patient survival in non–small cell lung carcinoma (Ji

et al., 2003). Interestingly, another report shows that

MALAT1 translocates to a heat-inducible non-coding RNA

containing a nuclear body (HiNoCo body) from nuclear speckles

in response to heat shock in a heat shock factor 1–independent

manner (Onoguchi-Mizutani et al., 2021). They have also shown

that the HiNoCo body is a reversible phase condensate and

MALAT1 is essential for cell proliferation under heat shock. It

has been shown that Hippo signaling pathway is a tumor suppressor

pathway by attenuating the YAP nuclear translocation, and most

cancer cells are characterized by dysregulation of theHippo pathway

(Pan, 2010; Zhou et al., 2015). However, the lncRNA association

with the Hippo signaling pathway is largely unknown. Recently, Li

et al., 2006 showed that SNHG9 (small nucleolar RNA host gene 9),

a lipid-associated tumor-promoting lncRNA, and phosphatidic acid

(PA) facilitate attenuation of LATS1 kinase activity by inducing

LLPS, which sequesters LATS1 to promote oncogenic YAP signaling

(Li et al., 2021).

Glutamine metabolism is an important source of carbon and

nitrogen for several biosynthetic processes. The rate-limiting step

of glutaminolysis is the generation of glutamate from glutamine

catalyzed by glutaminase-1 (GLS1) (Yoo et al., 2020). Glutamine

is the critical nutrient source for many cancer cells (DeBerardinis

and Cheng., 2010). The lncRNA GIRGL (glutamine insufficiency

regulator of glutaminase lncRNA), which is induced upon

glutamine starvation, causes dimerization of CAPRIN1. This

complex interacts with GLS1 mRNA, resulting in the

formation of phase condensate facilitated by LLPS. In this

process, CAPRIN1 suppresses GLS1 mRNA translation which

influences cancer cell survival under prolonged glutamine

deprivation stress (Wang R. et al., 2021).

Conclusion and future directions

Phase separation provides a framework to understand how

an individual cell coordinates specific processes at subcellular

levels that are simultaneously robust and adaptive. Like the

membranous barrier, phase boundary ensures the controlled

localization of biomolecules without the complication of

transport through a barrier. The formation of biological

condensates is a tightly regulated thermodynamic process that

depends on the abundance, sequence, and structure of scaffold

and client molecules. Various key mechanisms such as

environmental conditions, chaperones, presence of a

membrane, and posttranslational modifications can work in

concert to affect the physio-chemical property, function, and

homeostasis of condensates.

LncRNAs are key molecules in a cell, whether they are part of

the phase condensate or not, as they perform various functions in

the cell such as gene regulation, including genetic and epigenetic

modifications, swimming to different locations within the cell, and

having the potential to interact with several biopolymers such as

DNA, RNA, proteins, and lipids. The knowledge of LLPS and of

lncRNAs being part of phase condensates unfolds whole new

possibilities. This efflorescing concept gives a better understanding

of how lncRNAs can get concentrated within a particular cell site

while interacting with various biopolymers and performing

specialized tasks. Further exploration of phase condensation

may reveal secrets about the additional functions of known

lncRNAs. LLPS can, indeed, be an educator, answering various

unsolved questions and providing space to lncRNAs to execute

their superpowers. However, a few questions remain to be clarified,

like how a few condensates of a particular lncRNA can define its

activity at thousands or more locations? Are various effector sites

part of a single condensate? While the dynamic nature of phase

condensates is well-appreciated, a better understanding of whether

this mobility can help simultaneously reach the enormous number

of effector sites is needed.

Though phase separation is important for normal cell

functioning, some phase-separated condensates are only present

in cancer cells, such as FUS-CHOP-mediated phase separation is

present in sarcoma (Pérez-Losada et al., 2000). Some condensates

can be present in both normal and transformed cells, but the

higher expression of proteins involved in phase separation in

cancer cells can promote oncogenic signaling. Since phase

separation is adaptive, it can respond to oncogenic alterations

such as mutations, localization, and degradation of molecules,

which regulate the phase separation process either positively or

negatively (Gao et al., 2019; Wang B. et al., 2021). Based on the

involvement of phase separation in different cancer-related

biological processes, altering the expression of critical

components through phase separation can be used for targeted

therapy. These molecules can include scaffold and client molecules

and the environmental conditions involved in phase separation.

The studies on lncRNA-associated liquid–liquid phase

separation in cancer are limited. Further investigation is

required to improve the understanding of the role of lncRNA

for LLPS formation in cancer to improve the therapeutic strategies.

In addition, phase condensates may increase the drug efficacy or

drug resistance in cancer cells depending on their physicochemical

properties to form phase condensates (Klein et al., 2020). It can be

hypothesized that phase separation sequesters drugs given to

eliminate the cancer cells and lncRNAs may be playing an

essential role in it, thereby altering drug efficacy. Where

lncRNA is required for the phase condensate, strategies to

target lncRNA could be considered. In cases where lncRNA is

just a part of phase condensate but is not essential for the

architecture itself, methods to inhibit the phase condensate
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formation may be beneficial. Furthermore, targeting phase

separation may form an important therapeutic strategy in the

future, especially for undruggable proteins for their intrinsically

disordered nature, which is highly abundant in eukaryotes.
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