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Cost-effective milking plans have been adapted to supplement the standard supervised
twice-daily monthly testing scheme since the 1960s. Various methods have been
proposed to estimate daily milk yields (DMY), focusing on yield correction factors. The
present study evaluated the performance of existing statistical methods, including a
recently proposed exponential regression model, for estimating DMY using 10-fold
cross-validation in Holstein and Jersey cows. The initial approach doubled the morning
(AM) or evening (PM) yield as estimated DMY in AM-PM plans, assuming equal 12-h AM
and PMmilking intervals. However, in reality, AM milking intervals tended to be longer than
PM milking intervals. Additive correction factors (ACF) provided additive adjustments
beyond twice AM or PM yields. Hence, an ACF model equivalently assumed a fixed
regression coefficient or a multiplier of “2.0” for AM or PM yields. Similarly, a linear
regression model was viewed as an ACF model, yet it estimated the regression
coefficient for a single milk yield from the data. Multiplicative correction factors (MCF)
represented daily to partial milk yield ratios. Hence, multiplying a yield from single milking by
an appropriate MCF gave a DMY estimate. The exponential regression model was
analogous to an exponential growth function with the yield from single milking as the
initial state and the rate of change tuned by a linear function of milking interval. In the
present study, all the methods had high precision in the estimates, but they differed
considerably in biases. Overall, the MCF and linear regression models had smaller squared
biases and greater accuracies for estimating DMY than the ACF models. The exponential
regression model had the greatest accuracies and smallest squared biases. Model
parameters were compared. Discretized milking interval categories led to a loss of
accuracy of the estimates. Characterization of ACF and MCF revealed their similarities
and dissimilarities and biases aroused by unequal milking intervals. The present study
focused on estimating DMY in AM-PM milking plans. Yet, the methods and relevant
principles are generally applicable to cows milked more than two times a day.
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INTRODUCTION

Accurate milking data are essential for herd management and
genetic improvement in dairy cattle. In reality, lactation
(305 days) yields are not directly measured, but they are
calculated from the test-day yields, either with or without
explicitly imputing DMY for non-test dates (VanRaden, 1997;
Cole and VanRaden; Cole et al., 2009). For genetic evaluation
programs, the standardization of lactation yields is practiced,
ensuring that milking records are comparable between cows. The
latter goal is to adjust variation due to, for example, the number of
milking per day, lactation length, and age and month of calving
(McDaniel, 1973; Schutz and Norman, 1994; Norman et al.,
1995). Hence, the accuracies of test-day yields form the basis
for the accuracies of lactation yields and the following
standardization of lactation yields for genetic evaluation
programs.

Nevertheless, test-day yields are not directly measured
either. In the US, reduced-cost milking plans started to
displace the standard supervised twice-daily, monthly testing
scheme in the 1960s, motivated by reducing visits by a DHIA
supervisor (Puttnam and Gilmore, 1968). Typically, cows are
milked two or more times on a test day, but not all these
milkings are measured. Porzio (1953) was the first to propose
sampling the morning (AM) and evening (PM) milkings
alternately on test days throughout lactation in the
mountainous areas of Italy. This was known as the AM-PM
milking plan, and the daily yield was taken to be approximately
two times the yield of a single milking, assuming equal 12-h
intervals for AM and PM milkings. In practice, however, AM
and PM milking intervals can be different, and milk secretion
rates may vary between day and night. Morning milking
intervals tend to be longer than afternoon milking intervals.
Hence, AM milk yields are usually higher than PM milk yields
(Puttnam and Gilmore, 1970).

Various methods have been proposed to estimate daily milk,
fat, and protein yields. The landmark developments date to the
1980s and 1990s, focusing on adjustment criteria in two broad
categories, namely, additive (ACFs) and multiplicative correction
factors (MCFs). ACFs provide additive adjustments beyond the
two times AM or PM yields as the estimate of daily yields. Everett
and Wadell (1970a) showed that the difference between AM and
PM yields was a function of milking interval and days in milk
(DIM). Significant factors affecting differences varied with cattle
breeds, which also include lactationmonths, herd production, age
classes, and so on (Everett and Wadell, 1970b). Hence, ACFs are
evaluated by the average differences between AM and PM yields
milk, say, in AM-PM milking plans, for various milking interval
classes (MICs), and other categorical variables.

On the other hand, MCFs are ratios of daily yield to yield
from a single milking, computed for each MIC. MCFs are also
referred to as ratio factors. Multiplying a yield from a single
milking by an appropriate ratio factor gives an estimate of daily
yield. Various MCF forms have been proposed, yet the statistical
interpretations differ (Wu et al., 2022). Shook et al. (1980)
described the MCF as reciprocals of the AM or PM portions of
daily yields, subject to quadratic smoothing. DeLorenzo and

Wiggans (1986) proposed deriving MCF for AM-PM milking
plans based on a linear regression model without intercept. They
assumed heterogeneous means and variances and fitted separate
regression models to each MIC. Wiggans (1986) proposed
deriving MCFs for cows milked three times a day by
regressing single-to-daily yield ratio on milking interval.
Additional predictors such as DIM can be included in the
model when applicable. MCF models are statistically
challenged by “the ratio problem” because they have a ratio
variable (i.e., proportional daily yield) as the dependent variable
in the data density (Wiggans, 1986) or the smoothing functions
(Shook et al., 1980; DeLorenzo and Wiggans, 1986).
Consequences included possible biases in two aspects:
omitted variable bias and measurement error bias (Lien et al.,
2017). The former bias happens because main model effects are
missing if the model is re-arranged by multiplying the
denominator variable to both sides of the model equation.
The latter bias occurs when there are measurement errors
with the denominator variable of the response. Furthermore,
the MCF models postulated a rational function between daily
milky yield and milking, in which the numerator is 1, and the
denominator is a linear function (DeLorenzo and Wiggans,
1986; Wiggans, 1986) or a quadratic function (Shook et al.,
1980) of milking interval.

Previous studies almost exclusively assessed the accuracy of
estimated daily yield in the same datasets from which the
correction factors were derived (Putnam and Gilmore, 1968,
1970; Smith and Person, 1981; Liu et al., 2000). This type of in-
sample evaluation essentially reflected more model-fitting
accuracy than prediction accuracy. In the present study, our
primary goal was to evaluate the performance of existing
statistical models, including the recently proposed
exponential regression model (Wu et al., 2022), in Holstein
and Jersey cattle by cross-validation. Secondary goals included
comparing model parameters and characterizing ACF and MCF
obtained from various models, relative to the initial approach
assuming a fixed multiplicative factor of 2.0 for AM or PM
yields. Cross-validation, also referred to as out-of-sample
testing, is a model validation technique for assessing how the
results of a statistical analysis will generalize to an independent
dataset (Stone, 1974; Geisser, 1993). Briefly, one round of cross-
validation involves partitioning a sample of data into
complementary subsets, performing the analysis on one
subset (i.e., training set), and validating the analysis on the
other subset (i.e., validation or testing set). To access variability,
multiple rounds of cross-validation are performed using
different partitions, and the validation results are combined
by averaging over the rounds to give an estimate of the model’s
predictive performance. Hence, cross-validation combines
(averages) measures of fitness in prediction to derive a more
accurate estimate of model prediction performance. Because
cross-validation is a resampling method that uses different
portions of the data to train and test a model across
iterations, it also allows inferring the error origins by
decomposing an MSE into the variance of the estimate and
squared bias. The inverse of the variance provides a measure of
precision for the estimates.
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MATERIALS AND METHODS

AM-PM Milking Data
Milking records were extracted from the data repositories
maintained by the Council for Dairy Cattle Breeding
(CDCB). The data consisted of 9,218 milking records from
6,533 cows in 27 herds in 11 states, USA, collected from
2006 through 2009 (Table 1). Most milking records consisted
of 82.7% Holsteins and 13.1% Jersey (13.1%) cows. The
remaining (4.2%) milking records represented multiple
breeds, including Ayrshire (0.7%), Brown Swiss (2.4%),
Milking Shorthorn (0.01%), Red and White Holstein (0.04%),
and unknown breeds (0.87%). Milking records from Holstein
and Jersey cows were used in the present study. Data editing
excluded records with missing or incomplete values for relevant
columns (e.g., AM or PM milking yield, AM or PM milking
interval, parity, lactation year or month, days in milk (DIM),
and herd locations). The final dataset retained 7,544 Holstein
milking records from 23 herds and 1,194 Jersey milking records
from 9 herds. Approximately, one-third of records (30.6–39.9%)
represented the first parity cows and two-thirds (59.4–69.4%)
were the second parity cows in the two breeds. Milking records
collected from parity 3 and greater were rate (0–10.7%).

Statistical Methods
Model 0 (M0): Doubling AM or PM Milking Yield
The initial AM-PM milking plan alternately sampled AM or PM
milking on a test day throughout lactation, and the daily yield was
obtained by doubling single milk weighed on each test day
(Porzio, 1953). That is,

ŷij � 2xij, (1)
where xij is the known AM (j � 1) or PM (j � 2) yield for cow i,
and ŷij is an estimated DMY. Doubling AM or PM milk yield is
equivalent to assuming a fixed multiplicative correction factor for
all cows, assuming equal (12–12 h) AM and PM milking intervals.

Model 1 (M1): ACF Model With Discrete Variables
Additive correction factors are evaluated by the expected
values of the differences between AM and PM yields,
computed locally for each MIC, coupled with other
categorical variables such as lactation months (Everett and
Wadell, 1970b). For example, let zijkl be the difference between
AM and PM milk yield for cow i, pertaining to MIC k and
lactation month (LM) l. Assume that the yield from milking j is
measured. The data model accounting for variations due to
MIC and LM is the following:

zijkl � μj +MICk + LMl + (MIC p LM)kl + ϵijkl, (2)
where μj is the overall mean for milking j, MICk and LMl are
the main effects for MIC k and LM l, respectively,
(MIC p LM)kl is the interaction effect, and ϵijkl is an error
term. Then, ACF (denoted by Δjkl) are computed by

Δjkl � E(zijkl),

≈ μ̂j + M̂ICj + L̂Mk + ̂(MICpLM)jk. (3)
Given the computed ACF and a single milk yield that has been

measured for cow i (denoted by xijkl), the estimated daily milk
yield (DMY, denoted by ŷijkl) is obtained as follows:

ŷijkl � Δjkl + 2xijkl. (4)
In the aforementioned equation, we see that an ACF model is

equivalent to a regression model assuming a fixed regression
coefficient (2.0) for AM or PM yield. ACF models can be fit on
AM or PM milk yields separately or jointly.

Model 2 (M2A,B): ACF Model With Continuous
Variables
An ACF model can also be fitted with continuous variables for
milking interval (denoted by tij) and DIM (denoted by dij),
assuming heterogeneous intercepts and common slopes for
milking interval and DIM, respectively, as follows.

zij � αj + βtij + γ(dij − d0) + ϵij, (5)
where zij is the difference between milking j and the other
milking for cow i, αj is the intercept for milking j, β and γ are the
common regression coefficients for milking interval and DIM,
respectively, d0 is an arbitrary constant value for DIM, say,
d0 � 158, and ϵij is an error. Here, DIM is used as a continuous
variable, instead of the categorical LM.

Given the estimated model parameters, DMY is estimated by

ŷij � α̂j + β̂tij + γ̂(dij − d0) + 2xij, (6)
where xij is the measured yield from milking j for cow i. By this
approach, the model is referred to as M2A. Alternatively, ACF are
computed for discretized MIC, say MIC k of milking j (denoted
by Δ(k)

j ):

Δ(k)
j � α̂j + β̂�t(k)j , (7)

where �t(k)j is a midpoint of MIC k. Here, we used superscript “(k)”
to pinpoint discretized MIC, which distinguishes from a subscript
k for a categorical variable for MIC in the model. This notation is
used throughout this report. Then, DMY is estimated by

ŷij � Δ(k)
j + γ̂(dij − d0) + 2xij. (8)

With the latter approach (denoted by M2B), DMY is estimated
through the ACF.

Model 3 (M3A,B): Linear Regression With Linear
Milking Interval and DIM
The linear model approach treats DMY as the response variable. Let
yij be a daily yield for cow i on milking j, xij be a yield from a single
milking frommilking j, tij be themilking interval time, anddij be the
responding DIM for the test date. Then, the linear regression model
accounting for the aforementioned variables is the following:

yij � αj + βtij + γ(dij − d0) + bxij + ϵij. (9)
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In (9), αj is an overall mean specific to milking j, β, γ, and b
are common regression coefficients for milking interval, DIM,
and single milk (AM or PM) yield, respectively, and ϵij is an
error.

Linear regression also offers two methods of estimating DMY.
First, DMY for a cow can be estimated directly given the
estimated model parameters in (9), as follows:

ŷij � α̂j + β̂tij + γ̂(dij − d0) + b̂xij. (10)
The aforementioned equation is referred to as the model M3A.

Second, ACF can be computed on discretized MIC, following the
same formula as (7), and then DMY are estimated by the
following (denoted by M3B):

ŷij � Δ(k)
j + γ̂(dij − d0) + b̂xij. (11)

Model 4 (M4): Linear Regression With Linear and
Quadratic Milking Interval and DIM
Linear regression models can be defined with varying complexity
(Liu et al., 2000; Schaeffer et al., 2000). In the present study, we
also evaluated a linear regression model with linear and quadratic
variables for milking interval and DIM:

yij � αj + β1tij + β2t
2
ij + γ1(dij − d0) + r2(dij − d0)2 + bxij + ϵij.

(12)
Given the estimated model parameters, DMY is estimated

directly as follows:

ŷij � α̂j + β̂1tij + β̂2t
2
ij + γ̂1(dij − d0) + γ̂2(dij − d0)2 + b̂xij.

(13)
MCF could be derived similar to M2B, yet considering the

quadratic terms, but they were not evaluated in the present study.

Model 5 (M5): The 1980 Shook-Jensen-Dickimson
MCF model
Shook et al. (1980) described MCF by the inverse of AM or PM
proportion of daily milk yield. For example, MCF given PM yields
are formulated as follows:

Fjk � AMPjk + PMPjk

PMPjk
, (14)

where j � 2 (PM), and AMPk and PMPk stand for bulk AM and
PM yields, respectively, for MIC k in a population. Shook et al.
(1980) employed a quadratic regression of the PM portion of
DMY on MIC midpoints, and smoothed estimates of MCF were
obtained as follows:

Fjk � 1

α̂j + β̂j1�tjk + β̂j2�t
2
jk

. (15)

In the aforementioned equation, α̂j, β̂j1, and β̂j2 are the
estimated intercept and regression coefficients in the quadratic
smoothing function, and �tjk is the midpoint of MIC k for milking

j . The quadratic smoothing also provided estimates for MIC with
no or insufficient milking records.

Given the estimated PMMCF, the AMMCF can be computed
indirectly (Shook et al., 1980), but this approach was not taken in
the present study. Instead, we computed AM and PM MCF
directly from the AM or PM milking data. Similar to (14),
MCF given AM yields are formulated to be the inverses of the
AM portion of daily yield, computed for each AM MIC (j � 1):

Fjk � AMPjk + PMPjk

AMPjk
. (16)

Given the MCF (Fjk) and the yield from single milking j for an
animal, say i, measured on MIC k (xijk), DMY for this animal is
estimated by

ŷijk � Fjkxijk. (17)

Model 6 (M6): The 1986 DeLorenzo and Wiggans
MCF model
DeLorenzo and Wiggans (1986) derived MCF for cows milked
twice a day based on a linear regression without intercept. They
assumed heterogeneous means and variances and fitted separate
linear regression models for different MIC.

yijk � bjkxijk + γjk(dijk − d0) + ϵijk (18)
In (18), bjk is the regression coefficient for single milk yield,

and γjk is the regression coefficient of DIM. Here, the regression
coefficient, bjk, coincides with the multiplicative correction
factor, as defined by Shook et al. (1980) derived for MIC k of
milking j, assuming E(dijk − d0) � 0. DeLorenzo and Wiggans
(1986) employed a linear regression smoothing for the reciprocals
of computed AM and PM factors, respectively:

F(k)
j � 1

α̂j + β̂j�tjk
. (19)

Given the computed MCF, DMY is estimated by

ŷ(k)
ij � F(k)

ij x(k)
ij + γ̂jk(d(k)

ij − d(k)
0 ). (20)

Model 7 (M7A,B): The 1986 Wiggans MCF model
Wiggans (1986) proposed to derive MCF for cows milked
three times a day by modeling the single-to-daily milk yield
ratio as a linear function of milking interval and DIM when
applicable:

xij

yij
� αj + βtij + γ(dij − d0) + ϵij. (21)

The aforementioned model also applies to cows milked more
than three times and, arguably, it applies to cows milked twice
a day. In the latter case, however, the model is subject to the
violation of linearity with a longer milking interval (Schmidt,
1960). In the present study, DMY is estimated directly based
on the estimated model parameters from (21) or through
computed MCF according to Wiggans (1986). In the former
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case (denoted by M7A), DMYs are computed directly given
the estimated model parameters, as follows:

ŷij �
xij

α̂j + β̂tij + γ̂(dij − d0). (22)

In the latter case (denoted by M7B), MCF are obtained by
locally taking the expected value on both sides of Equation 21,
assuming E(γ(d(k)ij − d(k)0 )) � 0 and E(ϵ(k)ij ) � 0. In other words,

F(k)
j � 1

αj + β�t(k)j

. (23)

Similarly, by taking the first-order Taylor series
approximation of (21), that is, E(xijyij

) ≈ E(xij)
E(yij), and assuming

E(ϵij) � 0, DMY is estimated using the same formula as (20).

Model 8 (M8A,B): Exponential Regression Model
Considering milking interval and days in milk, the exponential
regression model for estimating DMY takes the following form
(Wu et al., 2022):

yij � xb
ij e

(αj+βtij+γ(dij−d0)+ϵij). (24)
By noting e ≈ 2.718, the exponential function is analogous to

an exponential growth (or decay) function, given its initial
value y0 � xb

ij:

y � y0(1 + r)tp , (25)
where r � 1.718 is the rate of change, tuned by a time function,
E(tp) � αj + βtij + γ(dij − d0), as a linear function of milking
interval and days in milk, and y0 � xb is the initial state. Here, y

has an exponential growth when tp > 0, or an exponential decay
when tp < 0.

The model parameters can be estimated by taking the
following logarithm transformation:

log(yij) � αj + βtij + γ(dij − d0) + blog(xij) + ϵij. (26)
As a direct approach. DMY is estimated, given the model

parameter estimates (b̂, α̂j, β̂, and γ̂) (denoted as the model M8A),
assuming E(ϵij) � 0. In other words,

ŷij � xb̂
ij e

(α̂j+β̂tij+γ̂(dij−d0)). (27)
Alternatively, MCF is computed locally for discretized MIC

(Wu et al., 2022):

F(k)
j � E(x(k)

ij )b−1ρ(k)j e(α̂j+β̂�t(k)j ), (28)
where ρ(k)j � e

1
2 (V(y(k)

ij )E(y(k)
ij )−2−bV(x(k)ij )E(x(k)ij )−2), and E(y(k)

ij ) � �y(k)
j

and E(x(k)
ij ) � �x(k)

j are the corresponding means for daily yield
and AM (or PM) yield. Then, DMY is estimated by

ŷ(k)
ij � F(k)

j x(k)
ij × eγ̂(d(k)ij −d(k)0 ). (29)

The logarithm linear regression also suggests that ACF can
be computed for estimating log(yij), and then, DMY in its
original scale can be computed conveniently by taking an
exponential transformation. The option for computing ACF
based on the exponential regression model was not evaluated in
the study.

Cross-Validation of Accuracy
The performance of eight selected models and two strategies
(Table 2) was evaluated for estimating DMY in the Holstein and
Jersey milking datasets. The eight models included two ACF
models, one with discrete MIC (M1) and the other with a
continuous variable for milking interval (M2), a linear
regression model M3 and M4, and three MCF models (M5,
M6, and M7), according to Shook et al. (1980), DeLorenzo
and Wiggans (1986), and Wiggans (1986), respectively, and
the exponential regression model (M8), with doubling AM or
PM (M0) as the benchmark model for comparison. For the two
strategies, a model labeled “A” (M2A, M3A, M7A, and M8A)
estimated DMY directly, given the estimates of model parameters,
whereas a model labeled “B” (M2B, M3B, M7B, and M8B)
estimated DMY indirectly via the computed ACF or MCF.
Accuracy and decomposed mean squared errors (MSE) were
evaluated for each model or model–strategy combination by
cross-validation. Briefly, each dataset was divided into
10 approximately equal subsets. Then, nine subsets were
pooled for training, and the remaining subset was used for
testing the accuracy. The cross-validation process rotated
10 times, with each subset used for testing once and only
once. To facilitate inference of the variance of the estimates,
cross-validations were replicated 30 times, each with randomly
selected subsets of data samples for training and testing.

TABLE 1 |Number (n) and percentage (%n) of milking records by parities, lactation
years, and states in the Holstein and Jersey cattle, respectively.

Variable Holstein Jersey

n %n n %n

Parity 1 3,006 39.9 366 30.6
2 4,482 59.4 831 69.4
3+ 56 0.70 0 0

SUM 7,544 100 1,197 100
Year 2006 153 2.00 434 36.3

2007 338 4.50 0 0
2008 7,000 92.8 360 30.1
2009 53 0.70 403 33.7

SUM 7,544 100 1,197 100
State Vermont 1,738 23.0 4 0.30

New York 361 4.80 182 15.2
Pennsylvania 1,224 16.2 333 27.8
Indiana 375 5.00 206 17.2
Minnesota 338 4.50 0 0
Iowa 153 2.00 434 36.3
Delaware 511 6.80 2 0.20
Maryland 900 11.9 0 0
West Virginia 252 3.30 0 0
Georgia 945 12.5 36 3.00
Florida 747 9.90 0 0

SUM 7,544 100 1,197 100
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TABLE 2 | Statistical methods and correction factors used in the present studya,b,c.

Model Equation Additive (Δ) or
ratio (F) Factor

M0 yij � 2xij F ≡ 2
M1 yijkl � μj +MICk : LMl + 2xijkl + ϵijkl Δjk � μ̂j + ̂MICj : LMk

M2A yij � αj + βtij + γ(dij − d0) + 2xij + ϵij ---
M2B yij � αj + βtij + γ(dij − d0) + 2xij + ϵij Δ(k)

j � α̂j + β̂�t(k)j + γ̂E(d(k)
ij − d(k)

0 )
M3A yij � αj + βtij + γ(dij − d0) + bxij + ϵij ---
M3B yij � αj + βtij + γ(dij − d0) + bxij + ϵij Δ(k)

j � α̂j + β̂�t(k)j + γ̂E(d(k)
ij − d(k)

0 )
M4 yij � αj + β1tij + γ1(dij − d0) + β2t

2
ij + γ2(dij − d0)2 + bxij + ϵij− ---

M5 ∑i
x(k)ij∑i
y(k)ij

� αj + βj1�t
(k)
j + βj2(�t(k)j )2 + ϵj F(k)

j � 1
α̂j+β̂j1�t(k)j +β̂j2(�t(k)j )2

M6 yijk � bjkxijk + εijk ; (b̂(k)
j )−1 � αj + βj�t

(k)
j + ϵj F(k)

j � 1
α̂+β̂�t(k)j

M7A xij
yij
� αj + βtij + γ(dij − d0) + ϵij

M7B xij
yij
� αj + βtij + γ(dij − d0) + ϵij F(k)

j � 1
α̂+β̂�t(k)j

M8A yij � xbij e
(αj+βtij+γ(dij−d0 )+ϵij ) ---

M8B yij � xbij e
(αj+βtij+γ(dij−d0 )+ϵij ) F(k)

j � ρpeα̂j+β̂�t
(k)
j

aM0 = daily milk yield (DMY) estimated by doubling morning (AM) or evening (PM) milk yield; M1 = additive correction factor (ACF) model with categorical milking interval classes (MIC) and
lactation months; M2A = ACF model with continuous variables for milking interval and days in milk (DIM); M2B = M2A with ACF computed on discretized MIC; M3A = linear regression of
daily milk yield on milking interval and DIM; M3B =M3Awith ACF computed on discretizedMIC; M4 =M3Awith quadratic terms for milking interval and DIM; M5 =multiplicative correction
factor (MCF) model according to Shook et al. (1980); M6 = MCF model according to DeLorenzo and Wiggans (1986); M7A = linear regression of AM or PM proportion of DMY on milking
interval and DIM (Wiggans, 1986); M7B = M7A with MCF computed for discretized MIC (Wiggans, 1986); M8A = exponential regression model (Wu et al., 2022); M8B = M8A with MCF
computed on discretized MIC.
b�t(k)j = midpoint of milking interval k of milking j, for j � 1 (AM milking) or 2 (PM milking): ρp � e

1
2 (V(y(k)ij )E(y(k)ij )−2−bV(x(k)ij )E(x(k)ij )−2 ) ×

E(x(k)ij )b
E(x(k)ij ) .

c--- = computing yield correction factors is not required.

FIGURE 1 | Distributions of morning (AM) and evening (PM) milking interval time in Holstein cows (A) and Jersey cows (B), respectively.
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The correlation between the estimate and actual DMY and the
following R2 accuracy:

R2 � σ2

σ2 +MSE
. (30)

Here, σ2 was the true phenotype of DMY, assuming actual
DMY was obtained without measurement error, and MSE was
mean squared error. The R2 accuracy was calculated per cross-
validation population-wise or per individual animal. In the
former case, MSE were obtained as the population parameter
and the R2 accuracy was calculated for each cross-validation
replicate. Then, the mean and standard deviation (also referred
to as the standard error) of the R2 accuracy and correlation
estimates were obtained across the 30 cross-validation
replicates. In the latter case, the MSE was calculated as the
average across the 30 replicates for each animal, and individual
R2 accuracy was calculated according to Equation 30 per
animal.

To infer the origin of errors, the mean squared error (MSE) of
DMY estimates from the 10-fold cross-validation was
decomposed into the variance (Var(ŷi)) and the squared bias
(Bias2(ŷi)), as follows:

MSE � 1
n × m

∑n

i�1∑
m

r�1(ŷir − yi)2

� 1
n × m

∑n

i�1∑
m

r�1(ŷir − ŷi)2+1n∑
n

i�1(ŷi − yi)2

� Var(ŷi) + Bias2(ŷi). (31)
In the aforementioned equation, Var(ŷi) �

1
n × m∑n

i�1∑m
r�1(ŷir − ŷi)2 and Bias2(ŷi) � 1

N∑N
i�1(ŷi − yi)2,

where n is the number of animals, m is the number of
replicates, yi was a true DMY for cow i, ŷir was an

estimate of daily milking yield from the rth replicate, and
ŷi was the average of the estimated DMY across the
30 replicates.

Cubic Smoothing Splines
Cubic smoothing splines of the individual R2 accuracies and
actual daily milk yields, respectively, were also fitted to provide
approximations with weaker assumptions for relevant
comparisons. Statistically, smoothing splines are function
estimates (denoted by f̂(x)) obtained from a set of noisy
observations yi of the target f(xi), which balance a measure
of goodness of fit of f̂(x) to yi with a derivative-based
measurement of the smoothness of f̂(x) (Craven and Wahba.,
1979). A kth order spline is a piecewise polynomial function of
degree k, which is continuous and has continuous derivatives of
orders 1,. . ., k − 1, at its knot points.

Let {xi, yi; i � 1, . . . , n} be a set of observations governed by
the relation yi � f(xi) + ϵi. The cubic smoothing spline estimate
f̂ of the functionf is defined to be theminimizer of the following,
over the class of twice differentiable functions,

∑n

i�1(yi − f̂(xi))2 + λ∫ f̂
′′(x)2dx. (32)

In the aforementioned equation, λ≥ 0 is a smoothing
parameter, controlling the trade-off between fidelity to the
data and roughness of the function estimate. This is often
estimated by generalized cross-validation or by restricted
marginal likelihood (REML) which exploits the link between
spline smoothing and Bayesian estimation (because the
smoothing penalty can be viewed as being induced by a prior
on the f). The integral is often evaluated over the whole real line,
although it is also possible to restrict the range to that of xi. As
λ → 0 (no smoothing), the smoothing spline converges to the

TABLE 3 | Decomposed mean squared error, R2 accuracy, and correlation between estimated and actual daily milk yield obtained from 10-fold cross-validation a,b,c.

Method Holstein Jersey

Varb Bias2 MSE Acc Cor Varb Bias2 MSE Acc Cor

M0 0 22.8 22.8 0.821 (0) 0.927 (0) 0.000 14.54 14.54 0.798 (0) 0.948 (0)
M1 0.003 11.3 11.3 0.902 (<0.001) 0.951 (<0.001) 0.012 6.718 6.730 0.895 (<0.001) 0.952 (0.001)
M2A <0.001 11.3 11.3 0.902 (<0.001) 0.951 (<0.001) 0.002 6.910 6.912 0.892 (<0.001) 0.952 (<0.001)
M2B <0.001 11.4 11.4 0.902 (<0.001) 0.951 (<0.001) 0.002 6.746 6.748 0.895 (<0.001) 0.952 (<0.001)
M3A <0.001 10.3 10.3 0.910 (<0.001) 0.951 (<0.001) 0.002 6.078 6.080 0.904 (<0.001) 0.953 (<0.001)
M3B <0.001 10.3 10.3 0.910 (<0.001) 0.951 (<0.001) 0.003 6.226 6.229 0.902 (<0.001) 0.952 (<0.001)
M4 <0.001 10.2 10.2 0.911 (<0.001) 0.952 (<0.001) 0.025 6.280 6.305 0.901 (<0.001) 0.953 (<0.001)
M5 0.002 11.0 11.0 0.905 (<0.001) 0.951 (<0.001) 0.029 6.707 6.736 0.895 (<0.001) 0.954 (<0.001)
M6 0.001 11.0 11.0 0.904 (<0.001) 0.952 (<0.001) 0.008 6.517 6.525 0.898 (<0.001) 0.953 (<0.001)
M7A <0.001 10.9 10.9 0.905 (<0.001) 0.952 (<0.001) 0.002 6.570 6.572 0.897 (<0.001) 0.954 (<0.001)
M7B <0.001 11.0 11.0 0.904 (<0.001) 0.951 (<0.001) 0.004 6.910 6.914 0.892 (<0.001) 0.943 (<0.001)
M8A 0.001 10.1 10.1 0.912 (<0.001) 0.952 (<0.001) 0.003 6.072 6.075 0.905 (<0.001) 0.954 (<0.001)
M8B 0.001 11.0 11.0 0.910 (<0.001) 0.952 (<0.001) 0.010 6.088 6.098 0.903 (<0.001) 0.953 (<0.001)
aM0 = daily milk yield (DMY) estimated by doubling morning (AM) or evening (PM) milk yield; M1 = additive correction factor (ACF) model with categorical milking interval classes (MIC) and
lactation months; M2A = ACF, model with continuous variables for milking interval and days in milk (DIM); M2B = M2A with ACF, computed on discretized MIC; M3A = linear regression of
daily milk yield onmilking interval and DIM; M3B =M3Awith ACF, computed on discretizedMIC; M4 =M3Awith quadratic terms for milking interval and DIM;M5 =multiplicative correction
factor (MCF) model according to Shook et al. (1980); M6 = MCF model according to DeLorenzo and Wiggans (1986); M7A = linear regression of AM or PM and proportion of DMY, on
milking interval and DIM (Wiggans, 1986); M7B =M7Awith MCF, computed for discretizedMIC (Wiggans, 1986); M8A = exponential regression model (Wu et al., 2022); M8B =M8Awith
MCF, computed on discretized MIC.
bVar = variance; Bias2 = squared bias; MSE, mean squared error; Acc = R2 accuracy; Cor = correlation between the estimated and actual DMY.
cNumbers in the brackets were standard errors of the R2 accuracy estimates.
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interpolating spline. As λ → ∞ (infinite smoothing), the
roughness penalty becomes paramount and the estimate
converges to a linear least squares estimate. The roughness
penalty based on the second derivative is the most common in
the modern statistics literature, although the method can easily be
adapted to penalties based on other derivatives. The penalized
sum of squares smoothing objective can be replaced by a
penalized likelihood objective in which the sum of squares
terms is replaced by another log-likelihood-based measure of
fidelity to the data. The sum of squares term corresponds to
penalized likelihood with a Gaussian assumption on the ϵi.

RESULTS AND DISCUSSION

Summary of Milking Data for Holstein and
Jersey Cows
In the Holstein cows, the mean and median of AM milking
intervals were 12.3 h and 12.1 h, respectively, whereas the mean
and median of PM milking intervals were 11.6 h and 11.9 h,
respectively. The AM milking intervals had a wider range
(5.6–23.67 h) than the PM milking intervals (5.0–18.4 h)
(Figure 1A). A paired t-test showed that the mean AM
milking interval was significantly longer than the mean PM
milking interval in the Holsteins cows (t = 27.3, p < 2.2e-16).
The mean difference between AM and PM milking intervals was
0.688 h, with a 95% confidential interval between 0.639 h and
0.738 h. Similarly, the mean and median of AM milking intervals
in the Jersey cows were 13.0 h and 12.9 h, respectively. The mean
and median of PM milking intervals were 11.1 h and 11.0 h,
respectively. The AM milking interval was significantly longer
than the PMmilking interval based on a paired t-test (t = 44.2; p <
2.2e-16). The mean difference between AM and PM milking
interval in the Jersey cows was 1.87 h, with a 95% confidential
interval between 1.79 h and 1.95 h. The AM milking interval
range (9.6–23.5 h) was also larger than the PM milking interval
range (1.4–14.3 h) in Jersey cows (Figure 1B). The distribution of
AM and PM milking intervals was approximately symmetric and
bell shaped in the Holstein and Jersey cows, respectively
(Figure 1).

Longer AM milking intervals led to greater average AM milk
yields (Figure 2). In the Holstein cows, the mean AM milk yield
(16.4 kg) was significantly larger than the average PM milk yield
(15.3 kg) (t = 23.5; p < 2.2e-16) (Figure 2A). The mean difference
between AM and PM milk yield was 2.49 kg, with a 95%
confidential interval between 2.29 and 2.70 kg, in the Holstein
cows. Similarly, the mean AMmilk yield (12.7 kg) was significantly
larger than the average PMmilk yield (11.0 kg) (t = 22.2; p < 2.2e-
16) in the Jersey cows (Figure 2B). The mean difference between
AM and PM milk yield was 3.87 kg, with a 95% confidential
interval between 3.53 and 4.21 kg, in the Jersey cows.

Comparing Decomposed Mean Squared
Errors and Accuracies
Accuracy and precision are two primary measures of
observational or estimation errors. For estimating DMY,

accuracy tells how close an estimated DMY is to the actual
value, whereas precision shows how well the estimates agree
with each other. Precision was measured by the inverse of the
variance of DMY estimates. The smaller the variance, the greater
the precision. Decomposed MSE were shown in Table 3. All the
methods had close to zero variances for the DMY estimates,
meaning they all had high precision of the estimated DMY. The
variance of DMY estimates was not greater than 0.003 in Holstein
cows and less than 0.03 in Jersey cows. The MSE were dominated
by the portion of squared bias in Holstein and Jersey cows. Model
M0 (doubling AM or PM milk yields) had the largest squared
biases and the largest MSE, which were more than two times their
counterparts for all the other models in Holstein and Jersey cows.
Comparably speaking, the ACF models had larger squared biases
and MSE than the MCF and linear regression models. The
exponential regression model (M8A) had the smallest squared
biases and the smallest MSE. Not including the model M0, the
root MSE was between 3.18 and 3.38 kg in the Holstein cows and
between 2.46 and 2.63 kg in the Jersey cows. The root MSE
roughly agreed with two or three Schutz andNorman (2011), who
reported a range of root MSE between 2.07 and 2.85 kg for cows
milked twice a day. Higher root MSE for estimating DMY were
reported in cows milked times a day (Schutz et al., 2008). It is
worth mentioning that we used a 10-fold cross-validation,
whereas Schutz and Norman (2011) employed an in-sample
evaluation. Often, cross-validations tend to report higher
errors than in-sample evaluations when applied to the same
dataset. In-sample errors are the errors we get on the same
data we used to train the prediction model, which tends to be
optimistic, compared to the errors we would get from a new
sample. The latter is referred to as out-of-sample errors. The
reason is overfitting with in-sample evaluation (Harkins and
Douglas, 2004). Overfitting occurs when the trained predictive
model becomes sensitive to the noise in the sample. As a result,
the function will perform well on the training set but not perform
well on new data. The more overfitting occurs, the worse the
predictive model will generalize to new data. When we get a new
dataset, there will be different noises, so the accuracy will go down
to some extent. Hence, in-sample errors are always less than out-
of-sample errors, which leads to overestimated accuracy. Yet, the
fact is, once we build a model on a sample of data that we have
collected, we might want to test the realistic expectation of the
predictive model as to how well it will perform on new data.

The standard deviation of the mean R2 accuracy between the
30 CV replicates was 0 for M0 and less than 0.001 for all the
remaining methods. Exactly, the standard deviation of R2

accuracies between cross-validation replicates ranged between
0.00002 and 0.0001 for these methods in Holstein cows and
between 0.0001 and 0.0005 in Jersey cows. By this definition, the
R2 accuracy is viewed as a population parameter. Based on paired
t-test, we showed that the exponential regression model had
highly significant mean R2 accuracy than each of the existing
methods (Holsteins: t = 584.8–37281; p < 2.2–16; Jerseys:
1178.5–5861.4; p < 2.2e-16). The model M0 had the lowest R2

accuracy (0.821 in Holstein cows and 0.798 in Jersey cows).
Compared to model M0, the ACF and MCF models, including
the linear regression models, highly significantly improved the
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accuracies for estimating DMY (Holsteins: t = 8658.1–37281; p <
2.2e-16; Jerseys: 11.67–5861.4; p < 1.8e-12). The MCF and linear
regression models had slightly higher accuracies of DMY
estimates (0.904–0.912 in Holstein cows and 0.892–0.905 in
Jersey cows) than the ACF models (0.902–0.910 in Holstein
cows and 0.892–0.904 in Jersey cows). The exponential
regression models, M8A and M8B, had the greatest R2

accuracies of DMY estimates (0.910–0.912 in Holstein cows
and 0.903–0.905 in Jersey cows). Based on a similar criterion,
Liu et al. (2000) reported slightly higher R2 accuracies (0.885) for
doubling AM or PM approach in the German Holstein cows than
ours in the US Holstein cows (0.821). The accuracies of estimated
DMY (0.902–0.912) in the US Holstein cows that we obtained
using the DeLorenzo and Wiggans (1986) model were within the
accuracy range (0.900–0.914) in German Holstein cows obtained
by Liu et al. (2000) using the same model. In addition to the
genetic differences between German and the US Holstein cows,
the accuracies of estimated DMY can vary with evaluation
methods. Liu et al. (2000) employed in-sample evaluation,
whereas we evaluated the accuracies by 10-fold cross-
validation. As mentioned earlier, the accuracy obtained from
cross-validation tends to be lower than that from in-sample
evaluation because the former evaluations are prone to
overfitting (Harkins and Douglas, 2004). Thus, comparing
various methods is valid only when applied to the same
dataset with the same evaluation strategy.

Correlation has been widely used to measure prediction
accuracy, e.g., in genomic prediction and machine learning.
However, correlation is not as informative as the R2 accuracy
for evaluating the performance of various models to estimate
DMY. In the present study, all the models had similarly high
correlations (0.951–0.952 in Holstein cows and 0.952–0.954 in
Jersey cows) between the estimated and actual DMY, except that
the model M0 had significantly lower corrections (0.927 in
Holstein cows and 0.948 in Jersey cows). The standard
deviation (i.e., standard error) of correlations between cross-
validation replicates were all less than 0.0005. In statistics,
correlation measures the degree of dependence between two
random variables. Yet, correlation is not a precise measure of
accuracy for two evident reasons. First, a correlation can be
negative, but a valid accuracy measure is non-negative. Second
and more importantly, a correlation does not account for
estimation biases, meaning that two methods having identical
corrections can vary drastically in the biases of the estimates.
Hence, we recommend using the R2 accuracy, instead of
correction, as the measure of accuracy for estimating DMY.

A couple of reasons are worth noting for the lower accuracies
with the ACFmodels than linear regression models. First, an ACF
model is equivalent to assuming a fixed regression coefficient for
partial milk yield, which can limit its predictability. For example,
consider the models M2A andM2B.With some re-arrangements,
these two models can be re-arranged into linear regression
models of DMY on milk interval and DIM, plus a variable for
AM or PMmilk yield with a fixed regression coefficient (b � 2.0).
The re-arranged models have similar model settings for predictor
variables as the linear regression models, M3A and M3B, except
that the linear models treat regression coefficients as unknown

and estimated from the data. Possibly, by relaxing the restriction
b � 2.0 and estimating it from the data, the linear regression
models (M3A and M3B) predicted the data better than the ACF
models (M2A and M2B). Second, specific to ACF models with
discrete regression variables (e.g., M1), it was challenged by data
missing or insufficient data for some MIC, which led to a loss of
accuracy for estimating DMY. In reality, deriving ACF from a
regression model with discrete variables is also challenged as the
number of categorical variables increases. Hence, the
computation can be highly intensive or even not practically
operational. For example, 20 MIC, 4 herd location regions,
4 years, 4 seasons, and 2 parities were considered. Then, there
would be 20 × 4 × 4 × 4 × 2 � 2, 560 specific classes for which
ACF needed to be estimated if considering all these categorical
variables at the same time.

Concerning an ACF or MCF model with continuous variables
for milking intervals and DIM, discretizing a continuous variable
to a categorical variable often leads to loss of information (and,
therefore, accuracy) to some extent. Wu et al. (2022) showed
analytically that computing ACF and MCF on discretized MIC
led to a loss of accuracy of DMY estimates. This phenomenon was
empirically observed in the Holstein and Jersey cows in the
present study when comparing four pairs of models: M2A
versus M2B, M3A versus M3B, M7A versus M7B, and M8A
versus M8B. Each pair had the same model settings except that
DMYwere estimated with different strategies. Themodels labeled
“A” (M2A, M3A, M7A, and M8A) estimated DMY directly based
on estimated model parameters. Instead, the models labeled “B”
(M2B, M3B, M7B, and M8B) computed ACF or MCF for
discretized MICs after data fitting. Then, DMY were estimated
through the calculated ACF or MCF. The models in group A
consistently had smaller MSE and better accuracies than their
counterparts in group B (Table 3). These results were an
indication that discretizing milking interval time led to a loss
of accuracy in estimated DMY. Hence, computing ACF or MCF
without accounting for the loss due to discretizing MIC may be
suboptimal when the linearity holds.

Relative to model M0 (doubling AM or PM milk yields), ACF
and MCF models have considerably improved the DMY
accuracy. To probe into the details, we computed the R2

accuracies for individual cows based on three selected models,
M0 (doubling AM or PM yields), one ACFmodel (M2B), and one
MCFmodel (M7B). It came to our attention that mean individual
R2 accuracies were higher than the average R2 accuracy
population-wise across the 30 replicates. The distributions of
individual R2 accuracies in the Holstein cows obtained from these
three models are shown in Figure 3. In particular, the distribution
of individual R accuracies for the modelM0 had a thicker tail than
that for the model M2B or M7B. This was an indication that
doubling AM or PM milk yields as the estimated DMY led to a
higher percentage of the estimated DMY with lower accuracies,
compared to the ACF and MCF models. The percentage of
individual R2 accuracies ≥ 0.90 were 59.6% (M0), 81.6%
(M2B), and 83.4% (M7B). Average individual R2 accuracy was
0.934 for M2B and 0.937 for M7B, respectively; both were
substantially higher than the average individual R2 accuracy
(0.873) for M0. The medians of the R2 accuracies were
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0.927 for M0, 0.976 for M2B, and 0.980 for M7B, respectively, in
the Holstein cows. The medians were consistently larger than the
means. The MCF model (M7B) had a slightly higher mean R2

accuracy than the ACF model (M2B). Unlike the standard
deviations of the average R2 accuracies between cross-
validation replicates, which were all close to zero, the standard
deviation of the individual R2 accuracy was 0.135 for M0,
0.116 for M2B, and 0.115 for M7B. By Student’s t-test, the
mean R2 accuracies between M2B and M7B was not
significantly different (t = 1.69, p = 0.091), yet they both were
highly significantly greater than the mean R2 accuracy of M0 (t =
29.4–31.1, p < 2.2e-16). Similar trends were observed in
Jersey cows.

Furthermore, the cubic smoothing spline (CSS) means of
individual R2 accuracies obtained from the three models were
plotted against milking interval time in hours. (Figure 4). All
three models had comparable means of individual R2 accuracies
when AM and PM milking intervals were approximately 12 h.
Still, the average individual R2 accuracy with the model
M0 dropped drastically as the milking interval deviated from
12 h. The further it deviated from 12 h, the lower the average R2

accuracy it had. In contrast, average individual R2 accuracies for
models M2B and M7B remained consistently high for milking
intervals between 10 h and 16 h. They dropped slightly outside
that range due to insufficient milking data. Hence, doubling AM
or PM yield is equivalent to assuming a fixed multiplicative factor
of 2.0 for AM and PMmilk yields. It is valid (or approximately so)
only for equal (12–12 h) AM and PM milking intervals but
subject to large errors with unequal AM and PM milking
intervals. Instead, ACF and MCF effectively provided
adjustments to unequal milking intervals, leading to
substantially improved DMY accuracies.

Comparing Model Parameters
Model parameters were estimated and compared for four selected
models (M2A, M3A, M7A, and M8A) using all milking data in
Holstein and Jersey cows; each was implemented for AM or PM
milkings separately and jointly (Table 4). The first two models,
M2A and M3A, are the baseline models for the ACF models M2B
and M3B. Both models (M2A and M3A) were implemented
similarly yet with slightly different modeling assumptions. The
model M2A equivalently assumed a fixed regression coefficient

FIGURE 2 | Distribution of morning (AM) and evening (PM) milk yields in Holstein cows (A) and Jersey cows (B), respectively.

Frontiers in Genetics | www.frontiersin.org August 2022 | Volume 13 | Article 94370510

Wu et al. Statistical Methods for Estimating DMY

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


“2.0” for AM or PM milk yields, whereas the model M3A
estimated the regression coefficient for AM or PM yield from
the data. For example, the estimated regression coefficient with
model M3A was 1.749 in Holstein cows and 1.750 in Jersey cows
when AM and PM milk yields were analyzed jointly. Hence, the
model M2A provided additive adjustments to two times AM or
PM milk yields as the DMY estimates, whereas the model M3A
provided additive adjustments to approximately 1.75 times AM
or PM milk yields as the estimated DMY. Owing to this

difference, other model parameters varied between both
models. Overall, the model M3A had a slightly larger intercept
than the model M2A in both datasets. The regression coefficients
for milking intervals were all negative for both models. The
absolute value of the regression coefficient for milking interval
in the model M2A was larger than that in the model M3A. The
model M3A would coincide precisely with the ACFmodel M2A if
we could fix the regression coefficient for AM or PMmilk yield to
be 2.0 in the model M3A.

FIGURE 3 | Distribution of individual R2 accuracies of the estimated daily milk yield obtained using three models, M0 (A), M2B (B), and M7B (C), respectively.
M0 = two times AM or PM yield as the estimate of test-day milk yield; M2B = additive correction factor model implemented by regressing the difference between AM and
PM yields on milking interval and days in milk; M7B = multiplicative correction factor model according to Wiggans (1986).

Frontiers in Genetics | www.frontiersin.org August 2022 | Volume 13 | Article 94370511

Wu et al. Statistical Methods for Estimating DMY

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


The models M7A and M8A are the baseline models for the
MCF models, M7B and M8B. The MCF models represented
substantially different modeling strategies (Table 2). For
example, the former model (M7A) fitted AM or PM
proportion of DMY as a linear function of milking interval
and days in milk (Wiggans, 1986). In contrast, the latter
(M8A) was an exponential regression model (Wu et al., 2022).
We show that the model M8A was equivalent to a linear
regression of the logarithm DMY on milking interval, days in
milk, and the logarithm AM (or PM) milk yields through

reparameterization. When AM and PM milk yields were
analyzed jointly, the regression coefficient for milking interval
was positive (0.037 in Holstein cows and 0.021 in Jersey cows) in
the model M7A, whereas it was negative (0.065 in Holstein cows
and 0.032 in Jersey cows) in the model M8A. The regression
coefficient for the logarithm AM (or PM) milk yield was less than
1.0 (0.856 in Holstein cows and 0.784 in Jersey cows) in the
model M8A.

Analyzing AM and PM milk yields separately led to slightly
different model parameters in Holstein and Jersey cows (Table 4).

FIGURE 4 | Relationships between smooth splines means of individual R2 accuracies of the estimated daily milk yield and milking interval for three models, M0,
M2B, and M7B. M0 = two times AM or PM yield as the estimate of test-day milk yield; M2B = additive correction factor model implemented by regressing the difference
between AM and PM yields on milking interval and days in milk; M7B = multiplicative correction factor model according to Wiggans (1986).

TABLE 4 | Estimated parameters obtained from four models (M2A, M3A, M7A, and M8A), each implemented separately or jointly for known morning (AM) or evening (PM)
milk yields a,b.

Statistical model Model parameter Holstein Jersey

AM PM Joint AM PM Joint

M2A α1 25.80 (0.431) --- 26.04 (0.302) 9.593 (1.170) --- 9.789 (0.807)
α2 --- 27.01 (0.870) 26.79 (0.285) --- 11.84 (0.951) 11.64 (0.692)
β −2.190 (0.035) −2.222 (0.034) −2.206 (0.024) −0.898 (0.090) −0.905 (0.085) −0.889 (0.062)
γ 0.001 (3E-4) −0.001 (3E-4) -4.7E-5 (2E-4) 0.001 (0.001) -0.001 (0.001) -1.4E-4 (4E-04)

M3A α1 27.76 (0.404) --- 26.64 (0.283) 13.52 (1.402) --- 11.22 (0.701)
α2 --- 28.02 (0.382) 27.35 (0.267) --- 12.49 (0.947) 12.90 (0.652)
β −1.898 (0.033) −1.934 (0.034) −1.909 (0.024) −0.797 (0.078) −0.782 (0.086) −0.746 (0.059)
γ −0.005 (3E-4) −0.005 (3E-4) −0.005 (2E-4) −0.003 (0.001) −0.003 (0.001) −0.003 (0.001)
b 1.720 (0.008) 1.780 (0.008) 1.749 (0.005) 1.664 (0.017) 1.860 (0.022) 1.750 (0.014)

M7A α1 0.071 (0.008) --- 0.068 (0.005) 0.269 (0.029) --- 0.268 (0.020)
α2 --- 0.053 (0.007) 0.056 (0.005) --- 0.231 (0.024) 0.231 (0.017)
β 0.036 (0.001) 0.037 (0.001) 0.037 (4E-04) 0.021 (0.002) 0.021 (0.002) 0.021 (0.002)
γ 7E-06 (5E-06) -5E-06 (5E-06) 8E-07 (4E-06) 2E-05 (1E-05) -2E-05 (1E-05) 3.3E-06 (1E-05)

M8A α1 1.779 (0018) --- 1.856 (0.013) 1.580 (0.067) --- 1.575 (0.048)
α2 --- 1.946 (0.017) 1.877 (0.012) --- 1.621 (0.060) 1.638 (0.042)
β −0.059 (0.001) −0.070 (0.001) −0.065 (0.001) −0.037 (0.005) −0.025 (0.005) −0.032 (0.004)
γ -2E-04 (1E-05) -2E-04 (1E-05) -2E-04 (9E-06) -3E-04 (3E-05) -3E-04 (4E-05) -3E-04 (3E-05)
b 0.861 (0.004) 0.852 (0.004) 0.856 (0.003) 0.812 (0.010) 0.757 (0.011) 0.784 (0.008)

aM2A = additive correction factor model with continuous variables for milking interval and days in milk (DIM); M3A = linear regression of daily milk yield (DMY) on milking interval and DIM;
M7A = linear regression of AM or PM and proportion of DMY, on milking interval and DIM (Wiggans, 1986); M8A = exponential regression model (Wu et al., 2022).
bα1= intercepts for AMmilk yield; α2= intercept for PMmilk yield; β= common regression coefficient for milking interval; γ= common regression coefficient for DIM; b= common regression
coefficient for AM (or PM) milk yield (M3A) or the logarithm of AM or PM milk yield (M8A).
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FIGURE 5 | Scatterplot and linear regression fits of the actual daily milk yield against estimated daily milk yields under three scenarios: (A) estimating daily milk yield
(DMY) by doubling morning (AM) or evening (PM) milk yields (model M0); (B) estimating DMY for known morning (AM) and evening (PM) milkings separately using the
exponential regression model (model M8A; separate analysis); (C) estimating DMY for known AM and PMmilkings jointly using the exponential regression model (model
M8A; joint analysis).
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Overall, the joint model had a smaller standard deviation of
model parameters because the size of the data used to estimate
these parameters doubled. Therefore, the joint analysis improved
the precision of estimated model parameters by pooling AM and
PM milk yields. Nevertheless, the accuracies of estimated DMY
from separate analyses for AM or PM milkings increased only
slightly compared to the joint analyses. Plots of actual and
estimated DMY for the exponential regression model (M8A),
implemented separately or jointly for AM and PM milkings, are
shown in Figure 5B,C compared to the mode M0 (Figure 5A).
The plots showed slight stratification between AM and PM
milkings, which explained why separate analyses had better,
although slightly, linear regression fits between the actual and
estimated DMY than joint analyses. For the model M8A, separate
analyses had smaller intercepts and the regression coefficient was

closer to 1, indicating improved accuracies with the separate
analyses. However, the extent of improved accuracies was very
slight. The R2 accuracy was 0.9151 for the separate accounting
and 0.9147 for the joint analysis; both rounded to 0.915. Here, we
show that the accuracy obtained from the in-sample evaluation
was higher than that (0.912) from the 10-fold cross-validation.
Similarly, the R2 accuracies from separate analyses were almost
identical to or slightly better than joint analyses for the other
models. For example, the R2 accuracies were 0.9040 with the joint
analysis and 0.9042 with the separate analysis for the model M2A,
0.9128 (joint) and 0.9131 (separate) for the model M3A, and
0.9062 (joint) and 0.9063 (separate) for the model M7A. The
differences in the R2 accuracies were seen only in the third or
fourth decimal points. Compared to model M8A, model M0 had
considerably larger intercepts and the regression coefficients

FIGURE 6 | Average daily milk yields were obtained from five models and smooth spline (SS) means of the daily milk yield against morning (A) and evening (B)
milking intervals from 9 to 15 h, respectively. M0 = daily milk yield (DMY) estimated as two times AM or PM yield; M2A = linear regression of the difference between
morning (AM) and evening (PM) milk yields on milking interval and days in milk (DIM); M3A = linear regression of DMY on the milking interval and DIM; M7A = linear
regression of AM or PM proportion of DMY on milking interval and DIM (Wiggans, 1986); M8A = exponential regression model (Wu et al., 2022).
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deviated substantially from 1.0. In other words, the model M8A
has improved the DMY accuracies substantially compared to
modelM0. Similar conclusions hold all the ACF andMCFmodels
and linear regression models, compared to doubling AM or PM
yield as the daily yields.

Average DMY by milking intervals between 9 and 15 h were
computed based on the estimated model parameters by joint
analyses for the four selected models (M2A, M3A, M7A, and
M8A), compared to the model M0 and the CSS means of actual
DMY over milking interval (Figure 6). All the methods gave an
average DMY comparable to the CSS means when AM and PM
milking intervals were equal (12–12 h for AM and PM milking

intervals). Still, they showed larger deviations with unequal AM
and PM milkings. The model M0 had the largest deviations from
the CSS means of DMY. Overall, the model M0 underestimated
DMY with milking interval <12 h and overestimated DMY with
milking interval >12 h. The more the AM (PM) milking interval
departed from 12 h, the larger its deviation from the actual DMY.
For the model M0, the average absolute deviation from the SCC
means was 3.23 kg in Holstein and Jersey cows. Nevertheless, the
deviations were much smaller for the ACF models (M2A and
M3A) and the MCF models (M7A and M8A). The exponential
regression model M8A had the smallest average absolute
deviations from the CSS means of DMY (0.543 kg in the

FIGURE 7 | Comparison of additive correction factors (A) and multiplicative correction factors (B) obtained using different models. AMF = morning milk yield
correction factors; PMF = evening milk yield correction factors. M0 = daily milk yield (DMY) estimated as two times AM or PM yield; M1 = additive correction factors (ACF)
model with categorical milking interval (MIC) and lactation months; M2B = ACF model with continuous milking interval and days in milk (DIM); M3B = linear regression of
DMY onmilking interval and DIM, with ACFs computed for discretizedMIC; M5 =multiplicative correction factor (MCF) model according to Shook et al. (1980); M6 =
MCF model according to DeLorenzo and Wiggans (1986); M7B = MCF model according to Wiggans (1986); M8B = MCF model based on the exponential regression
model (Wu et al., 2022).
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Holstein cows and 0.598 in the Jersey cows). For the other models
M2A, M3A, and M7A, the average absolute deviation from the
CSS mean varied from 0.568 (M3A) to 0.773 (M2A) in the
Holstein cows and from 0.649 (M3A) to 0.914 (M2A) in the
Jersey cows. These results also showed that the relation between
the smoothed average DMY andmilking interval time from 9 h to
15 h was not precisely linear (Figure 6). Early studies showed that
DMY (including fat and solid-not-fat) were not linear with
intervals beyond 12 h (Ragsdale et al., 1924; Bailey et al., 1955;
Elliott and Brumby, 1955; Schmidt, 1960). In particular, Atashi
and Hostens (2021) showed that milk and component
productions, in relation to the interval between the current
milking and the previous milking, showed an exponential
increase at the beginning and later leveled off to an asymptote.
This exponential behavior for milk production was assumed to be
the result of cell degradation and milk present in the udder (Neal
and Thornley, 1983).

Comparing Additive and Multiplicative
Correction Factors
Additive and multiplicative factors were computed based on the
parameter values of the data density functions or smoothing
functions. Plots of ACF and MCF by MIC are shown in Figure 7.
The ACF models were implemented with slightly different model
assumptions, yet they resulted in drastically different ACF values
in two groups (Figure 7A). The two classic ACF models, M1 and
M2B, equivalently assumed a fixed regression coefficient of 2.0 for
AM or PM milk yield. Hence, both models gave roughly
comparable ACF per MIC, except that ACF from M2B were
smoothed, but those from M1 were not (Figure 7A). The
M1 model had considerably large fluctuations of ACF when
the milking interval was less than 9 h or greater than 15 h due
to insufficient milking records. Instead, the model M2B fitted the
data on a continuous variable for milking interval, and ACF were
computed on discretized MIC regardless of the data size for a
specific MIC. Hence, the model M2B was robust to insufficient
milking records per MIC, provided that the data are sufficient in
general. Within MIC, the sum of AM and PM ACF for each
model was close to zero (which ranged −0.031 with
M1 to −0.108 with M2B). The ACF computed from the linear
regression model (M3B) were considerably larger than those
based on the two ACF models (M1 and M2B). This was
because the estimated regression coefficients (approximately
1.75; Table 4) from the linear regression models were less
than the fixed regression coefficients (2.0) assumed in the ACF
model. Hence, the classic ACF models provided additive
adjustments to two times AM or PM milk yields as the
estimated DMY. Still, the linear regression models provided
additive adjustments to approximately 1.75 times AM or PM
milk yields. Because of this difference, the ACF from the linear
regression model should be larger than those from the ACF
models. The sum of AM and PM ACF within MIC was greater
than zero (i.e., 8.24 kg) for the model M3B, with the average ACF
being 4.11 kg, in the Holstein cows. The average ACF from the
linear regression model can be verified as follows. In the Holstein
cows, the average AM and PM milk yields were 16.4 and 15.3 kg,

respectively. The regression coefficients for AM and PM milk
yields by the separate analyses were 1.72 and 1.78, respectively.
Hence, the average difference in ACF between the linear
regression model and the ACF model was approximately
estimated to be

(2.0 − 1.72) p 16.4 + (2.0 − 1.78) p 15.3 ≈ 4.0.

With equal (12–12 h) AM and PM milking intervals, the ACF
obtained from the M1 and M2B models were all close to zero
(0.09–0.123 kg in Holstein cows and -0.67–0.41 kg in Jersey cows).
Because these two models each assumed a fixed regression
coefficient of 2.0 for the AM or PM milk yield, we concluded
that doubling AM or PM milk yields provided an approximate
estimate of DMY with equal AM and PMmilking intervals. Put in
another way. With equal AM and PM milking intervals, the
additive correction amount was zero beyond two-time AM or
PMmilk yield as the estimated DMY. The results agreed with some
early studies. For example, Everet andWadell (1970b) showed that
the mean AM excluding PMmilk production was -0.51–0.19 kg in
Holstein cows and −0.35–0.27 kg in Jersey cows with
approximately equal AM and PM milking intervals
(720–749 min). In the present study, the average AM minus
PM milk yield was 1.13 kg in Holstein cows and 1.75 kg in
Jersey cows. Similarly, Everet and Wadell (1970b) reported that
the average AMminus PMmilk yield in Holstein cows was 1.28 kg
in Holstein cows and 0.89 kg in Jersey cows. Both studies agreed
with each other concerning the average AMminus PMmilk yield,
despite a 50-year gap. Nevertheless, the ranges of AM minus PM
milk yield (and ACF) in our study were significantly larger than the
ranges in Everet andWadell (1970b) because dailymilk production
has increased considerably over the past decades.

Unlike the ACF model, the MCF models implemented
substantially different modeling strategies (Table 2).
Nevertheless, the computed MCF from various models all
corresponded to ratios of daily-to-single milk yields, despite
their statistical interpretations varied (Wu et al., 2022). Hence,
MCF obtained using various methods were approximately
comparable in the Holstein cows (Figure 7B). MCF agreed
well between the four MCF models given AM milking
between 11 and 15 h, or PM milking between 9 and 13 h. Yet,
large differences were observed out of this range. MCF were
approximately 2.0 when AM and PMmilking intervals were both
12 h. The AM MCF was greater than 2.0 when the AM milking
interval was less than 12, and it was less than 2.0 when the AM
milking interval was greater than 12 h. A precisely opposite trend
was observed with the PM MCF. These results again suggested
that two times AM or PMmilk yield was an approximate estimate
of DMY with equal AM and PM milking intervals. Still, such
approximation did not hold with uneven AM and PM milking
intervals. Similar results were observed in Jersey cows as well.

CONCLUSION

Estimated milk yields by doubling AM or PM milk yields were
taken approximately assuming equal AM and PM milking
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intervals, but they were subject to large errors when AM and PM
milking intervals were unequal. The more deviations of AM and
PMmilking intervals from 12–12 h, the larger errors it generated.
ACF and MCF provided effective adjustments to the estimated
DMYwith unequal AM and PMmilkings. ACF provided additive
adjustments, evaluated by the expected difference between AM
and PM milk yield for each MIC and other categorical variables
when applicable. An ACF model equivalently assumed a fixed
multiplier (2.0) for AM or PMmilk yields. In reality, ACF models
with many discrete variables are challenged by insufficient or
missing data points for specific MIC categories. Similarly, a linear
regression model was implemented as an ACF model which
nevertheless estimated the multiplier (regression coefficient)
for AM or PM milk yield from the data. Relaxing the
limitation on the fixed multiplier for AM and PM milkings
allowed linear regression models to fit and predict the data
better than ACF models. Multiplicative correction factors were
computed by ratios of daily yield to yield from a single milking.
Thus, multiplying a known AM or PM yield by an MCF gave an
estimated DMY. Overall, theMCFmodels outperformed the ACF
models, providing more accurate DMY estimates in the Holstein
and Jersey cows. Nevertheless, computed ACF or MCF on
discretized milking interval time suffered from losing
information, leading to larger errors and lower accuracies. The
exponential regression model (Wu et al., 2022) had the smallest
MSE and the greatest accuracies of DMY estimates. This new
model is analogous to an exponential growth (or decay) function
for DMY with the observed yield from single milking as the initial
state and the change rate tuned by a linear function of milking
interval and other variables when applicable. This exponential
regression model provides a promising alternative tool for
estimating DMY.

The present study represented a preliminary effort to revisit the
existing statistical methods for estimating DMY, compared to the
newly proposed exponential regression model, using milking data
collected between 2006 and 2009. In a continuing effort, large-scaled

high-resolutionmilking data are being collected for follow-up studies,
jointly supported by the US Council on Dairy Cattle Breeding, the
USDA Agricultural Genomics and Improvement Laboratories, and
the National Dairy Herd Information Association. This is a 3-year
data collection project.We expect thatMCF in use will be updated by
then. Finally, we illustrated the methods for estimating DMY in AM
and PM milking plans. Yet, these methods and principles are
generally applicable, either directly or with necessary
modifications, to cows milked more than two times a day.
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