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Both cuproptosis and necroptosis are typical cell death processes that serve

essential regulatory roles in the onset and progression of malignancies,

including low-grade glioma (LGG). Nonetheless, there remains a paucity of

research on cuproptosis and necroptosis-related gene (CNRG) prognostic

signature in patients with LGG. We acquired patient data from The Cancer

Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) and captured

CNRGs from the well-recognized literature. Firstly, we comprehensively

summarized the pan-cancer landscape of CNRGs from the perspective of

expression traits, prognostic values, mutation profiles, and pathway

regulation. Then, we devised a technique for predicting the clinical efficacy

of immunotherapy for LGG patients. Non-negative matrix factorization (NMF)

defined byCNRGswith prognostic values was performed to generatemolecular

subtypes (i.e., C1 and C2). C1 subtype is characterized by poor prognosis in

terms of disease-specific survival (DSS), progression-free survival (PFS), and

overall survival (OS), more patients with G3 and tumour recurrence, high

abundance of immunocyte infiltration, high expression of immune

checkpoints, and poor response to immunotherapy. LASSO-SVM-random

Forest analysis was performed to aid in developing a novel and robust

CNRG-based prognostic signature. LGG patients in the TCGA and GEO

databases were categorized into the training and test cohorts, respectively.

A five-gene signature, including SQSTM1, ZBP1, PLK1, CFLAR, and FADD, for

predicting OS of LGG patients was constructed and its predictive reliability was

confirmed in both training and test cohorts. In both the training and the test

datasets (cohorts), higher risk scores were linked to a lower OS rate. The time-

dependent ROC curve proved that the risk score had outstanding prediction

efficiency for LGG patients in the training and test cohorts. Univariate and
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multivariate Cox regression analyses showed the CNRG-based prognostic

signature independently functioned as a risk factor for OS in LGG patients.

Furthermore, we developed a highly reliable nomogram to facilitate the clinical

practice of the CNRG-based prognostic signature (AUC > 0.9). Collectively, our

results gave a promising understanding of cuproptosis and necroptosis in LGG,

as well as a tailored prediction tool for prognosis and immunotherapeutic

responses in patients.
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Introduction

Gliomas are cancerous forms that develop in the central nervous

system (CNS). The World Health Organization (WHO) has

categorized gliomas into 4 grades, where gliomas classified as

grades II and III are considered low-grade gliomas (LGG) (Louis

et al., 2016). In addition to a long history of ionizing radiation, the risk

factors for LGG are not fully understood (Salvati et al., 1991). LGG

proliferates and progresses in a variety of ways, and patients’ quality

of life and survival rate is poor (Cancer Genome Atlas Research et al.,

2015; Youssef and Miller, 2020). The median overall survival (OS)

durations for individuals with LGGwere 78.1 and 37.6 months (Jiang

et al., 2016). Although significant progress has been made in

developing innovative cancer therapies, the prognosis for LGG

patients remains dismal. Immunotherapy has been largely

regarded as a viable treatment for a variety of cancers. As a result,

the development and validation of new prognostic markers to better

predict clinical outcomes and immunotherapy in LGG patients

remain an urgent need.

Necroptosis is a newly established kind of cell death that is

triggered by Receptor Interacting Protein Kinase1/3 and carried out

byMixed Lineage Kinase Domain Like Pseudokinase (Declercq et al.,

2009; Marshall and Baines, 2014). Necroptosis is both a friend and a

foe in tumour growth, as earlier research has shown (Philipp et al.,

2016). On the one hand, if cancer cells can evade apoptosis, it may

serve as a supplementary kind of programmed cell death.

Necroptosis, on the other hand, can activate the inflammatory

response, which can lead to tumour development (Gong et al.,

2019). In addition, necroptosis, one of the immunogenic cell

deaths, performs a critical function in the immune

microenvironment (Sprooten et al., 2020). In the context of the

rise of immune checkpoint therapy, changes in the immune

microenvironment caused by necrosis are also important (Li et al.,

2019a). Tsvetkov et al. (2022) have discovered that intracellular

copper causes “cuproptosis,” a new type of controlled cell death

distinct from cell death linked to oxidative stress (such as necroptosis,

ferroptosis, and apoptosis). Copper binds directly to lipoylated

components of the tricarboxylic acid (TCA) cycle, causing

cuproptosis. This leads to the aggregation of lipoylated proteins

and, as a consequence of that, the loss of iron-sulfur cluster

proteins, ultimately leading to proteotoxic stress and cell death

(Tsvetkov et al., 2022). To our knowledge, the prognostic

performances of necroptosis and cuproptosis in LGG remain

unclear. Necroptosis and cuproptosis have not yet been looked at

in depth to see how they affect LGG as a whole. Therefore, it is vital to

further investigate the connection between cuproptosis and

necroptosis-related genes (CNRGs) and LGG.

In this research, we used the gene expression levels and

clinical data from the Chinese Glioma Genome Atlas (CGGA)

and The Cancer Genome Atlas (TCGA) databases to examine

CNRGs. Non-negative matrix factorization (NMF) defined by

CNRGs with prognostic values was performed to separate

LGG patients into entirely different subgroups with

considerably different prognoses, clinical features,

immunological microenvironments, and immunotherapy

responses. LASSO-SVM-random Forest analysis was

performed to aid in developing a novel and robust CNRG-

based prognostic signature. According to the TCGA and

CGGA cohorts, we created and validated a risk-score

system for LGG with the optimal prognostic performance.

Furthermore, the mechanism of action and pathways of

cuproptosis and necroptosis-related genes were further

analysed by immune checkpoint gene expression, immune

subtype identification, immune cell infiltration, tumour

mutation profile, tumour stemness indices, and

immunotherapy response analysis. Based on the

immunohistochemistry findings, we verified the differential

expression of associated genes encoding proteins in LGG in

the model. Our results gave a promising understanding of

cuproptosis and necroptosis in LGG, as well as a tailored

prediction tool for prognosis and immunotherapeutic

responses in patients.

Materials and methods

Acquisition of datasets and cuproptosis
and necroptosis-related genes

In all, this study included 1154 LGG samples. The TCGA

(https://portal.gdc.cancer.gov/) and CGGA (http://www.

cgga.org.cn/) databases were searched to acquire RNA-seq
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and clinical data. In particular, the TCGA-LGG dataset

(529 LGG samples, 56,753 genes) was designated as the

training cohort, whereas the CGGA dataset (625 samples,

23,271 genes) was the validation cohort. All data from the

TCGA and CGGA databases were transformed into log2 (x +

1) form for subsequent analyses. After that, the data on gene

expression profiles from various databases were batch-

normalized utilising the “Surrogate Variable Analysis

(sva)” program that is included in R (Li et al., 2021). After

intersecting all genes from the two datasets, 17,818 genes

were defined as common genes. All data were provided in an

open-access format, thus ethics committee permission was

not necessary.

The 74 necroptosis-related genes and 13 cuproptosis-

related genes were reported by previous studies (Tsvetkov

et al., 2022; Xin et al., 2022). After eliminating two genes

(CXCL8 and OTULIN) without expression levels in the

CGGA and TCGA datasets, we integrated the expression

profiles of the remaining 85 CNRGs with those of the

TCGA and CGGA cohorts for further analysis (TCGA:

Supplementary Table S1, CGGA: Supplementary Table S2).

Pan-cancer analysis

Changes in the gene expression patterns of CNRGs [|

log2(FC)| > 1, FDR 0.05] were investigated using differential

expression analysis between tumours and neighbouring

normal tissues for each cancer type. The CNRGs’ survival

landscape was derived from TCGA’s analysis of the link

between gene expression and patient survival. The criteria

for a protective gene were set as a hazard ratio (HR) < 1 and

p < 0.05, whereas the criteria for a risk gene were HR > 1 and

p < 0.05.

To identify significantly altered regions of amplification or

deletion across patient groups, GISTIC2.0 was utilised to

analyse copy number variation (CNV) data of

11495 samples obtained from TCGA database. The

percentage of genes that were heterozygous or homozygous

for CNVs was shown using a CNV pie plot for each tumour

type. This pie chart illustrates the distribution of CNV types

inside a single malignancy, with each hue denoting a distinct

CNV type.

Single nucleotide variation (SNV) data for 10,234 samples

across 33 types of cancers were also acquired from TCGA

database. Within the scope of this study, seven distinct forms

of mutation were considered: In_Frame_Ins, In_Frame_Del,

Frame_Shift_Del, Frame_Shift_Ins, Splice_Site,

Nonsense_Mutation, and Missense_Mutation. Mutation

frequencies in pan-cancer were summarised using a

percentage heatmap. Finally, gene set enrichment analysis

(GSEA) was utilised to examine the cellular signatures

characteristic of each malignancy.

Non-negative matrix factorization
clustering determination of cuproptosis
and necroptosis-related gene
modification subtypes

Univariate cox regression analysis was conducted to screen

the genes with prognostic values in both the derivation and

validation cohorts, reducing the dimensionality of NMF

clustering. Only genes involved in prognosis that are strongly

associated with cuproptosis and necroptosis were kept as

clustering factors for NMF.

To examine the link between CNRG expression and clinical

characteristics in LGG, we grouped TCGA LGG samples into two

distinct groups (clusters 1 and 2) utilising NMF. NMF was

designed to uncover possible features in gene expression

patterns by resolving the initial matrix into two nonnegative

matrices. The process of deposition was repeated several times,

and the results of each iteration were aggregated to get a

consensus cluster of LGG samples. The silhouette, dispersion,

and cophenetic coefficients were utilised to ascertain the

optimum number of subtypes. The range of values for the

number of clusters, k, was selected to be between 2 and 10,

and the “NMF” package was employed to establish the average

contour width of the common member matrix.

Discrepancies in the clinical
characteristics, tumour immune
microenvironment and immunotherapy
response between distinct cuproptosis
and necroptosis-related gene-based
clusters

The prognostic efficacy of clusters was assessed using

Kaplan-Meier analyses (Du et al., 2021), with the progression-

free interval (PFI), disease-specific survival (DSS), and overall

survival (OS), as endpoints. We also intensively explored the

discrepancies in the clinical information between distinct CNRG-

based clusters. The immune and stroma scores were derived by

Estimation of Stromal and Immune cells in Malignant Tumour

tissues using Expression data (ESTIMATE) analysis utilising the

“estimate” R package (Guo and Jing, 2021). The algorithm also

allowed for the determination of the level of tumour purity. At

the same time, to ascertain the abundance of immune cells that

had been infiltrated into each sample, the CIBERSORT

algorithm was used. Following this, the “Wilcox.test”

function in R was adopted to explore the disparity between

infiltration levels of immune cells and typically immune

checkpoint genes (ICGs, Supplementary Table S3). The

tumour immune dysfunction and exclusion (TIDE, http://

tide.dfci.harvard.edu/) algorithm was employed to forecast

probable responses to ICI treatment. TIDE is a gene

expression biological marker utilised to predict the patients’
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responsiveness to immune checkpoint inhibition. A low

exclusion score indicates a low probability of immune

evasion; hence, these individuals may display a stronger

immune treatment response.

Machine learning-based development and
validation of the optimal cuproptosis and
necroptosis-related gene risk signature

An integrated analysis of two algorithms was used to choose the

putative prognostic CNRGs. These algorithms were the LASSO

algorithm with penalty parameter tuning performed by 10-fold

cross-validation and the SVM-RFE algorithm screening for

lambda with the minimized classification error to obtain the

variable. An additional filtering method known as the Random

Survival Forests-Variable Hunting (RSFVH) algorithm was

implemented to filter the genes. Thereafter, the following is a

description of how a risk score model was created utilising

prognostic genes: ∑n
k�1expk*βk (n denotes the number of genes

chosen using RSFVH, “expk” denotes the gene expression value, and

“βk” denotes the coefficient of genes acquired from the Cox

regression analysis. The log-rank p-values were employed in the

Kaplan-Meier (KM) analysis to search for the optimal gene

combination or the final signature.

After determining the suitable threshold value for the risk

score, patients within TCGA cohort were categorized into low-

and high-risk groups utilising the “survival” and “survminer”

software packages. Following the calculation algorithm and

median risk score supplied in TCGA cohort, we derived each

LGG sample’s risk score within the CGGA cohort and

subsequently classified these samples into low- and high-risk

groups. The KM technique was applied to generate survival

curves illustrating the disparities in expected survival time and

probability across the high- and low-risk patients in both CGGA

and TCGA datasets. With the aid of the “timeROC” package in R

(Chen and Li, 2022), the ROC curves were plotted, and the area

under the curves (AUC) for 1-, 3-, 5-, and 7-year OS were

computed for both the CGGA and TCGA cohorts. To

additionally test the viability of the risk score-based predictive

model in patients with LGG in both the CGGA and TCGA

datasets, the principal component analysis (PCA) and the

t-distributed stochastic neighbour embedding (t-SNE) analyses

were done. Moreover, the predictive capacity of our CNRG

prognostic signature was subjected to a comparison with other

three well-recognized prognostic signatures (hypoxia-related

prognostic signature constructed by Lin et al. (2020), an

immune-related prognostic signature constructed by Zhang

et al. (2020), an RNA methylation-related prognostic signature

designed by Zheng et al. (2021).

The single sample gene set enrichment analysis (ssGSEA)

was utilised to estimate scores premised on five model genes in

each sample of each tumour. This was done to determine the

differential function that our signature performs in the pathways

that are altered by human multiple malignancies. As per the

transcriptomes of two different tumour groups, one with the

highest and another with the lowest 30% of scores, GSEA was

applied to explore the discrepancy in cuproptosis, necroptosis,

and classical pathway activities.

Discrepancies in the clinical traits, immune
traits, and tumour stem traits in low- and
high-risk low-grade glioma individuals

Fisher tests were used to illustrate the distributional variations in

histological type, gender, survival status, age, cancer status, and grade

between low- and high-risk groups to analyse the association

between the CNRG prognostic signature and clinicopathological

features. The immunological differences (variations) between low-

and high-subgroups were investigated. Estimate algorithm (estimate

of cancerous and immune cells present in malignant tumour

organization utilising expression profiling) is employed to

examine the percentage of immune-matrix components in

tumour immune microenvironment (TIME), encompassing

ESTIMATE Score (total score taking into account both

immunity and matrix), Immune Score (indicating the degree to

which immune cells have been infiltrated), and Stromal Score (an

indication of the existence of matrix). When the score is higher, it

implies that there is a larger concentration of the TIME component.

TIMER database was used to calculate the levels of immune-

infiltrating cells through multiple immunological algorithms, such

as XCELL, CIBERSORT, MCPCOUNTER, CIBERSORT-ABS, and

TIMER. ICGs play pivotal roles in regulating the function of

immune cells, thus, we further intensively analysed the

discrepancies in the expression of ICGs between the low- and

high-risk subpopulations. Thorsson et al. (2018) summarised six

immune subtypes (C1-C6) for pan-cancer samples derived from the

TCGA database. In 2018, Malta et al. (2018) evaluated the DNA

stemness scores (DNAss) and RNA stemness scores (RNAss) with

the help of the one-class logistic regression (OCLR) machine

learning method. Therefore, we also compared the discrepancy in

immune subtypes, DNAss, and RNAss between high- and low-risk

populations.

Discrepancies in the tumour mutation
traits in low- and high-risk groupings

The relevant data on the somatic alteration data of the TCGA-

LGG cohort was taken from TCGA dataset. The waterfall plot was

utilised to demonstrate the relative mutation profiling of the low-

and high-risk groups and was generated with the “maftools” R

package. Thereafter, theWilcox test was applied to compare the two

groups in regard to the differences in the mutation frequencies. In

addition, TMB was computed for each patient, and a Spearman
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correlation analysis with estimated p-values was utilised to

determine the specific association between CNRGs and TMB.

Notably, we also examined the survival value of TMB in terms

of OS in the LGG population.

Independent prognostic analysis of the
cuproptosis and necroptosis-related gene
signature and nomogram development

Thereafter, we checked whether clinical pathological

parameters, such as age, histological grade, and cancer status, had

an impact on the predictive capacity of the CNRG signature. To

determine which factors influence a patient’s prognosis

independently, univariate and multivariate Cox regression

analyses were undertaken on TCGA cohort. Variables were

considered to be independent prognostic factors if they had a p

value < 0.05. With rms R package (Hu et al. 2022), the nomogram

was set up premised on the above clinicopathological factors,

CNRGs, and our signature. The objective of the nomogram was

to examine the predictive significance of the risk score obtained for

1-, 3-, 5-, and 7-year OS rates.

Immunohistochemistry and
immunofluorescence of the model genes
in low-grade glioma

The Human Protein Atlas (HPA) is a database that contains

protein expression patterns premised on immunohistochemistry

(IHC) that were collected from cell lines, normal tissues, and

cancer tissues (Ponten et al., 2008). This database was used to

acquire protein expression IHC pictures of model genes in

clinical samples from LGG patients for the current

investigation. Similarly, the HPA database was also employed

to demonstrate the cellular localization (SQSTM1, CFLAR, and

FADD) through immunofluorescence.

Results

Expression traits, prognostic values, copy
number variation, Single nucleotide
variation and cancer signalling of the
cuproptosis and necroptosis-related
genes in cancers according to the cancer
genome atlas

Figure 1 depicts the flow chart for this research. Since the

correlation between cuproptosis and necroptosis is unclear, we first

performed a co-expression analysis of CNRGs. The findings

illustrated that the correlation between the expression levels of

CNRGs was significant in both TCGA and CGGA cohorts

(Supplementary Figure S1). 85 well-recognized CNRGs with

complete expression values both in the CGGA and TCGA

cohorts were included in the following analysis. The role of

cuproptosis and necroptosis in tumour progression has not

been clarified, and pan-cancer characterization of necroptosis

and cuproptosis-related genes are not well summarized. Thus,

intensive exploration of the contributions of these genes in diverse

human malignancies from the perspective of expression traits,

prognostic values, cancer signalling, CNV and SNV would

therefore be highly warranted. We discovered that in cancerous

tissues, the expression of a majority of genes differed from those in

normal tissues (Figure 2A). The expression patterns of PLK1 and

CDKN2A were considerably up-modulated in most tumour types,

while KLF9 was the opposite. After that, we constructed a survival

landscape of these genes based on the link between the gene

expression levels and the patient survival rates recorded in TCGA

(Figure 2B). HR < 1 and p < 0.05 indicate a protective gene,

whereas HR > 1 and p < 0.05 indicated a risk gene. We found that

most of the genes in LUSC, KIRC, LGG, and LIHCwere associated

with patient prognosis. Most of the protective genes were found in

LUSC and KIRC, while most of the risk genes were in LGG and

LIHC. Meanwhile, the SNV and CNV alterations of cuproptosis

and necroptosis-related genes in pan-cancer including LGG were

obvious (Supplementary Figures S2, S3). BRAF, ATRX, IDH1, and

CDKN2A showed significant SNV alterations in most tumour

types. GEGFR, CD40, SPATA2, ZBP1, ID1, and MYC showed a

significant CNV amplification in most tumour types; however,

TLR3, PDHB, FAS, and MAP3K showed a significant CNV

deletion in most tumour types. Considering the unclear role of

necroptosis and cuproptosis in LGG and the fact thatmost CNRGs

are linked to unfavourable LGG patients’ prognoses, we focused on

the relationship between CNRGs and LGG. The relationship

between cancer signalling and CNRGs was also investigated,

with the findings revealing that 50 hallmarks were frequently

strongly linked to CNRGs (Supplementary Figure S4). For

example, interferon γ response, interferon α response,

IL2 STAT5 signalling, inflammatory response, and allograft

rejection were enriched in each cancer, which indicated that

cuproptosis and necroptosis were positively related to these

oncogenic pathways. Interestingly, most oncogenic pathways

were significantly enriched in LGG.

Data acquisition and processing

The LGG RNA-Seq data from TCGA constituted the training

set, whereas the LGG RNA-Seq data from CGGA constituted the

validation set. 53 CNRGs in the TCGA cohort and 51 CNRGs in

the CGGA cohort were chosen using univariate cox regression

analysis and false discovery rate adjustment (Figures 3A,B). After

obtaining an intersection between the 51 prognosis CNRGs and

the 53 prognostic CNRGs, 38 CNRGs having prognostic values

were found (Figure 3C).
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Non-negative matrix factorization
clustering identification of molecular
typing based on the shared cuproptosis
and necroptosis-related genes with
prognostic values

The NMF method selects the appropriate clustering number

of 2 for the data, as per cophenetic, dispersion, and silhouette

coefficients (Supplementary Figures S5, S6, Figure 4A). Through

KM analyses, it was found that the samples in cluster 2 (C2) have

better OS, PFI, and DSS (Figures 4B–D). The examination of the

compositional differences in clinical features (Figure 4E),

indicates that there are more astrocytoma samples in C1 and

more oligodendroglioma samples in C2 (p = 7.9e-09).

Furthermore, when compared to C2, C1 had a higher

proportion of dead patients (p = 0.0019), elderly patients (p =

0.02), patients with tumour recurrences (p = 0.028), and patients

with Grade 3 (p = 1.2e-08). We then estimated tumour

microenvironment (TME) components in C1 and C2 and

found that ImmuneScore, StromalScore, and ESTIMATEScore

are higher, while tumour purity is worse in C1 (Figure 5A). The

increase in these scores indicates an increase in the proportion of

corresponding components in TME. The bulk gene expression

patterns were examined using the CIBERSORT algorithmic

technique, which allowed the percentages of 22 subgroups of

tumour-infiltrating immune cells in various subtypes to be

FIGURE 1
The flow chart of this investigation.
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FIGURE 2
The roles of CNRGs in cancer. (A) The heatmap depicts the fold change and FDR of CNRGs in each tumour, whereas the histogram (top panel)
shows the number of significantly differentially expressed genes. (B) Heatmap showed the survival landscape of CNRGs.
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FIGURE 3
Identification of prognostic cuproptosis and necroptosis-related genes (CNRGs). (A) 53 CNRGs with prognostic values in TCGA dataset. (B)
51 CNRGs with prognostic values in the CGGA dataset. (C) Venn diagram to identify 38 FPRGs with prognostic values in LGG.
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calculated (Figure 5B ). While the CD8+ T-cells, macrophages,

and resting mast cells are more prevalent in the C1 subtype, the

activated mast cells and eosinophils are more prevalent in the

C2 subtype (Figure 5C). Meanwhile, Figure 5D shows all the

statistically distinct immune checkpoint genes, which are all

expressed at lower levels in C2. Our previous study found that

low expression levels of these immune checkpoints genes were

linked to a better survival probability in LGG patients (Wang

et al., 2022). In addition, there were significant variations in

immunotherapy responsiveness between C1 and C2 subtypes

(Figure 5E). The C1 subtype had a lower exclusion score,

illustrating that patients have a greater likelihood of gaining

benefits from ICB (Figure 5F).

Determination and verification of a
cuproptosis and necroptosis-related
genes-based prognostic signature

Additionally, after obtaining 38 prognostic CNRGs, we

employed the LASSO technique to get a set of 28 CNRGs

(Figures 6A,B), and the SVM-RFE algorithm to choose a set

of 22 CNRGs (Figures 6C,D). Twenty potential CNRGs were

identified after the intersection of the CNRGs that had been

selected by the LASSO and SVM-RFE algorithms, and these

CNRGs were then subjected to the RSFVH algorithm to further

filter the genes. Following that, a novel CNRGs-based signature is

established, risk score = 5.68460388028422 * ZBP1 +

5.58839133632066 * PLK1 + 6.382784047 * CFLAR +

3.560828639 * SQSTM1 + 3.541878806 * FADD (Figures

6E–G). Samples in the training cohort were categorised into

low- and high-risk populations (Figure 7A). Figure 7B

demonstrates that the group with a low risk exhibited a

mortality rate that was lower in contrast with the group with

a high risk. In both the PCA and the t-SNE analyses, the two risk

groups hardly intersected, implying that it would be feasible to

use the signature described above (Figures 7C,D). The heatmap

shows the expression levels of the five CNRGs in our signature

(Figure 7E). The high-risk patients reported worse OS, PFI, and

DSS, as illustrated by the survival analysis (all p < 0.001) (Figures

7F–H). In addition, the time-dependent ROC curve analysis was

done so that an accurate assessment of the signature could be

made. The AUC values are 0.787, 0.824, 0.760, and 0.736 for 1-,

3-, 5-, and 7-year survival (Figure 7I). Meanwhile, in contrast

FIGURE 4
NMF clustering yields two molecular subtypes with significantly different prognoses and clinical characteristics. (A) The optimal clustering
number of 2. (B–D) Kaplan-Meier analyses (OS, PFI, and DSS) as regards two molecular subtypes. (E) Pie charts illustrating the Chi-squared test of
clinical and pathologic features between two molecular subtypes.

Frontiers in Genetics frontiersin.org09

Miao et al. 10.3389/fgene.2022.951239

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.951239


FIGURE 5
Systematic analysis of TME scores, immune cell infiltration and immunotherapy response prediction in twomolecular subtypes. (A)Comparison
of TME components. (B) The proportion of 22 subsets of tumour-infiltrating immune cells in distinct subtypes. (C) Discrepancy analysis of tumour
infiltrating immune cells in distinct subtypes (D) Differential expression analysis of 47 immune checkpoints genes between two molecular subtypes.
(E) The discrepancy of immunotherapy response in two subgroups. (F) Immunotherapy response prediction in two subgroups.
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FIGURE 6
Machine learning identification of the optimal prognostic signature. (A,B) Identification of 28 CNRGs through the LASSO algorithm. (C,D)
Identification of 22 CNRGs through the SVM-RFE algorithm. (E) Acquisition of 20 candidate CNRGs after intersecting LASSO and SVM-RFE
algorithms. (F,G) Construction of a five-CNRG signature through random survival forests-variable hunting (RSFVH) algorithm.
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FIGURE 7
Evaluation of the prognostic significance of risk score in the training cohort. (A,B) Distribution of risk scores, patient survival time, and glioma
status (The line with black dots represents the optimum threshold value for categorising patients into low- and high-risk populations). (C,D) PCA and
t-SNE analysis illustrated an excellent clustering performance of the five-gene-based risk score. (E) The expression patterns of five CNRGs that were
included in the signature as mapped out in a heatmap using the training dataset. (F–H) Survival curve of training cohort. (I) ROC curves of
training cohort.
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FIGURE 8
Clinical characteristics, immune characteristics, and tumour stem characteristics in the training cohort. (A) Pie charts illustrating the Chi-
squared test of clinical and pathologic features between low- and high-risk categories (B) Analyses the similarities and differences between low-risk
and high-risk groups in terms of TME components. (C) The immune cell infiltration landscape within the training cohort. (D) The expression profiles
of ICGs in the training cohort. (E)Heatmap and table illustrating the immune subtypes (C3, C4, and C5) distribution between low- and high-risk
categories. (F) The correlation analysis between tumour stemness index and risk score.

Frontiers in Genetics frontiersin.org13

Miao et al. 10.3389/fgene.2022.951239

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.951239


with three other widely used prognostic signatures, our signature

exhibited a much higher likelihood of correctly predicting patient

survival (Supplementary Figure S7).

In addition, we analysed the potential relationship between

our signature and cuproptosis, necroptosis, and cancer-related

pathways. The findings highlighted that the CNGR signature was

intimately linked to the cancer-associated pathways, as well as to

cuproptosis and necroptosis (Supplementary Figure S8).

Clinical characteristics, immune
characteristics, and tumour stem features
in low- and high-risk populations

Figure 8A shows that the high-risk population had a larger

percentage of astrocytoma samples, whereas the low-risk

population exhibited a greater percentage of

oligodendroglioma samples. In the high-risk grouping, there

are furthermore more deceased patients, elderly patients

(>41 years old), patients with tumour recurrence, and

G3 patients (all p < 0.05).

Afterwards, the tumour purity, ESTIMATE, immune, and

stromal scores were computed by utilizing the ESTIMATE

method to investigate the link between these factors and the

CNRG scores. In comparison to the low-risk category, the high-

risk category had a higher stromal, immune, and higher

ESTIMATE score; nevertheless, it had a lower tumour purity

(Figure 8B).

The variations in the immune cell components between the

low- and high-risk groups were analysed and compared to get a

deeper comprehension of the inherent association that exists

between the risk score and the immunological environment of

the LGG samples. Figure 8C is a heatmap that was generated

using seven different algorithms, and it depicts the various

immune cell components. Based on the TIMER,

MCPCOUNTER, and XCELL algorithms, the proportion of

B cells was elevated in the high-risk population, whereas the

proportion of plasma cells decreased premised on the XCELL,

CIBERSORT-ABS, and CIBERSORT algorithms. According to

TIMER, the proportion of CD4+ T-cells in the population at low

risk is lower. In the low-risk category based on CIBERSORT and

CIBERSORT-ABS, naive CD4+ T-cells are more prevalent, while

resting memory CD4+ T-cells are less prevalent. According to

XCELL, the low-risk subgroup had a lower proportion of T

helper 1 (Th1) and T helper 2 (Th2) cells. As per the CIBERSORT

and CIBERSORT-ABS, the population at high risk has a greater

abundance of CD8+ T-cells. According to CIBERSORT,

CIBERSORT-ABS, and XCELL, the abundance of NK cells

that fall into the high-risk group is much greater. As per the

CIBERSORT-ABS, MCPCOUNTER, and XCELL, the

abundance of monocytes that belong to the high-risk category

is much greater. According to TIMER and MCPCOUNTER, the

fraction of macrophages in the low-risk population is lower.

Premised on the TIMER, MCPCOUNTER, and XCELL, a larger

proportion of myeloid dendritic cells and neutrophil cells are

seen in the high-risk category. These findings are also supported

by TIMER and CIBERSORT-ABS. Additionally, based on

CIBERSORT, CIBERSORT-ABS, QUANTISEQ, and XCELL,

the high-risk group has a greater percentage of M1 and

M2 macrophages in contrast with the low-risk population.

A weak local immune response could lead to increased

immune cell infiltration as a coping mechanism. In high-risk

LGG populations, ICG expression was increased (all p < 0.05,

Wilcox test) (Figure 8D). The attenuation of effective anti-cancer

immune responses caused by higher ICG expression led to

immunocytes migrating into the TME to improve the

compensatory response. In addition, we found that all LGG

patients in TCGA cohort were associated with only C3, C4,

and C5 immune subtypes (Figure 8E). The low-risk LGG

population recorded a higher percentage of C5 immune

subtypes in contrast with the high-risk population and a

lower percentage of C3 and C4 immune subtypes (p = 0.001).

The tumour stem cell score not only reflects the pattern of

intra-tumour heterogeneity but also correlates with immune

infiltration and immunological checkpoints. We can better

comprehend the TIME and create new targeting medications

for ICB therapy by thoroughly analysing tumour stem cell scores.

We then examined the correlation between our CNRG signature

and tumour stemness index. The results illustrated that the risk

score had a positive connection with DNAss (R = 0.36, p 2.2e16)

and an inverse link to RNAss (R = −0.42, p 2.2e16) (Figure 8F).

Tumour mutation profile and
immunotherapy response prediction in
high- and low-risk populations

We determined the value of the TMB by comparing the

two risk populations, taking into consideration the strong

link between the TMB and the effectiveness of

immunotherapy. TMB quantification showed that the

high-risk category recorded a greater TMB, which was in

line with our expectations (p = 1.6e-11; Figure 9A).

Additionally, Spearman correlation analysis illustrated a

moderately positive link between risk score and TMB. (R =

0.38, p < 2.2e-16; Figure 9B). We also evaluated the variations

in LGG driver genes between low- and high-risk groupings.

Figures 9C,D displays driver genes with a high change

frequency, such as IDH1, TP53, ATRX, CIC, and TTN. In

addition, IDH1 and CIC mutation frequencies were greater in

the low-risk category, while TP53 and TTN mutation

frequencies were greater in the high-risk category. Patients

who had a low TMB gained a satisfactory survival benefit

(Figure 9E). After that, we examined whether or not it would

be beneficial to use TMB in conjunction with the risk score to

anticipate patients’ outcomes. As per the findings of the KM
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FIGURE 9
TMB analysis and immunotherapy response prediction in the training cohort. (A) The variation between high- and low-risk groups in terms of
TMB. (B) An analysis of the correlation between risk score and tumour mutation burden (C,D) OncoPrint of frequently mutated genes in high- and
low-risk groups. (E) The Kaplan-Meier curve of overall survival for patients, as shown by samples categorised according to their TMB score. (F)OS for
patients defined by the samples categorised by both their risk score and their TMB score, as shown by the Kaplan-Meier curve. (G) The variation
in immunotherapy response in low- and high-risk groups. (H) Immunotherapy response prediction in the training cohort.
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analysis, a lower risk score and a lower TMB are associated

with a greater likelihood of surviving (Figure 9F). Moreover,

when evaluating the efficacy of immunotherapy, we focused

our attention primarily on determining the significance of the

risk scores. The findings demonstrated that the relative odds

of responding favourably to immunotherapy in the high-risk

category were much greater in contrast with those in the low-

risk category (Figure 9G). A lower exclusion score was

associated with high-risk LGG populations, indicating that

these LGGs populations would be less likely to evade

immunotherapy (Figure 9H). All of these data illustrate

that patients in the high-risk category would gain more

benefits from ICB treatment. Therefore, we propose that

our signature can be applied to clinical patients to

accurately predict whether or not they would benefit from

immunotherapeutic interventions.

Independent prognostic performance of
our cuproptosis and necroptosis-related
gene signature and nomogram plot
establishment

Both univariate and multivariate Cox regression analyses

were carried out to evaluate whether the CNRG score is

independent of other clinical variables such as tumour type,

gender, age, cancer status, and grade (Table 1). The results

suggested that age, cancer status, grade, and CNRG score

independently functioned as prognostic indicators. Although

tumour type did not independently act as a prognostic

indicator (p = 0.061), we consider this factor to be non-

negligible. Following that, we devised a nomogram for OS

prediction by making use of clinical data and risk scores in

TCGA dataset (Figure 10A). The predictors of the nomogram

consisted of the above independent prognostic indicators,

tumour type, and five model genes. The AUC values of the

ROC curves were 0.914, 0.905, 0.884, and 0.899, correspondingly,

indicating the nomogram had excellent prognostic performance

(Figure 10B).

Prognostic significance of the cuproptosis
and necroptosis-related gene signature in
the validation set

The predictive accuracy of the 5-CNRGs prognostic

signature was confirmed in the CGGA cohort to figure out

whether or not it had the same prognostic significance across

a variety of groups. The samples from the LGG were

categorized into two groups using the same threshold

values as that used for the samples from the TCGA cohort

(Figure 11A). Patients who have high-risk scores have a

shortened survival time as well as an increased likelihood

of death (Figure 11B). In both the PCA and the t-SNE

analyses, the two risk groups hardly overlapped, implying

that it would be feasible to use the signature described above

(Figures 11C,D). The heatmap demonstrates that the levels of

the five CNRGs expressions in our signature agree with the

values in the calculation equation (Figure 11E). The KM

survival curves demonstrated a statistically significant

difference in OS between the low- and high-risk groups

(Figure 11F). The AUC values were 0.661, 0.692, 0.708,

and 0.737 over 1, 3, 5, and 7 years, demonstrating that the

model has a considerable predictive ability (Figure 11G).

The differences in clinical traits across populations at high-

and low-risk were then depicted in Figure 12A. The high-risk

demographics had more G3 patients, more dead people, and

more tumour recurrences. Similar to this, high-risk populations

in the CGGA cohort had higher ESTIMATEScore,

ImmuneScore, and StromalScore values and lower tumour

purity values (Figure 12B). Figure 12C also showed the

significant infiltration levels of immunocytes in the

TABLE 1 Univariate and multivariate Cox regression analysis determined the independent prognostic performance of our risk score.

Univariate HR HR.95L HR.95H p
value

Multivariate HR HR.95L HR.95H p
value

aType 0.720494516 0.561649 0.924265 0.009888 aType 0.777666 0.597662 1.011884 0.061204

bGender 0.912138 0.594411 1.399697 0.673813 bGender 1.12804 0.724577 1.756162 0.59371

cAge 4.376072 2.722401 7.034235 1.09E-09 cAge 3.47046 2.061005 5.843794 2.87E-06

dCancer_status 39.2837 5.466809 282.2869 0.000264 dCancer_status 33.08822 4.589435 238.5545 0.000517

eGrade 3.694602 2.280463 5.985662 1.10E-07 eGrade 2.007173 1.136654 3.54439 0.01633

fRiskScore 1.062957 1.048184 1.077939 1.23E-17 fRiskScore 1.036923 1.02053 1.053579 8.21E-06

aType: Astrocytoma, Oligoastrocytoma, Oligodendroglioma.
bGender: Female, Male.
cAge: ≤41, >41.
dCancer_status: Tumor free, With tumor.
eGrade: G2, G3.
fRiskScore: risk score = 5.68460388028422 * ZBP1 + 5.58839133632066 * PLK1 + 6.382784047 * CFLAR + 3.560828639 * SQSTM1 + 3.541878806 * FADD.
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populations at low and high risk. The infiltration levels of

myeloid dendritic cells, CD4+ T-cells, Th2 cells, macrophages,

and B cells were increased in the high-risk category. Meanwhile,

the contrast in ICG expression between populations at high- and

low-risk illustrated the same patterns. High-risk groups showed

higher ICG expression compared to low-risk populations, which

may be the cause of a likely compensating rise in immune cell

infiltration (Figure 12D).

Immunohistochemistry and
immunofluorescence of five cuproptosis
and necroptosis-related genes in low-
grade glioma tissues

The IHC staining images for the model gene-related proteins

in LGG and normal lung tissues were retrieved from the HPA

database and used in determining whether or not these five

CNRGs exhibit differentially high levels of protein expression in

LGG. In line with the findings described above, the analysis

revealed that the levels of protein expression for CFLAR, FADD,

PLK1, and SQSTM1 in LGG samples were remarkably elevated in

contrast with those in normal samples (Figure 13). We then

explored the cellular localization of these genes, of which

ZBP1 and PLK1 were not found. The expression product of

CFLAR, FADD, and SQSTM1 were mainly located on the

Vesicles and Cytosol, Nucleoplasm, Plasma membrane,

Cytosol and Nuclear bodies, Nucleoplasm and Cytosol

respectively (Figure 13).

Discussion

It has been determined that LGG is a class of primary brain

tumours that develops from supporting glial cells. In-depth

mechanisms of LGG are supposed to be heavily researched

due to its uncertain pathophysiology and unsatisfactory

treatment results. Cuproptosis and necroptosis, two new

forms of cell death, might be able to provide a fresh

approach to the therapy of malignancies. We started by

examining the variations in the expression of 87 CNRGs

and evaluating whether or not these genes served as

protective or risk factors in various cancers. We found that

the majority of CNRGs functioned as risk genes in LGG

patients. Furthermore, apparent CNV and SNV alterations

of CNRGs were also found in LGG populations, suggesting the

crucial role of CNRGs in LGG. Cancer signalling analysis of

CNRGs found most oncogenic pathways were significantly

enriched in LGG. To anticipate the clinical outcomes and

immunotherapy response of LGG patients based on CNRGs,

we first categorised molecular subtypes and then created and

verified a unique multigene signature.

38 CNRGs with prognostic values were found for NMF

clustering and signature building. First, CNRGs are applied to

FIGURE 10
The development and validation of the risk score-based nomogram. (A) A nomogram of LGGwas used to predict 1-year, 3-year, 5-year, and 7-
year survival rates. (B) The AUC values of the ROC curves for improved evaluation of the prognostic ability of the nomogram.
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divide LGG samples into two molecular clusters with

significantly distinct prognoses, clinical traits, and immune

microenvironment. ImmuneScore, StromalScore, and

ESTIMATEScore were generated to infer the stromal and

immunological components of each patient. TME is a niche

consisting of cytokines, chemokines, and stromal cells that

sustain tumour tissue (Belli et al., 2018). Higher ImmuneScore

and StromalScore values are related to larger, respective TME

components. The findings imply that C1 subtypes with a worse

prognosis may have a more abundant immune abundance.

Elevated infiltration levels of CD8+ T-cells, macrophages, and

resting mast cells were found in C1 subtypes after further analysis

of 22 immune cell infiltration components in each LGG sample

using the CIBERSOFT algorithm. Targeting the remodelling of

the TME might be a viable treatment method that could

attenuate the growth of tumours. Numerous research reports

have shown that the immune microenvironment affects the

biological activity of tumours (Mlecnik et al., 2016; Angelova

et al., 2018; Mao et al., 2021). Furthermore, we discovered that

immune checkpoint genes are expressed at a high level in the

C1 subtype and are linked to an unfavourable survival prognosis.

Collectively, the high infiltration levels of immune cells in the

FIGURE 11
The predictive performance of the risk score was validated by the validation cohort. (A) Group division in the validation cohort. (B) High-risk
patients exhibited an increased incidence of death. (C,D) PCA and t-SNE analysis demonstrated an excellent clustering performance of the five-
gene-based risk score. (E) Heatmap of the expression profiles of five CNRGs included in the signature in the validation cohort. (F) Survival curve in
CGGA cohort. (G) ROC curves in CGGA cohort.
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FIGURE 12
Clinical characteristics and immune characteristics in the validation cohort. (A) Analysis of the compositional variations between low- and high-
risk groups in terms of clinical characteristics. (B) Comparative analysis of the TME components for low- and high-risk groups (C) The pattern of the
distribution of immune cell infiltration in the validation cohort. (D) The expression profiles of ICGs in the validation cohort.
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C1 subtype may be a local compensatory phenomenon of active

immune checkpoints. Despite the presence of high anti-cancer

immunity in TME, ICG expression is also higher in the

C1 subtype, which suppresses the immune cell functions and

prevents the body from generating an effective anti-tumour

immune response, leading to tumour immune evasion and

resulting in a poor prognosis for the high-risk subgroup of

patients Our data point to the possibility that patients with a

C1 subtype might benefit more from immunotherapy. We

further verified our conjecture by using the TIDE database.

Significant statistical difference was observed for TIDE-derived

immunotherapy response prediction and exclusion score

between the two subtypes. The exclusion score is a negative

biomarker of immunotherapy and its downregulation provided

an essential grounding for immunotherapy response prediction

(Fu et al., 2020). Our results found that the C1 subtype is

characterized by a lower exclusion score and showed a higher

proportion of immunotherapy response, suggesting that

immunotherapy is more reliable and applicable to the

C1 population.

Following that, a novel CNRG signature involving

SQSTM1, ZBP1, PLK1, CFLAR, and FADD was developed

and validated to predict survival and benefit from

immunotherapy. Importantly, our signature outperforms

the other three signatures for predicting survival and has a

good diagnostic value. SQSTM1 is a versatile stress-inducible

scaffold protein responsible for regulating a wide range of

cellular activities (Clausen et al., 2010), including nuclear

factor kappa-B signalling. Additionally, it establishes a link

between autophagy and polyubiquitinated cargo (Liu et al.,

2017). In glioma, SQSTM1 could promote proliferation,

invasion and mesenchymal transition (Polonen et al.,

FIGURE 13
Immunohistochemistry and immunofluorescence of clinical samples (tumour tissues vs. normal adjacent tissue).
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2019), which accurately predicted the prognosis of patients

(Li et al., 2019b). Meanwhile, SQSTM1 is implicated in other

numerous types of disorders, particularly, neurodegenerative

(Ma et al., 2019), cardiometabolic disorders (Jeong et al.,

2019), melanomas (Karras et al., 2019) and breast cancer

(Ryoo et al., 2018). The role of ZBP1 in tumour progression

and metastasis is unclear. Recently, research has illustrated

that ZBP1 is highly increased in mice and humans with late-

stage tumours and that ZBP1 deletion inhibits tumour

metastasis in preclinical cancer models (Baik et al., 2021).

Although the pivotal role of ZBP1 in LGG has not been

reported before, ZBP1 expression was found to be

significantly up-modulated in ovarian and colon cancer

and linked to poor prognosis (Gu et al., 2004; Dimitriadis

et al., 2007). PLK1 is closely associated with cell proliferation

and has been intensively studied. PLK1 expression is

dysregulated in several human cancers, including

melanoma, breast, colorectal, gastric, and lung cancers

(Strebhardt, 2010). It has been reported that PLK1 inhibits

glioma cell invasiveness and induces apoptosis in glioma cells

(Wang et al., 2020). CFLAR is a known key regulator of the

apoptotic signalling pathway and is abnormally expressed in

a variety of cancers. Besides regulating apoptosis at different

levels of the signalling cascade, there is growing evidence that

CFLAR is also involved in the control of alternative cell death

pathways, for example, necroptosis and autophagic cell death

(Fulda, 2013). CFLAR is also considered a promising

therapeutic target, and multiple approaches have been

developed to interfere with CFLAR expression or function

in human cancers (Fulda et al., 2000; Panner et al., 2005; Haag

et al., 2011). FADD is a key bridging protein that mediates

apoptotic signalling (Mouasni and Tourneur, 2018). FADD is

not only linked to apoptosis but also proliferation, innate

immunity, tumour growth, inflammation, and autophagy

(Schwarzer et al., 2020). Thus, FADD is an important and

specific controller in many important cellular processes

(Tourneur and Chiocchia, 2010). At the same time, FADD

overexpression inhibits proliferation while promoting

apoptosis in human GBM cells (Wang et al., 2017).

It is widely known that TIME is intimately linked to

carcinogenesis and cancer development (Petitprez et al.,

2020; Chen et al., 2021). Immune cells may act in a

tumour-promoting or tumour-antagonistic manner.

Although tumour-antagonising immune cells within the

TME tend to target and destroy cancerous cells in the

initial phases of oncogenesis, tumour cells appear to

eventually evade immune surveillance and even block the

cytotoxic function of tumour-antagonising immune cells via

a variety of processes (Lei et al., 2020). In subsequent

explorations of the TME, we found that several cancer-

promoting immune cells, such as Th2 (Bing et al., 2017;

Watt et al., 2017; Yu et al., 2022), and M2 macrophage

(Mantovani et al., 2002; Zhu et al., 2020), are up-

modulated in the high-risk category, although some anti-

tumour immune cells had higher proportions, such as B cell

(Sarvaria et al., 2017), M1 macrophage (Najafi et al., 2019),

NK cells (Terren et al., 2019), and mDC (Banchereau et al.,

2009; Lebre and Tak, 2009). Plasma cells exhibited lower

proportions as a result of substantial intake in the high-risk

category to carry out their anti-tumour activity. As a

consequence of antigen exposure, naïve CD4+ T-cells

concurrently undergo the process of transformation into

memory T-cells (Obst et al., 2005). The high-risk category

demonstrated a decline in naive CD4+ T-cells and an

elevation in T-cell memory. Moreover, cancer cells may

trigger many immunological checkpoint pathways with

immunosuppressive properties (Darvin et al., 2018).

Therefore, these cancer-promoting immune cells and ICGs

are expected to be potentially effective therapeutic targets.

TMB may be used as an indicator to predict ICB

effectiveness and has become a biomarker in some cancer

types to identify individuals who would benefit from

immunotherapy, according to reports (Chan et al., 2019;

Tian et al., 2022). At the same time, we found that the

proportion of TMB in the high-risk category is higher.

IDH1, TP53 and ATRX are the leading three genes

exhibiting the greatest mutation frequency in LGG.

IDH1 mutations have been shown to improve LGG

prognosis and lower-grade gliomas that had mutations in

IDH but did not have 1p/19q codeletion virtually always also

had mutations in ATRX inactivation (86%) and TP53 (94%)

(Cancer Genome Atlas Research et al., 2015). Additionally, in

data spanning all WHO grades, changes in ATRX strongly

correlated with mutations in TP53 (p < 0.0001) and IDH1/2

(p < 0.0001) (Liu et al., 2012). Higher frequencies of mutation

in the high-risk cohort for IDH, TP53, and ATRX suggest a

possible relationship between the three genes, and the

combination of these three changes may result in the

discovery of a new therapeutic target.

Finally, we discovered that the proportion of patients who

responded favourably to immunotherapy was greater in the high-

risk category, but the capacity of immune cells to evade immune

surveillance was lower. All of these data illustrate that patients in

the high-risk segment might gain more benefits from ICB.

Therefore, We propose that our signature may be applied to

clinical patients to accurately predict whether or not they would

respond to immunotherapy.

In addition, we discovered that age, cancer status, grade, and

risk score could independently function as prognostic indicators.

We constructed a nomogram with predictors including tumour

type, age, cancer status, grade, risk score, and five model genes.

The AUC values of the ROC curves of the nomogram were

satisfactory, which indicates the strong predictive power of the

nomogram. Eventually, we verified the differential expression of

related genes encoding proteins in the model using IHC data

from the HPA database.
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Our research has several drawbacks as well. Firstly, we

only verified the CNRG-based signature using retrospective

data from the CGGA and TCGA databases; in the future, we

should examine its therapeutic significance by conducting

more prospective investigations. Secondly, we need more

large prospective clinical studies to assess its effectiveness

and applicability. Thirdly, cuproptosis and necroptosis need

to be investigated extensively in both in vivo and in vitro

settings before their potential roles in the onset and

progression of LGG can be fully comprehended.

In summary, we developed the 5-CNRG-related signature to

predict the prognosis and immunotherapy effectiveness among

LGG patients. This signature has been well-validated from

different points of view.
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