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Background: Colorectal cancer (CRC) is one gastrointestinal malignancy,

accounting for 10% of cancer diagnoses and cancer-related deaths

worldwide each year. Therefore, it is urgent to identify genes involved in

CRC predicting the prognosis.

Methods: CRC’s data were acquired from the Gene Expression Omnibus (GEO)

database (GSE39582 and GSE41258 datasets) and The Cancer Genome Atlas

(TCGA) database. The differentially expressed necroptosis-related genes

(DENRGs) were sorted out between tumor and normal tissues. Univariate

Cox regression analysis and least absolute shrinkage and selectionator

operator (LASSO) analysis were applied to selected DENRGs concerning

patients’ overall survival and to construct a prognostic biomarker. The

effectiveness of this biomarker was assessed by the Kaplan–Meier curve and

the receiver operating characteristic (ROC) analysis. The GSE39582 dataset was

utilized as external validation for the prognostic signature. Moreover, using

univariate and multivariate Cox regression analyses, independent prognostic

factors were identified to construct a prognostic nomogram. Next, signaling

pathways regulated by the signature were explored through the gene set

enrichment analysis (GSEA). The single sample gene set enrichment analysis

(ssGSEA) algorithm and tumor immune dysfunction and exclusion (TIDE) were

used to explore immune correlation in the two groups, high-risk and low-risk

ones. Finally, prognostic genes’ expression was examined in the

GSE41258 dataset.

Results: In total, 27 DENRGswere filtered, and a necroptosis-related prognostic

signature based on 6 DENRGs was constructed, which may better understand

the overall survival (OS) of CRC. The Kaplan–Meier curve manifested the

effectiveness of the prognostic signature, and the ROC curve showed the

same result. In addition, univariate and multivariate Cox regression analyses

revealed that age, pathology T, and risk score were independent prognostic

factors, and a nomogram was established. Furthermore, the prognostic

signature was most significantly associated with the apoptosis pathway.

Meanwhile, 24 immune cells represented significant differences between

two groups, like the activated B cell. Furthermore, 32 immune checkpoints,

TIDE scores, PD-L1 scores, and T-cell exclusion scores were significantly
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different between the two groups. Finally, a 6-gene prognostic signature

represented different expression levels between tumor and normal samples

significantly in the GSE41258 dataset.

Conclusion: Our study established a signature including 6 genes and a

prognostic nomogram that could significantly assess the prognosis of

patients with CRC.
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Introduction

Colorectal cancer (CRC) is widespread as one digestive

system malignancy, which is the second and third most

common, respectively, in females and males (Arnold et al.,

2017; Bray et al., 2018). According to epidemiological studies,

colorectal cancer is the result of synergistic effects of

environmental, lifestyle, and genetic factors. Among them,

gender and increasing age are closely related to the incidence

(Syngal et al., 2015). In addition, risk factors such as poor dietary

habits, lack of exercise, obesity, and smoking also increase the

risk of developing CRC (Brenner et al., 2011). With the

promotion of individualized treatment, the treatment options

for local and advanced diseases have become more diverse.

Current treatments for CRC differ in patients, such as

endoscopic local excision, surgical local excision, and

downstaging preoperative chemoradiotherapy. Moreover, the

overall survival situations of patients in the advanced stage

have also been greatly improved with the continuous iteration

of treatment technology and the rapid development of treatment

methods. However, the incidence and mortality of CRC are still

high because most patients develop symptoms at a later stage. On

the other hand, the prognosis of patients with metastatic CRC

remains poor with certain limitations, despite the progress in

clinical diagnostic methods and the application of

comprehensive treatment (Song et al., 2015). Therefore, it is

crucial to focus on the molecular mechanism of CRC and seek

significant biomarkers, which may improve the detection rate of

early screening and conduct more targeted individualized

treatment.

Necroptosis is one programmed cell necrosis that differs

from apoptosis and is independently regulated by aspartic

acid. Cells with necroptosis have typical necrotic features such

as swelling and cell membrane rupture, and release numerous

damage-related molecules, inflammatory cytokines, and

chemokines (Galluzzi and Kroemer, 2008). Necroptosis is

involved in many pathophysiological processes, such as

infection, liver disease, and neurodegenerative diseases (Xie

et al., 2020; Dai et al., 2021; Khan et al., 2021). The regulation

of necroptosis plays an essential role in immune activities (Lu

et al., 2014). Recent research works have revealed that

necroptosis also participates in both the pathogenesis and

metastasis of tumors (Ji et al., 2020; Yan et al., 2022).

Specifically, necroptosis may inhibit tumor proliferation,

progression, and metastasis. The combination of

necroptosis inducers with immune checkpoint inhibitors

may lead to synergistic effects in tumor suppression (Niu

et al., 2022). Furthermore, the effect of tumor necrosis on CRC

patients may be closely related to systemic and local

inflammatory responses (Richards et al., 2012). In addition,

necrosis is regarded as an independent prognostic factor when

it comes to CRC (Pollheimer et al., 2010). Although the

molecular mechanism of necroptosis has been fully studied,

its role in tumorigenesis and progression remains to be

absolutely clarified. It may probably offer a valuable

opinion that pays attention to the signal pathways involved

with necroptosis in early diagnosis and targeted therapy of

CRC (Meng et al., 2016).

In our study, the sequencing datasets of CRC with the

survival information and clinical data were acquired from The

Cancer Genome Atlas (TCGA) database (https://xenabrowser.

net), and a total of 69 necroptosis-related genes (NRGs) were

obtained from the Kyoto Encyclopedia of Genes and Genomes

(KEGG) database (https://www.kegg.jp/kegg/) and a previously

published article. Then 27 differentially expressed necroptosis-

related genes (DENRGs) were acquired by intersecting the

differentially expressed genes (DEGs) in CRC with NRGs.

Based on the 27 DENRGs, a prognostic signature was

constructed and then determined through a series of statistical

analyses. Six significant biomarkers were acquired and then

verified in the GSE41258 dataset. Correlations between risk

scores and different clinical characteristics were also analyzed.

Gene Ontology (GO) and KEGG enrichment analyses were

implemented on the two different risk groups using gene set

enrichment analysis (GSEA) software, and the immune

infiltration analysis was performed using the single sample

gene set enrichment analysis (ssGSEA) algorithm.

Immune checkpoints, tumor immune dysfunction and

exclusion (TIDE) score, PD-L1 treatment score, T-cell

rejection score, and T-cell dysfunction score were also

analyzed in both groups. Drug sensitivity analysis was also

implemented using the pRRophetic algorithm. Through the
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aforementioned analysis, we depicted the role of necroptosis in

CRC from different aspects. Our study may provide a muchmore

comprehensive theory for further studies.

Materials and methods

Data source

Data regarding colon adenocarcinoma (COAD), as well as

rectum adenocarcinoma (READ), were obtained from the TCGA

database. The TCGA-COAD and READ datasets included

616 tumor samples and 51 normal samples, of which

584 tumor samples contained clinical information and were

regarded as a training set for the construction of prognostic

signatures. Furthermore, the GSE39582 and GSE41258 datasets

related to CRC were obtained from the Gene Expression Omnibus

(GEO) database. The GSE39582 dataset, containing 562 tumor

samples with survival information, was defined as an external

validation set for confirming the prognostic signature. The

GSE41258 dataset, containing 186 tumor and 54 normal

samples, was used to further examine the expression of

signature genes. Furthermore, we downloaded NRGs from the

KEGG database; after merging them with NRGs collected from a

previous study (Wang and Liu, 2021) and removing duplicate

genes, a total of 69NRGs were obtained (Supplementary Table S1).

Identification of DEGs and DENRGs

The DEGs were identified between 661 tumor samples and

51 normal ones from the TCGA database using the limma package

of R software. Adjusted p-value < 0.05 and |log2fold change

(FC)| > 0.5 were set as the cutoff values. Next, the DENRGs

were screened via overlapping the DEGs and NRGs by Venn tool.

Development and validation of the
necroptosis-related signature

Univariate Cox analysis was first used to select prognostic-related

genes with p-value < 0.2 in the training set. Afterward, the results

obtained earlier were incorporated into the least absolute shrinkage

and selectionator operator (LASSO) algorithm (Tibshirani, 1997) and

were used to screen necroptosis-related prognostic signature genes

using the glmnet R package (Engebretsen and Bohlin, 2019).

Furthermore, the individualized risk scores of each CRC patient

were calculated by the following formula:

Risk Score � Σi Coefficient(genei)pExp(genei) (1)

According to the median of the risk scores, the patients in the

training set were categorized into two different risk groups. The

differences in the overall survival (OS) between the two groups were

compared by the Kaplan–Meier method and log-rank test. In

addition, receiver operating characteristic (ROC) curves were

plotted to assess the efficiency of the model using the

survivalROC package (Xie et al., 2012). Similarly, these

aforementioned methods were used to validate the performance

of the necroptosis-related prognostic biomarker in the validation set.

Correlation analysis between risk scores
and different clinical characteristics

The wilcox.test function was applied to explore the correlations

between risk scores and different clinical characteristics in the

training set. The variables included in the wilcox.test analysis

included age, gender, pathologic T, pathologic N, pathologic M,

cancer status, and tumor stage. Next, univariate and multivariate

Cox regression analyses were used to select the independent

prognostic factors from the risk score and different clinical

characteristics. Finally, a nomogram was drawn using the R

package RMS on the basis of multivariate Cox regression

analyses. A calibration curve and decision curve (DCA) of the

nomogram were used to assess the performance of the

nomogram on the basis of the prognostic signature.

Functional enrichment analysis

The GO biological process and KEGG pathways concerning the

prognostic signature were explored based on all genes in the two

different risk groups in the training set by GSEA v 4.0.3 (Suárez-

Fariñas et al., 2010). At the same time, c2.cp.kegg.v7.4.symbols.gmt

was selected as the reference gene set, and aNOM p-value< 0.05was
regarded as significant enrichment.

Immune microenvironment analysis

The ssGSEA algorithm was used to calculate the 28 immune

cell infiltration abundances of CRC patients in high- and low-risk

groups from the training set.Moreover, the expressions of immune

checkpoints between the two subgroups were extracted. TIDE was

used to evaluate the TIDE score, PD-L1 score, T-cell exclusion

score, and T-cell dysfunction score of two subgroups.

Drug sensitivity analysis based on GDSC

According to the TCGA gene expression profile and the cell

line expression profile in the Genomics of Drug Sensitivity in

Cancer (GDSC) database, drug IC50 was predicted using the

pRRophetic algorithm (Geeleher et al., 2014).

Frontiers in Genetics frontiersin.org03

Liang et al. 10.3389/fgene.2022.955424

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.955424


Biomarker expression validation

The expressions of the genes mentioned earlier were

extracted from expression validation set GSE41258. Moreover,

R package ggplot2 (Villanueva and Chen, 2019) was used to draw

a boxplot through wilcox.test function to verify the expression of

prognostic signature genes.

Cell Culture

The cell lines used in our study include NCM460, HCT116,

and SW480, which were obtained from the China Center for

Type Culture Collection (CCTCC). The cells were cultured in

Dulbecco’s modified Eagle’s medium (DMEM, Biochannel,

China) supplemented with 10% fetal bovine serum (FBS,

Gibco, US) and 1% penicillin-streptomycin (Pen Strep, Gibco,

US) in a 5% CO2-humidified incubator at 37°C. Before the

treatment of total RNA isolation, the cells were grown on

coverslips in 6-well plates overnight.

Real-time fluorescence quantitative PCR
analysis

The Total RNA was extracted using a RNAeasy™ Animal

RNA Isolation Kit with Spin Column (Beyotime, China), and

cDNA was synthesized using a HiScript III RT SuperMix for

qPCR (+gDNA wiper) (Vazyme, China). The quantitative real-

time PCR (qPCR) was performed on a StepOne Plus system

(Applied Biosystems, USA) with ChamQ SYBR qPCR Master

Mix (Vazyme, China). The primers used to amplify the specific

genes are listed as follows:

ACTB (human): forward 5′- CATGTACGTTGCTATCCA

GGC -3′, reverse 5′-CTCCTTAATGTCACGCACGAT -3’;

CHMP2B (human) forward 5′- GGCTATAATCAGAGATCG

AGCAG -3′, reverse 5′- CTCGTCTTCTGTTTCCGTAGATG

-3’; CHMP6 (human): forward 5′- GACAAGCTGAGGCAG

TACCAGA -3′, reverse 5′- CTGCTCCTGGTATCGCTTCTTC
-3’; RIPK3 (human): forward 5′- GCTACGATGTGGCGGTCA
AGAT -3′, reverse 5′- TTGGTCCCAGTTCACCTTCTCG -3’;

CXCL1 (human): forward 5′- AGCTTGCCTCAATCCTGCATC
C -3′, reverse 5′- TCCTTCAGGAACAGCCACCAGT -3’; GPX4

(human): forward 5′- GAGGCAAGACCGAAGTAAACTAC

-3′, reverse 5′- CCGAACTGGTTACACGGGAA -3’; TRAF2

(human): forward 5′- TCCCTGGAGTTGCTACAGC -3′,
reverse 5′- AGGCGGAGCACAGGTACTT -3’.

Statistics

The statistical analysis was implemented with R 4.0.5, and the

wilcox.test method was applied to determine whether the

differences were significant or not. Student’s t test was used in

real-time fluorescence quantitative PCR analysis, and the mRNA

relative expression was presented as the mean ± SEM. Unless

otherwise indicated, a p-value < 0.05 was regarded as significant

statistically.

Results

Identification of DEGs and DENRGs

According to the criteria for DEG, 5316 DEGs (2880 up-

regulated and 2436 down-regulated) were selected between

616 tumor samples and 51 normal ones of TCGA

(Figure 1A). Next, a total of 27 DENRGs were selected based

on overlapping DEGs and NRGs for further analysis

(Figure 1B).

Development of the necroptosis-related
signature

Univariate Cox analysis and LASSO regression algorithm

were used to select necroptosis-related prognostic signature

genes. According to the univariate Cox regression analysis,

8 DENRGs were selected, of which the hazard ratio (HR) of

TRAF2 (HR = 1.444, p = 0.065, 95% CI = 0.977–2.135) and GPX4

(HR = 1.214, p = 0.168, 95% CI = 0.921–1.599) were more than 1,

while the HR of the CHMP2B (HR = 0.738, p = 0.044, 95% CI =

0.549–0.991), RIPK3 (HR = 0.699, p = 0.102, 95% CI =

0.456–1.074), IL18 (HR = 0.860, p = 0.179, 95% CI =

0.691–1.072), CXCL1 (HR = 0.856, p = 0.016, 95% CI =

0.754–0.971), TLR3 (HR = 0.790, p = 0.199, 95% CI =

0.551–1.132), and CHMP6 (HR = 0.718, p = 0.142, 95% CI =

0.462–1.118) were less than 1 (Figure 2A). Among 8 DENRGs,

6 DENRGs were screened as necroptosis-related prognostic

signature genes, including CHMP2B (lambda = −0.15147441),

TRAF2 (lambda = 0.210635396), RIPK3

(lambda = −0.203509488), CXCL1 (lambda = −0.111608948),

GPX4 (lambda = 0.108352013), and CHMP6

(lambda = −0.325710435) (Figures 2B,C).

According to the median risk score (−1.578880721), the

patients in the training set were divided into two groups:

high-risk (n = 292) and low-risk groups (n = 292)

(Figure 3A). As shown in Figure 3B, CHMP2B, RIPK3,

CXCL1, and CHMP6 were negatively associated with risk

scores, but TRAF2 and GPX4 were positively associated with

risk scores. Moreover, the Kaplan–Meier curve displayed that the

patients in the high-risk group had a significantly worse OS than

those in the low-risk group (Figure 3C, p = 0.00071). The ROC

curves indicated that the area under the curve (AUC)

reached 0.71 at 1 year, 0.653 at 3 years, and 0.699 at 5 years

(Figure 3D).
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FIGURE 1
Identification of DEGs and DENRGs in CRC. (A) 2880 up-regulated and 2436 down-regulated DEGs based on TCGA. (B) 27 DENRGs based on
the overlap of DEGs and NRGs.

FIGURE 2
Selection of necroptosis-related genes in CRC. (A) 8 DENRGs selected based on the univariate Cox regression analysis. (B) The LASSO Cox
analysis screened six genes. (C) The optimal values of the penalty parameter were defined by 10 fold cross-validation. The two dotted lines
represented two particular values of λ. The left sidewas λmin and the right sidewas λ1se. The λminwas selected to build themodel for accuracy in our
study.
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Validation of the necroptosis-related
signature

The GSE39582 dataset was defined as external validation for

the prognostic signature, and the patients of this dataset were also

divided into two groups: high-risk (n = 281) and low-risk (n =

281) groups by the median of risk scores (−9.306512262)

(Figure 4A). Likewise, the correlation between necroptosis-

related prognostic signature genes and risk scores as well as

the results of the Kaplan–Meier curve and ROC curves were

consistent with those in the training set (Figures 4B–D).

Correlation analysis between risk scores
and different clinical characteristics

To understand the correlation between the risk score and

different clinicopathological features, the differences in the risk

scores among the different clinical features (age, gender,

pathologic T, pathologic N, pathologic M, and tumor stage)

were analyzed in the training set. As depicted in Figure 5A,

there were significant differences in risk scores between

pathologic N0 and N2, pathologic N1 and N2, pathologic

T1 and T4, pathologic T2 and T4, tumor stage I and stage

III, and tumor stage I and stage IV, respectively. In addition,

univariate and multivariate Cox regression analyses

were performed to further investigate the

clinicopathological characteristics and prognosis of the

prognostic signature. In univariate Cox regression analyses,

age; pathologic T, N, and M; tumor stage; and risk score were

significantly related to the prognostic signature (p-value < 0.05;

Figure 5B). The 6 factors with univariate significance were

included in the multivariate Cox analysis, indicating that the

3 clinical factors, age, pathology T, and risk score,

were independent prognostic factors (p-value < 0.05;

Figure 5C).

FIGURE 3
Evaluation of the prognostic signature in the training set. (A) The patients in the training set were categorized into high-risk and low-risk groups.
(B) The expression of 6 DENRGs in high-risk and low-risk groups. (C) The Kaplan–Meier curve of high-risk and low-risk groups. (D) The ROC curve
was used to assess the accuracy of the prognostic signature.
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Establishment of nomograms and
calibration curves

In total, 584 patients in the training set were involved in

constructing a prognostic nomogram, predicting 1-, 3-, and

5-year OS with 3 independent prognostic factors (age,

pathology T, and risk score; Figure 6A). Afterward, the

calibration curve and DCA of the nomogram were drawn

to validate the nomogram based on the prognostic signature.

As shown in Figure 6B, the calibration curve for

predicting the 5-year OS indicated that the nomogram-

predicted survival closely corresponded with the actual

survival outcomes. The net benefit rate of the nomogram

model in the DCA curve is higher than the three clinical

factors, age, pathological T, and risk score, showing that

the nomogram model has an accurate predictive

potential with better accuracy for patient prognosis

(Figure 6C).

Functional enrichment analysis

To further explore the specific mechanism of the

necroptosis-related signature, GSEA analysis was performed

on the training set (low risk vs. high risk). As shown in

Figure 7A, the top 5 GO terms were enriched in the high-

risk group, including negative regulation of Lamellipodium

organization, histone H3 H4 dimethylation, regulation of

gastrulation, regulation of transcription by glucose,

and carbon catabolite regulation of transcription. The top

5 GO terms were enriched in the low-risk group, including

innate immune response activating signal transduction, cell

activation involved in immune response, leukocyte-mediated

immunity, cytokine-mediated signaling pathway, and

immune effector process (Figure 7B). KEGG analysis

indicated that the top 5 pathways in the low-risk

group were the nod-like receptor signaling pathway, toll-

like receptor signaling pathway, cytokine receptor

FIGURE 4
Validation of the prognostic signature in the validation set. (A) The patients in the GSE39582 dataset were categorized into high-risk and low-
risk groups. (B) The expression of 6 DENRGs in high-risk and low-risk groups. (C) The Kaplan–Meier curve of high-risk and low-risk groups. (D) The
ROC curve was used to assess the validity of the prognostic signature.
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interaction, cytosolic DNA sensing pathway, and

p53 signaling pathway (Figure 7C). However, none of the

KEGG pathways was enriched in the high-risk group with

significance.

Immune microenvironment analysis

The ssGSEAwas used to assess immune cell infiltration in the

training set; 24 types of immune cells were significantly different

FIGURE 5
Correlation analysis between risk scores and different clinical characteristics. (A) Box plots of correlations between risk score and different
characteristics (age, gender, pathologic T, pathologic N, pathologic M, and tumor stage). (B) The univariate Cox regression analysis for selected
prognostic factors. (C) The multivariate Cox regression analysis for selected prognostic factors.
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between the above groups (p < 0.05), including activated B cells,

activated CD4 T cells, and activated CD8 T cells (Figure 8A).

Furthermore, a total of 32 immune checkpoints represented

significant differences as well, such as ADORA2A, BTNL2,

and CD160 (Figure 8B). In addition, TIDE analysis

demonstrated that the TIDE scores, PD-L1 scores, and T-cell

exclusion scores all showed significant differences between the

two groups (Figure 8C).

Drug sensitivity analysis based on GDSC

The drug sensitivity of patients between the high- and low-

risk groups was compared using the GDSC database. Notably, the

top 5 drugs shown in Figure 9 indicated that the patients in the

high-risk group were more sensitive to BMS.708163, RDEA119,

Lapatinib, and X681640. However, the patients in the other

group showed more sensitivity to lenalidomide (Figure 9).

FIGURE 6
Nomograms and calibration curves. (A) Prognostic nomogram was established to predict the OS with 3 independent prognostic factors. (B)
Calibration curve was used to validate the nomogram based on the prognostic signature. (C) DCA was used to validate the nomogram based on the
prognostic signature.
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FIGURE 7
Functional enrichment analysis between high- and low-risk groups. (A) Top 5 GO terms enriched in the high-risk group. (B) Top 5 GO terms
enriched in the low-risk group. (C) Top 5 KEGG terms enriched in the low-risk group.
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Validation of biomarker expression

The differential mRNA levels of the prognostic signature

genes in the expression validation set GSE41258 are shown in

Figure 10A. CHMP2B, CHMP6, and RIPK3 were downregulated,

while CXCL1, GPX4, and TRAF2 were upregulated in tumor

samples. We also validated the mRNA relative expression level of

these genes in one normal colorectal cell line, NCM460, and two

FIGURE 8
Immune microenvironment analysis between high- and low-risk groups. (A) 24 immune cells significantly different based on immune cell
infiltration analysis. (B) 32 immune checkpoints significantly different based on immune checkpoints analysis. (C) TIDE scores, T-cell exclusion
scores, and PD-L1 scores significantly different based on TIDE analysis.
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colorectal cancer cell lines, HCT116 and SW480 (Figure 10B).

We found that the mRNA levels of these genes are consistent

with the above results based on the expression validation set

GSE41258, except RIPK3. The mRNA expression levels of

CHMP2B and CHMP6 were lower, while CXCL1, GPX4, and

TRAF2 showed higher mRNA expression levels in HCT116 and

SW480 than NCM460. However, the result of RIPK3 showed no

significance.

Discussion

Necroptosis is a programmed cell necrosis that is mainly

activated by receptor-interacting protein kinase 1 (RIPK1), and

mediated by receptor-interacting protein kinase 3 (RIPK3) and

mixed lineage kinase domain-like pseudokinase (MLKL) (Shan

et al., 2018). It is involved in the pathological process of various

diseases including tumors (Strilic et al., 2016). A recent study

determined two necroptosis-related clusters and a prognostic

signature including 10 genes based on bioinformatic analysis,

making risk stratification and treatment optimized in

hepatocellular carcinoma (Chen et al., 2022). Necroptosis was

also found to promote the progression of Stanford type A aortic

dissection (TAAD) by activating immune infiltration (Liu et al.,

2022).

Colorectal cancer is one of the most common malignant

tumors with high incidence and mortality, which is still a major

threat to global health. The pathogenesis and progression of

tumors are closely concerned with necroptosis, and the

vulnerability to necrosis is also considered to be a potential

weakness of malignant tumors, which may be targeted for

antitumor therapy (Gong et al., 2019). However, the role of

NRGs in CRC is still unclear with few studies.

Our study built a prognostic signature on the basis of

DNRGs in CRC and obtained six biomarkers, including

CHMP2B, TRAF2, RIPK3, CXCL1, GPX4, and CHMP6.

Previous research has demonstrated that TRAF2 acts as

both a negative regulator of death receptor-induced

apoptosis and an inhibitor of TRAIL- and CD95L-induced

necroptosis (Karl et al., 2014). RIPK3 is a serine-threonine

protein kinase that is a key regulator of infection-induced

necroptosis, which plays different roles in different types of

tumors (Liu et al., 2021). It has been proven that CXCL1-

promoted macrophage-induced adaptive immunosuppression

FIGURE 9
Drug sensitivity analysis between high- and low-risk groups based on GDSC.
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can be induced by necroptosis to advance the occurrence of

pancreatic ductal adenocarcinoma (Seifert et al., 2016). There

are few studies on the association of necroptosis with

CHMP2B, GPX4, and CHMP6.

In our study, the low-risk group was enriched by several

KEGG pathways, such as nod-like receptor signaling

pathway, toll-like receptor signaling pathway, cytokine

receptor interaction, cytosolic DNA sensing pathway, and

p53 signaling pathway. Among them, toll-like receptors

(TLRs) have been proven to play an important role via

evolutionary-conserved motifs for recognizing the

pathogen-associated molecular patterns (PAMPs) in CRC

(Medzhitov, 2001; Akira and Takeda, 2004; Shibolet and

Podolsky, 2007). When the toll-like receptor signaling

pathway is dysregulated, it may lead to an imbalance of

intestinal epithelial cells (IECs) and the development of

CRC (Moradi-Marjaneh et al., 2018). Furthermore,

previous studies have confirmed that chemokines and

chemokine receptors can promote CRC metastasis, and

their abnormal expression may contribute to the prognosis

of CRC (Mitchell et al., 2019). P53 is a frequently mutated

tumor suppressor gene in CRC that promotes the growth of

cancer and leads to treatment resistance (Liebl and Hofmann,

2021). The p35 signaling pathway was mediated by Cullin-4B

to promote cell proliferation and invasion in CRC (Zhong

et al., 2021), and was thought to be a potential targeted

signaling pathway for the treatment of CRC (Slattery et al.,

2019). In addition, immune microenvironment analysis

demonstrated that 32 immune checkpoints were

significantly different between high- and low-risk groups,

such as ADORA2A, BTNL2, and CD160. ADORA2A is an

adenosine receptor, and blocking tumor-produced adenosine

perhaps enhances the effect of immunotherapy (Raskovalova

et al., 2007). BTNL2 is considered an effective inhibitor of the

antitumor immune response, which has been confirmed in

mouse models (du et al., 2022). The high mRNA level of

CD160 in CRC has been confirmed in several studies (Saleh

et al., 2020; Ma et al., 2021).

According to drug sensitivity analysis based on GDSC,

patients in the high-risk group were found to be more

sensitive to Lapatinib. Lapatinib is an inhibitor of human

epidermal growth factor receptor type 2 (HER2) and

epidermal growth factor receptor (EGFR), which is applied

in combination with capecitabine in the treatment of HER2-

positive metastatic breast cancer (Geyer et al., 2006).

Lapatinib monotherapy or Lapatinib combined with

trastuzumab can benefit patients with HER2-positive

metastatic CRC to some extent (Guan et al., 2020; Tosi

et al., 2020). In contrast, patients in the low-risk group

showed more sensitivity to lenalidomide. Lenalidomide is

usually used in combination with dexamethasone for the

treatment of relapsed or refractory multiple myeloma

(Dimopoulos et al., 2007). A study in 2013 indicated that

lenalidomide significantly activated T cells, and its

combination with cetuximab significantly enhanced the

immune regulatory effect of KRAS-mutant metastatic CRC

(Gandhi et al., 2013). Although it was confirmed that

lenalidomide can reduce tumor vascular density in a

mouse model of CRC with liver metastasis, the antitumor

effect of lenalidomide in solid tumors still requires further

study (Leuci et al., 2016).

Our study further completes the field of the role of

necroptosis in CRC to some degree. At present, the

research works on necroptosis in CRC mainly concentrate

on certain substances or specific signaling pathways, while

there are few in-depth discussions on NRGs in colorectal

cancer. For example, the resistance of hypoxic colorectal

cancer cells to necroptosis is produced by the glycolytic

metabolism, partly via scavenging mitochondrial free

radicals (Huang et al., 2013). In addition, RIP3-mediated

necroptosis forms an important part of Resibufogenin’s

suppressing growth and metastasis of CRC (Han et al.,

2018). Some substances like fragile X mental retardation

protein (FMRP), ABIN-1, PFK-15, and carnosine can

regulate necroptosis in CRC in different ways. FMRP

regulates necroptosis through the surveillance of the

RIPK1 mRNA metabolism (di Grazia et al., 2021). ABIN-1

is a key regulator, and its deficiency may facilitate

FIGURE 10
mRNA levels of 6 prognostic signature genes validated in
GSE41258 and cell lines.
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necroptosis-based antitumor therapy by increasing the

sensitivity of CRC cells to necroptosis (Cai et al., 2021).

The cytotoxicity and genotoxicity of PFK-15 are attenuated

if necroptosis is suppressed in CRC cells (Yan et al., 2021).

Carnosine can suppress CRC cells’ proliferation via the ß-

catenin/Tcf-4 signaling pathway, thereby inducing

necroptosis, and is considered a potential compound from

diet for the treatment and prevention of CRC (Hsieh et al.,

2022). The abovementioned studies integrate a complete map

of the further mechanisms underlying the role of necroptosis

in CRC. Recently, one research has provided a more

comprehensive analysis of NRGs in colon cancer (CC)

based on bioinformatics (He et al., 2022). It involves

prognosis, immune infiltration, and drug sensitivity

analysis but mainly focuses on cluster analysis of the

necroptosis molecular subtypes in CC. Nevertheless, this

study has some imperfections compared with ours in terms

of both the range of disease and the depth of analysis. In

addition to immune microenvironment infiltration analysis

and drug sensitivity analysis, we constructed a prognostic

signature and screened out 6 significant related biomarker

genes. Of course, our study still has some shortcomings and

limits, such as the small sample size, retrospective study using

only bioinformatics methods to obtain data from public

databases, and lack of diversity in the type and number of

samples for in vitro validation experiments. As a result,

although we used ROC curves, line plots, and gene

expression experiments for validation, further and deeper

validation experiments are still needed. In addition, gene

RIPK3 was not validated at the level of cell lines, which

may be ascribed to the limitations of cell lines. Despite the

lack of further experiments to confirm our findings, it is

undeniable that our study lays the foundation in the field of

necroptosis, and we will continuously pay attention to the

DENRGs.

Conclusion

Our study established a six-gene signature comprising

CHMP2B, TRAF2, RIPK3, CXCL1, GPX4, and CHMP6, and a

prognostic nomogram, which can reliably predict the overall

survival of CRC. In addition, we provide a range of

clinical risk factors for patients with CRC available for

reference.
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