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Background: Clear cell renal cell carcinoma (ccRCC) is the most common type

of renal cell carcinoma, accounting for approximately 70% of all RCC cases.

Cuproptosis, a novel mechanism of cell death, may be a potential target for

intervention in tumor development.

Methods: Cuproptosis-related prognostic lncRNAs were identified by co-

expression analysis and univariable Cox regression. Five lncRNA profiles were

obtained by LASSO regression analysis, and a model with high accuracy was

constructed to assess the prognosis of ccRCC patients based on these

cuproptosis-related lncRNAs. Survival analysis and time-dependent ROC

curves were performed for the α and β groups, and the results confirmed

the high accuracy of the model in predicting the prognosis of ccRCC patients.

Immunoassay, principal component analysis (PCA), and drug sensitivity analysis

were also performed for different risk categories. Finally, we classified ccRCC

patients into two different subtypes by consistent class clustering, and

performed immune checkpoint activation, tumor microenvironment analysis,

PCA, and drug sensitivity analysis for different subtypes.

Results: We developed a prognostic model using five cuproptosis-associated

lncRNAs, which was found to be highly accurate in predicting ccRCC patients’

prognosis. Immunotherapy may be more beneficial to the hyper-risk category

and the C2 subtype.

Conclusion: The results of this study confirm that five cuproptosis-associated

lncRNAs can be used as potential prognostic markers for ccRCC.
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Introduction

Renal cell carcinoma (RCC) is one of the three major tumors

of the urinary system, with approximately 4,00,000 new cases and

1,70,000 cancer-related deaths reported in 2018, according to

global cancer statistics (2020). Clear cell renal cell carcinoma

(ccRCC) is the most prevalent pathological type, comprising

approximately 70% of all RCC cases (Shuch et al., 2015). Despite

the fact that surgical resection is presently the primary

therapeutic option for ccRCC, research has revealed that

30%–40% of patients with localized lesions will experience

recurrence following surgery (Choueiri and Motzer 2017).

Immunotherapy has grown in importance for the cancer

treatment paradigm in recent decades and been acknowledged

as a promising therapeutic option, (Hoos 2016; Aoun et al., 2017;

Kamal et al., 2019). However, in the vast majority of

malignancies, only one-third of patients react to immune

checkpoint inhibitors (Tang et al., 2020). In the treatment of

RCC, the effectiveness of Sorafenib and Sunitinib is clinically well

documented. (Nassif et al., 2017; Tatsugami et al.,

2018).However, in some cases, the efficacy of treatment is

greatly compromised by the development of resistance to

Sorafenib and Sunitinib.(Qu et al., 2016; Ishibashi et al.,

2018). Therefore, it is essential to investigate how to enhance

immunotherapy for ccRCC and to select the appropriate

treatment regimen based on the relevant subtype.

Autophagy death, apoptosis, necroptosis, and other cell death

pathways have all been found necessary for the elimination of

damaged and redundant cells from the body (Tsvetkov et al.,

2022). Copper’s role in disease has been studied since the 1990s.

In 1991, Pocino et al. found that a high intake of copper slows

down both cellular and humoral immune responses (Pocino

et al., 1991). In the early 21st century, Linder (2012) discovered

that continuous exposure of cells and tissues to excess copper

could activate p53-dependent or independent pathways to trigger

“programmed cell death” or “apoptosis.” Copper-induced

“apoptosis” has been demonstrated in hepatocytes,

splenocytes, and thymocytes in later research (Mitra et al.,

2012; Keswani et al., 2015). Tsvetkov et al. (2022) have

discovered a new type of cell death called “cuproptosis,”

which is triggered by the aggregation of mitochondrial lipid

acylated proteins, and the instability of Fe-S cluster proteins,

resulting in cell death. This research elucidates the biology of

inherited copper overload illnesses, and provides a novel

approach to cancer treatment based on copper toxicity

(Kahlson and Dixon 2022). As a result, this novel cell death

signaling pathway could be a viable intervention target in

tumorigenesis, suggesting a new anti-tumor strategy.

Recent research indicates that long-stranded noncoding

RNAs (lncRNA) are involved in a variety of tumor

progression mechanisms, including carcinogenesis,

proliferation, migration, invasion, metastasis, and angiogenesis

(Tan et al., 2022). Nonetheless, no research has been conducted

on the prognostic model of cuproptosis-related lncRNAs. So, the

goal of this study was to create a prognostic model of

cuproptosis-related lncRNA to assess and improve the

prognosis of ccRCC, as well as to study the differences in the

tumor microenvironment and related subtypes to provide more

evidence for the individualized treatment of ccRCC.

Materials and methods

Information acquisition from patients with
ccRCC

We extracted mRNA sequencing (RNA-seq) data and

accompanying clinical information for ccRCC patients from

the TCGA database (https://portal.gdc.cancer.gov/) in April

2022. The dataset included 539 ccRCC tissue samples and

72 adjacent normal tissue samples, but data from seven

ccRCC patients were excluded because they did not have

complete clinical data. All 530 patients with ccRCC were

randomly assigned into α and β groups, in a 1:1 ratio, using

Strawberry Perl and the caret R program. As an independent

validation cohort, the E-MTAB-1980 cohort from the EMBL-EBI

database (https://www.ebi.ac.uk/) was used (Sato et al., 2013).

The clinical data for the above two cohorts are shown in

Supplementary Table S1.

Selection of cuproptosis-related genes
and related lncRNAs

We identified 13 cuproptosis-associated genes through a

study of relevant literature (Tsvetkov et al., 2022), and

extracted 4,438 lncRNAs from TCGA-KIRC after screening

the synthetic data matrix by Strawberry Perl and limma R

packages and identified 180 cuproptosis-related lncRNAs by

correlation analysis (|correlation coefficient| > 0.4, p < 0.001).

We subsequently obtained 73 cuproptosis-related differentially

expressed lncRNAs by differential analysis (|Log 2 FC| > 1 and

p < 0.05).

Model construction validation

Univariable Cox analysis was performed to extract 18 OS-

related lncRNAs from the 73 cuproptosis-related lncRNAs listed

above (p < 0.05), then LASSO regression for the α group, to

develop a model comprising five cuproptosis-related lncRNAs.

The risk score is derived using the formula below (h0(t) =

0.998823001):

risk score � EXP⎡⎣∑n
k�1

coef(IncRNAk)p exp(IncRNAk)⎤⎦ph0(t)
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The α group, β group, all patients group, and E-MTAB-

1980 cohort were then divided into a hyper-risk category (above

the median) and a hypo-risk category (below the median), based

on the median risk score of the α group. Finally, survival analyses

and time-dependent (ROC) curves were performed separately for

the α group, β group, all patients group, and E-MTAB-

1980 cohort to test the accuracy of the model and to calculate

the distribution of high- and low-risk patients among all patients.

Independent prognostic analysis, clinical
correlation analysis, and stratified analysis

To assess if the model provides an independent prognostic

indicator, univariable and multivariable prognostic analyses of

risk scores were conducted. In addition, assessments of several

clinical strata were performed, to assess the predictive power of

each stratum (Hidalgo and Goodman 2013).

Nomogram construction and calibration

To enhance the model’s validity and precision, we developed

a prediction nomogram based on patient clinicopathological

parameters (pathological stage and age) and risk scores. Each

variable is assigned a score in the nomogram, and the final score

for each sample is the sum of these variables values (Iasonos et al.,

2008). Calibration curves describe the projected values between

the predicted 1-year, 3-years, and 5-years survival real events and

the predicted outcomes.

Immune infiltration, immune checkpoint
enrichment analysis, and prediction of
clinical treatment

Using six distinct platforms of analysis, including TIMER,

CIBERSORT, XCELL, QUANTISEQ, MCPCOUNTER, EPIC,

and CIBERSORT, we compared the variance of immune cell

infiltration between high and hypo-risk categorys. In addition, to

gain a better understanding of the immune milieu in various risk

categories, we evaluated TME scores and immune checkpoint

activation between risk categories, using the ggpubr R program.

To better comprehend the function of the model in clinical drug

therapy, we evaluated patient reaction to treatment using the R

package pRRophetic.

Determination of different subtypes

To explore the response of ccRCC to immunotherapy,

molecular subgroups were defined by examining five

cuproptosis-associated lncRNAs in a construct model, and

survival study was conducted for each subtype. To explore the

immune infiltration characteristics of various subtypes, the

ESTIMATE method was used to calculate the tumor

microenvironment characteristics of various subtypes. In

addition, we evaluated the differences in common immune

checkpoint expression between subtypes. We evaluated the

semi-inhibitory concentration (IC50) values of

chemotherapeutic medicines regularly used to treat ccRCC, in

order to determine drug sensitivity for distinct subtypes.

Statistical analysis

Statistical analysis was performed in this study using R4.1.2.

Pearson correlation analysis was used to analyze the correlation

between cuproptosis-related genes and cuproptosis-related

lncRNAs. Student’s t-test was used to determine the

differences in expression of cuproptosis-related lncRNAs

between tumor and normal tissues, while chi-square test was

used to compare the differences in proportions. Kaplan-Meier

analysis and the log-rank test were used to compare OS and DFS

between subgroups. univariate and multivariate Cox regression

analyses were performed to determine independent predictors of

OS. Immune cell infiltration, immune checkpoints, and TME

scores were compared between high- and low-risk groups and

between subtypes using the Wilcoxon test. Spearman correlation

analysis was used to explore the correlation between the degree of

immune cell infiltration and risk scores across platforms,

between drug sensitivity and subtypes, and between drug

sensitivity and risk groups. All statistical tests were two-tailed

and p < 0.05 was considered statistically significant and labeled

with * p-value < 0.05, ** p-value ≤ 0.01, *** p-value ≤ 0.001 and **

** p-value ≤ 0.0001.

Results

Identification of cuproptosis-related
lncRNAs

The study’s flowchart is depicted in Figure 1. The Cancer

Genetic Atlas (TCGA) was used to retrieve mRNA sequencing

(RNA-seq) data and accompanying clinical information for

530 ccRCC patients. The collection included 539 samples of

tumor tissue and 72 samples of surrounding normal tissue. After

synthesizing the data matrix by Strawberry Perl and limma R

package screening, 4,438 lncRNAs were extracted from TCGA-

KIRC (Supplementary Table S2). To understand the relationship

between the above lncRNAs and cuproptosis-related genes, we

set the |correlation coefficient| as 0.4 and p < 0.001 to obtain

180 cuproptosis-related lncRNAs and plotted The relationship

network of the two was plotted (Figure 2A; Supplementary Table

S3). By analyzing the differential expression profiles of
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180 lncRNAs between normal and tumor tissue samples

(Supplementary Table S4), we obtained 73 differentially

expressed copper death-associated lncRNAs (|Log 2 FC| >
1 and p < 0.05). We found that 34% (25 out of 73) were in

an upregulated state, while the others were in a downregulated

state (Figure 2B; Supplementary Table S5). Figure 2C showsmore

clearly the difference in expression of the above 73 cuproptosis-

related lncRNAs between tumor tissues and normal tissues.

Creation of a predictive model comprising
five cuproptosis-related lncRNA
characteristics

To further understand the relationship between the

above 73 cuproptosis-related lncRNAs and the prognosis

of ccRCC patients, we performed univariable Cox regression

analysis. Eighteen cuproptosis-related lncRNAs were

significantly associated with overall survival (OS) of

ccRCC patients (p < 0.05), and heat maps were drawn for

them (Figures 3A,B). To avoid overfitting the prognostic

features, we first randomized 530 patients in the TCGA-

KIRC cohort 1:1, into α (n = 265) and β groups (n = 265)

using the “caret. package” in R software. We then performed

LASSO regression analysis on the above 18 cuproptosis-

related lncRNAs (Figures 3C,D), and finally extracted five

cuproptosis-related lncRNAs (FOXD2-AS1, SUCLG2-AS1,

LINC00271, NUP153-AS1, LINC02154) in ccRCC

(Supplementary Table S6). According to the Sankey

diagram, FOXD2-AS1 and NUP153-AS1 were negatively

controlled by cuproptosis-related genes, but the other

three lncRNAs are positively regulated (Figure 3E). The

risk score for each ccRCC patient was then calculated

using the five lncRNAs listed above: risk score = EXP

FIGURE 1
Flow chart of this study.
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[(0.558190947296863*FOXD2-AS1) + (−1.206023590777

68*SUCLG2-AS1) + (−2.26877398974126*LINC00271) +

(0.437610996540462*NUP153-AS1) + (0.590181559841

534*LINC02154)]*0.998823001. Finally, we classified the

patients in group α, group β, and all groups into hyper-

risk and hypo-risk categories, based on the median risk

score of group α, respectively. The PCA findings

demonstrated that distinct PCs were created between the

high and hypo-risk categories (Figure 3F), and the t-SNE

confirmed that the two groups could be discriminated with

precision (Figure 3G).

Validation of a predictive model based on
cuproptosis-related lncRNA

To verify the validity and accuracy of the prognostic model, we

performed survival analysis for the α group, the β group, and a

FIGURE 2
Identification of cuproptosis-related lncRNAs. (A)Network map of cuproptosis-related genes and lncRNAs; (B) Volcanomap of 73 differentially
expressed cuproptosis-related lncRNAs; (C) Heat map of 73 differentially expressed cuproptosis-related lncRNAs.
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cohort containing all patients. The results of all three cohorts showed

a poor prognosis in the hyper-risk category compared with the

hypo-risk category (p< 0.01; Figures 4A–C), and the relevant clinical
characteristics, except that for G1–2 classification, M1, and

N1 staging. This supported the idea of a poor prognosis in the

hyper-risk category (Supplementary Figure S1). By displaying time-

dependent ROC curves, we determined 1-year, 3-years, and 5-years

survival AUC values of 0.774, 0.720, and 0.712 for the α group

FIGURE 3
Creation of a predictive model comprising five cuproptosis-related lncRNA characteristics. (A) Prognostic value of 18 cuproptosis-related
lncRNAs; (B) Prognostic value of 18 heat maps of cuproptosis-related lncRNAs; (C) Expression coefficient maps of LASSO regression; (D) Cross-test
maps of penalty terms; (E) Sankey maps of regulatory relationships between cuproptosis-related genes and lncRNAs; (F) PCA maps of high- and
hypo-risk categories; (G) t-NES validation maps of high- and hypo-risk categories.
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FIGURE 4
Validation of a predictivemodel based on cuproptosis-related lncRNA. (A) survival analysis of α group; (B) survival analysis of β group; (C) survival
analysis of all groups; (D)ROC curves of α group; (E) ROC curves of β group; (F) ROC curves of all groups; (G–O) risk score distribution, survival status,
survival time and related expression of α, β and all groups relationship plots; (P) survival analysis of 431 patients with DFS; (Q) ROC curves of
431 patients with DFS; (R) survival analysis of the E-MTAB-1980 cohort; (S) ROC curves of the E-MTAB-1980 cohort.
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(Figure 4D). The AUC values for the β group and all other groups

exceeded 0.64. This suggests that the model has some significance in

predicting the prognosis of ccRCC patients (Figures 4E,F). By

correlating the distribution of risk scores, survival status, survival

time, and related expression in the aforementioned three groups, it is

evident that the number of deaths in ccRCC patients increased with

increasing risk scores, and that FOXD2-AS1, LINC02154, and

NUP153-AS1 were enriched in the hyper-risk category, whereas

the other two cuproptosis-related lncRNAs were enriched in the

hypo-risk category (Figures 4G–O). Assessing DFS (disease-free

survival) in oncology studies has an important position. We

compiled clinical data from 530 patients in the TCGA-KIRC

cohort, to obtain the DFS of 431 patients, performed survival

analysis, and plotted ROC curves for them. It was easy to find

that the DFS of the high and low risk groups were significantly

different, and the prognosis of the low risk group was still higher

than that of the high risk group (Figure 4P). In addition, the area

under the curve (AUC) values of the ROC curves were all greater

than 0.7 (Figure 4Q). Since the model was constructed based on a

public dataset with weak persuasive power, we obtained an external

dataset, the E-MTAB-1980 cohort, for validation. Survival analysis

of the E-MTAB-1980 cohort showed that the low-risk group had a

good prognosis (p < 0.05, Figure 4R) and the ROC curves for this

cohort had 1-year, 3-years and 5-years AUC values of 0.69, 0.712,

and 0.705 (Figure 4S). Validation of the E-MTAB-1980 cohort also

demonstrated the potential significance of the model in predicting

ccRCC prognosis.

Risk score as an independent prognostic
factor and the construction of the
nomogram

The outcomes of uni- and multi-variate Cox regression

analyses indicated that the cuproptosis-related lncRNA

model’s risk score was an independent predictor of prognosis

FIGURE 5
Risk score as an independent prognostic factor and the construction of the nomogram. (A) results of one-way Cox regression analysis; (B)
results of multi-way Cox regression analysis; (C) Nomogram predicting prognosis of ccRCC patients; (D) calibration curve.
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in ccRCC patients (p < 0.05; Figures 5A,B). We validated once

again that the risk score was an independent predictor of

prognosis in ccRCC patients by analyzing the combined data

from the β group and the E-MTAB-1980 cohort (p < 0.05;

Supplementary Figure S2). We found that grading, staging

and risk score were all independent prognostic factors, for

which we compared the AUC values of 1, 4, 6, and 8 years for

clinicopathological characteristics and risk score. We found that

the AUC values at 1, 4, and 6 years for tumor stage and grading

were higher than those for risk score, and notably the AUC at

8 years was highest for risk score. Although the AUC values of

tumor staging and grading at 1, 4, and 6 years were significantly

higher than those of risk fraction, the overall AUC values of risk

fraction were higher, indicating that the model has some

significance in predicting the prognosis of ccRCC

(Supplementary Figure S3). To improve the validity and

accuracy of the model, a nomogram was developed by

combining risk score, age, and tumor stage, to predict the 1-

year, 3-years, and 5-years recurrence-free survival (RFS) of

patients with ccRCC (Figure 5C). The calibration curves

demonstrated a high degree of concordance between the

actual results and those predicted by the nomogram (Figure 5D).

The hyper-risk category had higher
immune activity and was more drug
sensitive

Using GSEA software, we looked at the KEGG pathway

enrichment between high and hypo-risk categories, and

FIGURE 6
The hyper-risk category had higher immune activity and wasmore drug sensitive. (A)GSEA analysis of high and hypo-risk categories; (B) bubble
plots of correlation analysis between immune cells and risk scores for different platforms; (C) correlation analysis between high and hypo-risk
categories and immune checkpoints; (D) TME scores for high and hypo-risk categories; (E) prediction of immunotherapy efficacy for high and hypo-
risk categories.
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discovered that immune-related pathways were enriched in the

hyper-risk category (Figure 6A). To better understand immune

cell infiltration in high and hypo-risk categories, we plotted

immune cell bubble maps using algorithms from various

platforms. The results revealed that the majority of immune

cells, including T cell CD8+ naïve, cancer associated fibroblasts,

B cells, and regulatory T cells (Tregs), were positively correlated

with risk scores (Figure 6B). This indicates that the hyper-risk

category exhibited a greater degree of immune cell infiltration.

The correlation between the 47 immune checkpoints and the

high- and hypo-risk categories was then investigated. We

determined that the majority of immune checkpoint-related

FIGURE 7
Confirmation of different subtypes. (A) results of the consistent clustering algorithm at k = 2; (B) PCA plots for different subtypes; (C) t-NES
validation plots for different subtypes; (D) K-M curves for different subtypes; (E)box plot of subtypes versus risk scores; (F) Sankey plots of high and
low risk groups versus different subtypes; (G) Heat map of correlation between clinicopathological features and subtypes.
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genes were significantly different between the high- and hypo-

risk categories, and overwhelmingly upregulated in the hyper-

risk category (Figure 6C). This means that immunosuppressive

therapy for ccRCC patients can be tailored to the appropriate

immune checkpoint inhibitor, based on their risk category. Using

the ESTIMATE package, we then evaluated the tumor

microenvironment (TME) scores in the high- and hypo-risk

categories. Higher stromal or immune scores indicated a

greater relative content of stromal or immune cells in the

TME, whereas estimated scores indicated the accumulation of

stromal and immune scores in the TME. The results revealed that

hyper-risk patients had higher stromal, immune, and estimated

scores than hypo-risk patients (Figure 6D). In conclusion, hyper-

risk patients with ccRCC had higher levels of immune

infiltration, suggesting that immunotherapy may be more

beneficial for these patients. Docetaxel, bortezomib, sorafenib,

temsirolimus, etoposide, paclitaxel, cisplatin, and sunitinib had

significantly lower IC50 values in the hyper-risk category

compared to the hypo-risk category (Figure 6E).

Confirmation of different subtypes

To better investigate individualized precision therapy, we

used the ConsensusClusterPlus (CC) R software package, to

stratify patients with ccRCC into two subtypes, based on the

five cuproptosis-related lncRNA expressions described

previously (Figure 7A; Supplementary Figure S4). PCA results

showed that different PCs formed between the two subtype

groups (Figure 7B), and t-SNE confirmed that the two groups

could be distinguished (Figure 7C). Kaplan-Meier analysis curves

clearly showed that OS was considerably higher in patients with

the C1 subtype than in those with the C2 subtype (Figure 7D; p <
0.001). By analyzing the distribution of risk scores between the

two subtypes, we plotted the associated box plots. There was a

significant difference in the distribution of risk sores between the

two subtypes, and the risk scores were higher for subtype C2 than

for subtype C1 (Figure 7E). The Sankey plots of the high- and

low-risk groups with the two subtypes also clearly showed that

patients in the high-risk group had a high overlap with subtype

C2 and patients in the low-risk group with subtype C1

(Figure 7F). To investigate the correlation between different

subtypes and clinicopathological features, we analyzed and

plotted the correlation heat map. The results showed that T,

M, stage, grade and subtype of the tumor were significantly

correlated, while N, age and gender were not (Figure 7G).

Subtype C2 is more susceptible to
immunotherapy

The TME scores of the C2 subtype were significantly higher

than those of the C1 subtype, indicating that there are significant

differences in the tumor microenvironment between the two

subtypes, and that the C2 subtype may be more responsive to

immunotherapy (Figure 8A). The results showed that the

majority of immune checkpoints were differentially expressed

between the two subtypes, and 21 immune checkpoints were

upregulated in the C2 subtype, except CD274, CDE86, HAVCR2,

NRP1, and HHLA2 (Figure 8B). By drug sensitivity analysis, we

discovered that the IC50 of vinorelbine, paclitaxel, sunitinib,

vorinostat, axitinib, and etoposide was significantly lower for the

drug subtype C2 than for drug subtype C1, indicating that drug

subtype C2 is more susceptible to immunotherapy. This provided

an important clue for the individualized precision medicine

treatment of patients with ccRCC (Figure 8C).

Discussion

Copper, an essential mineral element for all living organisms,

plays a crucial role in numerous biological processes, including

mitochondrial respiration, iron absorption, and antioxidation.

According to a recent study, copper ion functions as a double-

edged sword because it is an essential enzymatic cofactor in life

processes, but its excessive concentration causes proteotoxic

stress, by binding to lipoic acid-associated enzymes of the

tricarboxylic acid cycle, resulting in cell death. Tsvetkov et al.

(2022) coined the term cuproptosis for this unique form of cell

death, which is distinct from any other cell death mechanism

previously discovered. As widely distributed in various fluids in

the human body, lncRNA has an important position in various

pathophysiological processes such as human disease screening

(Yuan et al., 2020). As early as 2006, lncRNA PCA3 in urine was

proposed as a biomarker for prostate cancer, and has been

clinically recognized in recent years (Groskopf et al., 2006;

Lemos et al., 2019). Not only in urine, but also in gastric

juice, lncRNAs have been suggested as a marker for digestive

tumors (Shao et al., 2016). We note that there are relevant

experiments investigating the prognostic effectiveness of

copper ion carrier small molecule anticancer drugs in patients

with lung adenocarcinoma (Soma et al., 2018). In addition, a new

study has constructed a prognostic model for ccRCC associated

with cuproptosis, and it is undeniable that the results of this study

have some significance for the study of cuproptosis in ccRCC

(Bian et al., 2022), but lncRNA, as an important part of liquid

biopsy, is important to study the potential value of Cuproptosis-

related lncRNAs in ccRCC.

The cuproptosis-related lncRNAs in this study were obtained

by co-expression of cuproptosis-related genes and lncRNAs, and

a predictive model for ccRCC prognosis was constructed using

five cuproptosis-related lncRNAs (FOXD2-AS1, SUCLG2-AS1,

LINC00271, NUP153-AS1, and LINC02154). Risk scores were

obtained as independent prognostic factors for ccRCC patients

by univariable and multivariable Cox analyses, and we likewise

found that the HR of risk score was only slightly higher than
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FIGURE 8
Subtype C2 is more susceptible to immunotherapy. (A) TME scores for both subtypes; (B) immune checkpoint correlation analysis for both
subtypes; (C) immunotherapy prediction for both subtypes.
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1.0 in both univariable and multivariable Cox analyses. The vast

majority of ccRCC prognostic models already published have a

risk score HR slightly higher than 1.0. Therefore, we consider this

to be a generalization of the ccRCC prognostic model. However,

since its lowest value is still greater than 1.0, the risk score is a

statistically significant independent prognostic factor for ccRCC

patients (Han et al., 2020; Chang et al., 2021; Li et al., 2021). The

validation of the internal cohort and external cohort showed that

the model has a good ability to predict the prognosis of patients

with ccRCC. We found AUC values of 0.768, 0.757, and 0.773 for

the 1-year, 3-years, and 5-years ROC curves, respectively, of

431 ccRCC patients with clinical data on DFS. Compared with

AUCs of 0.622, 0.634, and 0.682 for the 1-year, 3-years, and 5-

years ROC curves, respectively, from Bian et al. (2022) for

predicted DFS, the AUC values of this study were generally

higher than those of Bian’s research team. However, we believe

that they are complementary at the study level and mutually

corroborate that the models developed by both teams highlight

the potential value of cuproptosis for the study of ccRCC. To

investigate the TME characteristics of the high- and hypo-risk

categories, we performed immune cell analysis, TME scoring,

and immune checkpoint analysis for the high- and hypo-risk

categories using different algorithms. The majority of immune

checkpoints were expressed at high levels in the hyper-risk

category, but PD-L1 checkpoint was at high level in the hypo-

risk category, indicating that anti-PD-L1 therapy may be more

effective in the hypo-risk category. In addition, we analyzed the

clinical correlation and stratification of high- and hypo-risk

categories, and the results demonstrated significant differences

in clinical characteristics and stratification between high- and

hypo-risk categories, apart from the fact that the model score was

also an independent prognostic element. In order to improve the

predictive effect that the model has on clinical medication usage,

we found that patients from the hypo-risk category were

considered more susceptible to most drugs than those from

the hypo-risk category. This model will help researchers figure

out how cuproptosis-related lncRNAs might affect the prognosis

of patients with ccRCC, and come up with new ways to treat

ccRCC.

Multiple reports have shown that FOXD2-AS1 plays an

important role in the development of multiple tumors,

including the promotion of malignant progression of bile duct

cancer via regulation of the miR-760/E2F3 axis (Hu et al., 2022).

FOXD2-AS1 may promote pancreatic cancer cell invasion and

migration by sponging miR-30a-3p, which upregulates COX-2

(Ye et al., 2022). FOXD2-AS1 promotes breast cancer cell

proliferation, invasion, migration, and drug resistance by

positively regulating the PI3K/AKT signaling pathway, inhibits

apoptosis, and accelerates breast cancer progression (Nong et al.,

2021). We discovered that no relevant literature has reported its

role in ccRCC. FOXD2-AS1 was found to be more expressed in

the hyper-risk category with a short survival time than in the

hypo-risk category with a long survival time in this study,

suggesting that FOXD2-AS1 may be a promoter for ccRCC,

and opening up possibilities for future research. SUCLG2-AS1

has been proposed as a prognostic marker for triple-negative

breast cancer and ccRCC, despite the fact that the mechanism by

which it affects tumor development remains unknown (Wu et al.,

2021; Yang et al., 2021). Consistent with previously reported

findings, our findings suggest that it is enriched in the hypo-risk

category with long survival time, and has a possible inhibitory

effect on tumor development. In 2016, Ma et al. (2016) identified

LINC00271 as an independent risk factor for the recurrence of

papillary thyroid cancer, observing that its expression was

downregulated in numerous tumors, including breast cancer,

renal medullary cell carcinoma, and head-and-neck squamous

cell carcinoma. Our study found that its expression was enriched

in the low-risk group, similar to the study by Ma et al., implying a

negative association between LINC00271 and the development of

ccRCC. Yue et al. discovered that LINC02154 promotes

hepatocellular carcinoma proliferation and metastasis, by

increasing SPC24 promoter activity and activating the PI3K-

AKT signaling pathway (Yue et al., 2022). LINC02154 is a

cancer-promoting factor not only in liver cancer but also in

laryngeal squamous cell carcinoma (Zhang et al., 2019).

Consistent with previous findings, the present study showed

that LINC02154 was expressed at a high level in the hyper-

risk category with a poor prognosis. We found no reports

regarding NUP153-AS1 in the relevant literature, but the

results of this study showed that it was enriched in the hypo-

risk category with a long survival time, suggesting that NUP153-

AS1may play an oncogenic role in the progression of ccRCC, and

provide options for future researchers.

Surgical resection remains the main treatment for ccRCC as

one of the most common urological tumors, but not all ccRCC

patients tolerate surgery. Thus, new treatment options are

needed. Immunotherapy, a relatively new treatment, has been

shown to have significant therapeutic value in a number of

tumors (Shibata et al., 2019; Zhou et al., 2019). We assessed

the immune cell infiltration in the high- and hypo-risk categories

using different platforms, and showed that cancer-associated

fibroblasts, M0 macrophages, M1 macrophages, monocytes,

NK cells, CD4+ memory activated T cells, CD8+ T cells, and

regulatory T cells (Tregs) were infiltrated to a higher extent in the

high-risk than in the hypo-risk category, while M2 macrophages,

B cells, neutrophils, and mast cells were infiltrated to a higher

extent in the hypo-risk than in the hyper-risk category.

M1 macrophages and M2 macrophages are the two primary

phenotypes of tumor-associated macrophages. M1 macrophages

serve as antitumor cells, by producing pro-inflammatory type I

cytokines (Pan et al., 2020). We discovered a higher degree of

M1 macrophage infiltration in the hyper-risk category compared

to the hypo-risk category, indicating that immunotherapymay be

advantageous for the hyper-risk category. Despite the fact that

M2 macrophages have immunosuppressive properties and

promote tumor development, our findings of greater
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M2 macrophage infiltration in the hypo-risk category suggest

that the hypo-risk category may respond less favorably to

immunotherapy than the hyper-risk category.

With the expansion of immunotherapy research, improved

individualization of treatment is also a current hot topic. We

divided ccRCC patients into high- and low-risk groups, as well as

C1 and C2 subtypes, based on the five lncRNAs mentioned above.

We found that there was some overlap between the high- and low-

risk groups and the different subtypes, which may represent a

convergence in prognosis and immune infiltration between them.

This was subsequently demonstrated by analyzing the TME scores of

different risk groups and subtypes, which were significantly higher in

the high-risk group and C2 subtype than in the low-risk group and

C1 subtype, and in the subsequent analysis of immune checkpoint

activation, we found that the majority of immune checkpoints were

upregulated in the high-risk group and C2 subtype. We also

discovered that the PDL-1 checkpoints were reversed, implying

that patients with hyper-risk ccRCC and the C2 subtype may

benefit from immunotherapy, while those with hypo-risk ccRCC

and the C1 subtype may be more sensitive to anti-PDL-1. These

findings have significant implications for the development of

personalized immunotherapy for patients with ccRCC.

Although we have appliedmanymethods to enrich our model,

it still has some shortcomings. The model is built based on the

TCGA database. We have validated the accuracy of the model by

an internal validation set, as well as an external validation set, and

the immune cell infiltration analysis by different platforms can be

used as an external validation in a sense. However, we have not

further investigated and validated the role of these cuproptosis-

related lncRNAs in ccRCC tumorigenesis and tumor progression

through experimental studies (Hong et al., 2020; Xu et al., 2021).

Even with these limitations, our study has some potential

implications for patient survival prediction, and individualized

immunotherapy. In the future, we will enrich and confirm the

value of cuproptosis-related lncRNAs by collecting more clinical

datasets and through experimental studies.

Conclusion

From our research, we identified five cuproptosis-related

lncRNAs with prognostic values and used them to develop a

model to anticipate the prognosis of ccRCC patients, which

provides an important basis for individualized treatment of

ccRCC patients. In the future, targeting cuproptosis-associated

lncRNAswill be a promising therapeutic strategy for ccRCC patients.
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