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The study was conducted to construct a cellular senescence-related risk score

signature to predict prognosis and immunotherapy response in colon cancer.

Colon cancer data were acquired from the Gene Expression Omnibus and The

Cancer Genome Atlas databases. And cellular senescence-related genes were

obtained from the CellAge database. The colon cancer data were classified into

different clusters based on cellular senescence-related gene expression. Next,

prognostic differential genes among clusters were identified with survival

analysis. A cellular senescence-related risk score signature was developed by

performing the LASSO regression analysis. Finally, PCA analysis, t-SNE analysis,

Kaplan-Meier survival analysis, ROC analysis, univariate Cox regression analysis,

multivariate Cox regression analysis, C-index analysis, meta-analysis, immune

infiltration analysis, and IPS score analysis were used to evaluate the significance

of the risk signature for predicting prognosis and immunotherapy response in

colon cancer. The colon cancer data were classified into three clusters. The

patients in cluster A and cluster B had longer survival. A cellular senescence-

related risk score signature was developed. Patients in the low-risk score group

showed a better prognosis. The risk score signature could predict colon cancer

patients’ prognosis independently of other clinical characteristics. The risk score

signature predicted the prognosis of colon cancer patients more accurately

than other signatures. Patients in the low-risk score group showed a better

response to immunotherapy. The opposite was true for the high-risk score

group. In conclusion, the cellular senescence-related risk score signature could

be used for the prediction of prognosis and immunotherapy response in colon

cancer.
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Introduction

Nowadays, colon cancer has high morbidity and mortality all

over the world, which seriously threatens human life (Sung et al.,

2021). Surgical resection is preferred for early-stage colon cancer,

while systemic chemotherapy is the main treatment for advanced

colon cancer (Chakrabarti et al., 2020; Body et al., 2021).

However, the effectiveness of chemotherapy for partial colon

cancer patients is often unsatisfactory due to the emergence of

drug resistance (Azwar et al., 2021). In recent years,

immunotherapy has brought new hope for the treatment of

cancer (Lichtenstern et al., 2020). Immunotherapy drugs

(PD1/PD-L1 blocker and CTLA-4 blocker) have been shown

to improve the prognosis of colon cancer patients (Yaghoubi

et al., 2019; Ben et al., 2021). Unfortunately, the prognosis and

immunotherapy responses of different colon cancer patients are

significantly differentiated due to the existence of tumor

heterogeneity (Marisa et al., 2021; Guo et al., 2022).

Therefore, it is particularly important to distinguish between

patients with colon cancer who show a better prognosis and

immunotherapy response.

Cellular senescence, the permanent cessation of cell

proliferation, is thought to be able to prevent the development

and metastasis of tumor cells (Calcinotto et al., 2019; Di Micco

et al., 2021). However, recent studies have shown that senescent

cancer cells promote tumorigenesis in neighboring cells through

the release of SASP (Prieto and Baker, 2019). Demirci et al.

revealed that it was the Jekyll and Hyde nature of cancer cell

senescence (Demirci et al., 2021). Furthermore, cellular

senescence had been demonstrated to be a potential target for

cancer in clinical therapy (Prasanna et al., 2021; Wang et al.,

2022). Lin et al. found that cellular senescence was important in

the prognosis and immunotherapy of lung cancer (Lin et al.,

2021). And Zhou et al. demonstrated that cellular senescence was

a potential marker of prognosis and therapeutic outcome in

gastric cancer (Zhou et al., 2022). However, the role of cellular

senescence in the prognosis and immunotherapy of colon cancer

is not well understood.

In this study, we aimed to investigate the significance of

cellular senescence in the prognosis and immunotherapy of colon

cancer. Meanwhile, a cellular senescence-related risk score

signature was constructed to distinguish patients with a better

prognosis and immunotherapy response.

Methods

Acquisition of colon cancer information
and cellular senescence-related genes

Transcriptome information, clinical information, and mutation

informationwere acquired fromTheCancer GenomeAtlas (TCGA)

database (https://portal.gdc.cancer.gov/). Next, the gene ID from the

transcriptome information was converted into gene names to obtain

TCGA expression data. Then the FPKM value of TCGA expression

data was converted into the TPM value. The survival time, survival

status, age, gender, pathological TNM stage, pathological T-stage,

pathological N-stage, and pathological M-stage were extracted from

the clinical information. The platform file GPL570 and probematrix

GSE39582 were also downloaded from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).

The probe matrix was transformed into a gene matrix by finding

the correspondence between the probe matrix and gene names

based on the platform file information. The copy number data of

colon cancer were obtained fromUCSC Xena (http://xena.ucsc.edu/

). Finally, the TCGA expression data and GEO expression data were

merged to obtain the expression of genes in the merged data.

Cellular senescence-related genes were acquired from the CellAge

database (Supplementary Table S1). The expression of cellular

senescence-related genes was extracted from the merged data.

The workflow chart was visualized in Supplementary Figure S1.

Clusters based on cellular senescence-
related gene expression

The “ConsensusClusterPlus” package was used to perform a

Consensus Clustering analysis on the merged data. The principal

component analysis (PCA) was performed to validate the

accuracy of distinguishing different clusters based on cellular

senescence-related gene expression. Kaplan-Meier survival

analysis was performed with the “survival” and “survminer”

packages. The heatmap was plotted by using the “pheatmap”

package. The single-sample gene set enrichment analysis

(ssGSEA) and gene set variation analysis (GSVA) were

conducted based on the “GSEABase” and “GSVA” packages.

Differential analysis of clusters

Differential genes (DEGs) among clusters were identified

(adjusted p-value = 0.001). The Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses were performed to explore enrichment pathways

on DEGs.

Gene clusters based on differential genes

Prognostic genes were identified by performing survival

analysis with the “survival” package (filtering condition:

p-value < 0.05). The “ConsensusClusterPlus” package was

applied to conduct the Consensus Clustering analysis on

DEGs among clusters. PCA analysis was performed to validate

the accuracy of distinguishing different gene clusters based on

DEGs among clusters. Kaplan-Meier survival analysis was
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applied with the “survival” and “survminer” packages. The

heatmap was plotted with the “pheatmap” package.

Constructing a risk score signature

The colon cancer data were classified into training and

testing sets. The selection operator (LASSO) Cox regression

analysis with 10-fold cross-validation was performed to

construct a prognostic risk score signature in the training set.

The testing set was used to validate the accuracy of the signature.

Formula:

Risk score � ∑ i1(Coefip ExpGenei)

“Coef”, regression coefficient; “ExpGene”, the expression of

genes. The training and testing sets were divided into high- and

low-risk groups based on the medium value of risk scores.

Principal component analysis (PCA) and t-distributed

stochastic neighbor embedding analysis (t-SNE) were applied

to confirm the signature’s accuracy to distinguish between high-

and low-risk score groups. The Kaplan-Meier survival curves and

ROC curves were plotted with “survival”, “survminer”, and

“timeROC” packages. The “ggplot2” and “pheatmap” packages

were applied to plot risk status, survival status, risk histogram,

and risk heatmap. Univariate and multivariate Cox regression

analyses were conducted to validate whether the signature

predicted colon cancer patients’ prognosis independently of

other clinical characteristics. C-index curves were plotted

based on the “survival”, “rms”, and “pec” packages. The

“timeROC” and “survcomp” packages were used to plot ROC

curves and C-index histograms for comparison of signatures. The

meta-analysis was performed to investigate the heterogeneity of

the risk score signature in predicting the prognosis of colon

cancer patients between training and testing sets with the “meta”

package. The forest diagram of the meta-analysis was drawn by

using the fixed-effects model.

Developing a nomogram

A nomogram was plotted with the “regplot”, “rms”, and

“survivor” packages. The ROC curve of the nomogram was

drawn based on the “timeROC” package.

Validating the risk score signature in
clinical subgroups

The Sankey diagram was plotted to illustrate the construction

process of the risk score signature with the “ggalluvial” package.

The “ggpubr” and “ggplot2” packages were used to plot box plots

to show the differences in different risk scores across clusters and

gene clusters. The heatmap and box plot were drawn to

investigate differences in patients’ risk scores across clinical

subgroups with the “ComplexHeatmap”, “ggpubr”, and

“limma” packages. We also performed Kaplan-Meier survival

analysis to further validate the application of the risk score

signature in different clinical subgroups.

The landscape of gene mutation in
different risk score groups

The “maftools” package was applied to visualize the gene

mutation landscape in high- and low-risk score groups.

Exploring immunotherapy response in
different risk score groups

Immune score files for colon cancer were downloaded from

the Cancer Immunome Database (TCIA, https://tcia.at/).

Immunotherapy analysis was performed to explore the

therapy differences of IPS-CTLA4, PD1, PDL1, and

PDL2 blockers in patients with different risk scores with the

“ggpubr” package. The“pRRophetic_0.5. tar.gz” was acquired

from the Genomics of Drug Sensitivity in Cancer (GDSC,

https://www.cancerrxgene.org/). Finally, the “pRRophetic”

package was used to analyze the differences in half-maximal

inhibitory concentration (IC50) values between different risk

score groups and to identify potential drugs for colon cancer

patients.

Validating the risk score signature

Differential expression of the signature between normal and

tumor samples was investigated by performing differential analysis.

Finally, we searched the Human Protein Atlas (HPA, https://www.

proteinatlas.org/) database for immunohistochemical results of the

signature genes. In addition, the gene mutation and copy number

variant of the signature genes were analyzed.

Statistical analysis

All scripts were run in Strawberry-Perl-5.32.1.1 and all codes

were run in R 4.1.2. The colon cancer data were classified into

different clusters by Consensus Clustering analysis. Then, DEGs

among clusters were identified. The prognostic DEGs were

identified by survival analysis. The colon cancer data were

again divided into different gene clusters by Consensus

Clustering analysis. Next, LASSO regression analysis was

performed to construct a risk score signature. Patients were

classified into high- and low-risk score groups. PCA analysis
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and t-SNE analysis were applied to confirm the accuracy of

signature in distinguishing high and low-risk score groups.

Kaplan-Meier survival analysis, ROC analysis, univariate

analysis, multivariate analysis, C-index method, and meta-

analysis were performed to explore the role of the signature in

the prognosis of colon cancer. And the TICA algorithm and

“pRRophetic” package were used to investigate the significance of

the signature in therapy for colon cancer. Finally, all signature

FIGURE 1
Three clusters based on cellular senescence-related gene expression levels. (A) Consensus Cluster Analysis. When cluster Num = 3, the
relationship in the cluster was tight and the correlation between clusters was weak. (B) PCA plot. Blue dots represent patients in Cluster A; yellow dots
represent patients in Cluster B; red dots represent patients in Cluster C. (C) Kaplan-Meier survival curves. The prognosis of patients was different
among the three clusters, p = 0.048. (D) Heat map. Cellular senescence-related genes were upregulated in Cluster C. (E) Box plots. The
horizontal coordinate represents immune infiltrating cells; the vertical coordinate represents immune scores; ns represents no difference in immune
cell scores among the three clusters; pppp < 0.001. (F) Differential GSVA enrichment pathways between Cluster A and Cluster C. Red represents the
high expression pathway and blue represents the low expression pathway. (G)Differential GSVA enrichment pathways between Cluster B and Cluster
C. Red represents the high expression pathway and blue represents the low expression pathway.
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genes were performed for differential analysis and validated in

the HPA database. p-values less than 0.05 were considered to be

statistically significant.

Results

Clusters based on cellular senescence-
related gene expression level

We acquired 41 normal samples and 473 colon cancer tissue

samples from the TCGA database. Another 585 colon cancer

samples were obtained from the GEO database. 279 cellular

senescence-related genes were acquired from the CellAge

database. When cluster Num = 3, the relationship in the

cluster was tight and the correlation between clusters was

weak (Figure 1A). So, all samples were classified into three

clusters. Other classification results were visualized in

Supplementary Figure S2. In the PCA plot, red points, yellow

points, and blue points were separated, which indicated that

cluster A, cluster B, and cluster C could be distinguished based on

the expression of cellular senescence-related genes (Figure 1B).

The prognosis of patients among three clusters showed

differences, with patients in cluster A and cluster B having

longer survival times than cluster C (Figure 1C). We observed

that cellular senescence-related genes were expressed at the

lowest level in cluster A and at the highest level in cluster C

(Figure 1D). And the three clusters showed no difference in the

different clinical subgroups. In addition, the differences in the

level of immune infiltration among the three clusters were

analyzed. Interestingly, cluster C not only contained high

immune cell infiltration, but also many immunosuppressive

cells, such as myeloid-derived suppressor cells (MDSCs),

regulatory T cells (Tregs), and macrophages (Figure 1E). It

might be associated with the worse prognosis of colon cancer

patients in cluster C.

We also investigated the differences in enrichment pathways

among the three clusters. The significantly enriched pathways in

cluster A included “PEROXISOME”, “PYRUVATE

METABOLISM”, and “HUNTINGTONS DISEASE”

(Figure 1F). And the predominantly enriched pathways in

cluster B were “BASE EXCISION REPAIR”,

“HOMOLOGOUS RECOMBINATION”, “PYRUVATE

METABOLISM”, “PARKINSONS DISEASE”, and

“HUNTINGTONS DISEASE” (Figure 1G).

While“GLYCOSAMINOGLYCAN BIOSYNTHESIS

CHONDROITIN SULFATE”, “ECM RECEPTOR

INTERACTION”, “FOCAL ADHESION”, and “TGF BETA

SIGNALING PATHWAY” were significantly enriched in

cluster C. The KEGG pathways in cluster A and cluster B

were mainly involved in tumor suppression processes, while

the KEGG pathways in cluster C were associated with

tumorigenesis and metastasis.

2334 differential genes among three
clusters

To further investigate the differences among the three

clusters, we identified 2334 DEGs in cluster A, cluster B, and

cluster C (Supplementary Figure S3A and Supplementary Table

S2). And the enrichment pathways for DEGs were visualized in

Supplementary Figure S3B,C. The results of the GO enrichment

analysis showed that “positive regulation of cell adhesion”,

“leukocyte migration” and “leukocyte cell−cell adhesion” were

significantly enriched in biological processes (BP);

“collagen−containing extracellular matrix”, “cell−substrate

junction”, and “focal adhesion” were significantly enriched in

molecular function (CC); “actin-binding” and “extracellular

matrix structural constituent” were significantly enriched in

the cellular component (MF). “PI3K−Akt signaling pathway”,

“Focal adhesion”, “Osteoclast differentiation”, “Rap1 signaling

pathway”, and “Proteoglycans in cancer” were significantly

enriched in KEGG. The significantly enriched pathways in

DEGs were associated with tumor development and metastasis.

Gene clusters based on prognostic DEGs

We further studied the association of DEGs among clusters

with prognosis, and 681 prognostic DEGs were identified

(Supplementary Table S3). Colon cancer samples were

classified into three gene clusters based on the expression of

prognostic DEGs. When cluster Num = 3, the relationship in the

gene cluster was tight and the correlation between gene clusters

was weak (Supplementary Figure S4). The prognostic DEGs were

significantly down-regulated in gene Cluster A and up-regulated

in gene Cluster C (Figure 2A). Gene cluster A had the best

prognosis, while gene cluster C had the worst prognosis

(Figure 2B). We further validated the accuracy of classifying

colon cancer samples into three gene clusters based on the

expression of prognostic DEGs (Figure 2C).

Construction and validation of a cellular
senescence-related risk score signature

We constructed a risk score signature to predict the

prognosis of colon cancer patients based on prognostic DEGs

(Figures 3A,B). The training set was used to construct the risk

score signature, while the testing set was applied to validate the

accuracy of the signature. Formula: Risk score = FITM2 exp. *

(-0.340377976707324) + APOL6 exp. * (-0.385962800820076) +

VWF exp. * 0.348549751087245 + PRRX2 exp.*

0.222316119860682 + CCL22 exp. * (-0.505065627522616) +

ALPL exp. * 0.427185163663466 + SON exp. *

0.403475482932549 + KIF7 exp. * 0.466822368846872 +

ZEB1-AS1 exp. * 0.509278568824046. The colon cancer
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sample was classified into high and low-risk score groups based

on the medium value of the risk score. The statistics of clinical

information for the training set and the testing set were visualized

in Supplementary Table S4. Red points and blue points were

significantly separated in the PCA plot and the t-SNE plot, which

demonstrated the accuracy of distinguishing high- and low-risk

score groups based on the risk score (Figures 3C–F).We observed

a better prognosis for patients in the low-risk score group

(Figures 3G–I). Moreover, the prediction of patient survival at

1, 3, and 5 years was more accurate based on the signature

(Figure 3J-3L). The high-risk score group had higher mortality

(Figures 4A–I). The expression levels of FITM2, APOL6, and

CCL22 decreased significantly with increasing risk scores, which

were low-risk genes. In contrast, the expression levels of VWF,

PRRX2, ALPL, SON, KIF7, and ZEB1-AS1 increased significantly

with increasing risk scores, which were high-risk genes.

We further confirmed the accuracy of the signature in

predicting the prognosis of patients with colon cancer.

p-values for the risk score were less than 0.001 in both

univariate and multivariate Cox regression analyses, which

indicated that the risk score could predict the prognosis of

colon cancer patients independently of other clinical

characteristics (Figures 5A–D). Moreover, the risk score

predicted prognosis more accurately than other clinical

characteristics, with the highest C-index value (Figure 5E). We

searched online for four risk score signatures (Wang signature,

Zhang signature, Zheng signature, and Ren signature) that

predicted the prognosis of colon cancer (Ren et al., 2020;

Zhang et al., 2020; Wang et al., 2021; Zheng et al., 2021).

Surprisingly, the cellular senescence-related signature

predicted the prognosis of colon cancer patients significantly

better than the other four signatures, with the highest C-index

value of 0.682 (Figure 5F). Supplementary Figure S5 visualized

the predicted survival ROC curves and survival curves for other

signatures. Furthermore, the meta-analysis showed less

heterogeneity when using the signature to predict the

prognosis of patients with colon cancer with I2 <50% (Figure 5G).

Development of a nomogram

Anomogramwas developed to benefit clinical work in predicting

1-year, 3-years, and 5-years survival probability in patients with colon

cancer. For example, when the total point was 328, the 1-year survival

probability of patients was more than 0.981, the 3-years survival

probability was more than 0.937, and the 5-years survival probability

wasmore than 0.898 (Figure 6A).Moreover, we found that predicting

the survival probability of colon cancer patients was significantly

better than other clinical characteristics based on the nomogram, with

the highest AUC value of 0.823 (Figure 6B).

FIGURE 2
Three gene clusters based on prognostic differential gene expression levels. (A) Heat map. Prognostic differential genes were upregulated in
gene Cluster C and down-regulated in gene Cluster A. (B) Kaplan-Meier survival curves. p < 0.001. (C) PCA plot. Blue dots represent patients in gene
Cluster A; yellow dots represent patients in gene Cluster B; red dots represent patients in gene Cluster C.
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Validation of risk score signature in clinical
subgroups

The construction process of the signature was illustrated in

Figure 7A. We further analyzed the differences in risk scores among

the different clusters. Cluster A and gene Cluster A had the lowest

risk scores, while cluster C and gene Cluster C had the highest risk

scores (Figures 7B,C). All colon cancer patients were also classified

into survival and death groups based on survival outcomes.

Interestingly, patients in the survival group showed lower risk

scores (Figure 7D). It further confirmed the above findings that

patients in the low-risk score group had a better prognosis.

FIGURE 3
Construction of a cellular senescence-related risk score signature. (A) LASSO regression analysis. (B) Cross-validation for tuning the parameter
selection. (C) The PCA plot of the training set. (D) The PCA plot of the test set. (E) The t-SEN plot of the training set. (F) The t-SEN plot of the testing
set. (G) The K-M survival curve of all colon cancer samples, p < 0.001. (H) The K-M survival curve of the training set, p < 0.001. (I) The Kaplan-Meier
survival curve of the testing set, p < 0.001. (J) The AUC values of 1-year, 3-years, and 5-years survival for all colon cancer patients were more
than 0.700. (K) The AUC values of 1-year, 3-years, and 5-years survival for the training set were more than 0.750. (L) The AUC values of 1-year, 3-
years, and 5-years survival for the testing set were more than 0.600.
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Next, we also explored whether there were differences in risk

scores across clinical characteristics (Figure 7E). Unexpectedly, the

risk scores showed no differences between men and women, nor

between different age groups (≤65 and >65). In contrast, there were

differences in risk scores among T stage (T1, T2, T3, T4), N stage (N0,

N1, N2, N3),M stage (M0,M1), and pathological TNMstage (Stage I,

Stage II, Stage III, Stage IV). The risk score increased gradually after

T2 (Figure 7F). The risk score increased gradually after N0, except for

N3 (Figure 7G). The risk score of M1 was significantly higher than

that ofM0 (Figure 7H). The risk score increased gradually after Stage I

(Figure 7I). The immunotyping of colon cancer is classified into four

subtypes, C1 (Wound Healing), C2 (IFN-gamma Dominant), C3

(Inflammatory), andC4 (LymphocyteDepleted). Unexpectedly, there

was no difference in risk scores among subtypes, except for the

difference in risk scores betweenC1 andC2 (Figure 7J). AndC2 had a

lower risk score than C1.

We also observed that the signature was applicable to predict

the prognosis of colon cancer patients in different clinical

subgroups, including different ages, different gender, different

T stages, different N stages, different M stages, and different

pathological TNM stages (Figures 8A–L).

Gene mutation landscape in high- and
low-risk score group

We also investigated gene mutations in different risk score

groups. The gene mutation frequency of the low-risk score group

FIGURE 4
Risk curves. (A) Risk status plot of all colon cancer samples. The horizontal coordinate represented the ranked patients, and the risk scores of
patients gradually increased from left to right; the vertical coordinate represented the risk scores. (B) Risk status of the training set. (C) Risk status of
the testing set. (D) Survival status plot of all colon cancer samples. (E) Survival status plot of the training set. (F) Survival status plot of the testing set. (G)
Risk histogram of all colon cancer samples. The percentage of survival patients in the low-risk score group was higher than that in the high-risk
score group. (H) Risk histogram of the training set. (I) Risk histogram of the testing set. (J) Risk heat map of all colon cancer samples. The expression
of FITM2, APOL6, and CCL22 decreased with increasing risk scores; the expression of VWF, PRRX2, ALPL, SON, KIF7, and ZEB1-AS1 increased with
increasing risk scores. (K) Risk heat map of the training set. (L) Risk heat map of the testing set.
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was higher than the high-risk score group. The top 20 genes with

mutation frequencies in the high-risk score group were visualized in

Supplementary Figure S6A, while the low-risk score group was

visualized in Supplementary Figure S6B.

Immunotherapy response in high- and
low-risk score groups

In clinical work, patients with colon cancer have individual

differences and develop different responses to different

therapeutic drugs, resulting in different therapy outcomes.

Immunotherapy and chemotherapy are currently the main

tools in the systemic therapy of colon cancer. We observed

that patients in the low-risk score group had higher immune

scores (IPS) and better responses to immunotherapy drugs

(CTLA4, PD1, PDL1, PDL2) (Figures 9A–D). We also

identified 12 drugs suitable for colon cancer (Figures 9E–P).

In particular, the IC50 values of four drugs (Erlotinib,

Metformin, Methotrexate, and Mitomycin) were lower in the

low-risk score group and more suitable for patients in the low-

risk score group. In contrast, the IC50 values of eight drugs

(Bexarotene, Bleomycin, Dasatinib, Docetaxel, Embelin,

Imatinib, Pazopanib, and Shikonin) were lower in the high-

risk score group and more applicable to patients in the high-risk

score group.

FIGURE 5
Validation of the risk score signature. (A) Univariate Cox regression analysis of the training set. Risk scores, p < 0.001. (B) Multivariate Cox
regression analysis of the training set. Risk scores, p < 0.001. (C) Univariate Cox regression analysis of the testing set. Risk scores, p < 0.001. (D)
Multivariate Cox regression analysis of the testing set. Risk scores, p < 0.001. (E) C-index curves. C-index value of risk scores was higher than other
clinical characteristics (age, gender, pathological stage, T stage, N stage, and M stage). (F) Histogram for signature comparison with C-index
method. SnGs signature had the highest C-index value compared to other signatures, AUC = 0.682. (G) Forest plot. The multivariate Cox regression
analysis results of the training and testing sets were used to perform a meta-analysis, I2<50%.
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Validation of the signature genes in
normal and tumor tissues

ALPL, APOL6, SON, VWF, FITM2, and ZEB1-AS1 were

significantly differentially expressed in normal and colon cancer

tissues (Figures 10A–I). In particular, ALPL, APOL6, SON, and

VWF were lowly expressed in tumor tissues. In contrast,

FITM2 and ZEB1-AS1 were highly expressed in tumor tissues.

We also confirmed the differential expression of ALPL, APOL6,

SON, and VWF in the HPA database (Figure 10J). ALPL,

APOL6, SON, and VWF proteins were significantly

differentially expressed between normal and tumor tissues. In

contrast, the expression levels of KIF7 and PRRX2 showed no

difference between normal and tumor tissues.

Copy number variants and gene mutation
in signature genes

We further investigated the gene mutation and copy number

variants (CNV) for 10 signature genes in colon cancer. The gene

with the highest mutation frequency was VWF at 8%, while

ZEB1-AS1 had the lowest mutation frequency at 0%

(Figure 11A). Interestingly, we observed that all genes showed

amplification except PRRX2 and ALPL, which showed depletion

(Figure 11B). And the chromosomal location of the CNV

changes was visualized in Figure 11C. We also analyzed the

expression of signature genes in different clusters. We observed

that most of the signature genes were highly expressed in cluster

C and gene Cluster C (Figures 11D,E).

Discussion

Cellular senescence has been revealed to inhibit the

progression of colon cancer cells (Acosta et al., 2013; Cho

et al., 2013). However, paradoxically, cellular senescence has

also been found to promote the development of colon cancer

(Guo et al., 2019). It might be related to the fact that it is highly

heterogeneous (Sikora et al., 2021; Wang and Demaria, 2021). In

view of the importance of cellular senescence in colon cancer, we

would like to construct a cellular senescence-related risk score

signature to predict prognosis and immunotherapy response.

In this article, firstly, all colon cancer samples were classified

into three clusters based on cellular senescence-related gene

expression. Clusters A and B had a better prognosis. In

contrast, cluster C showed a worse prognosis since it

contained high levels of immunosuppressive cell infiltration

(MDSCs, Tregs, and macrophages) (Togashi and Nishikawa,

2017; Tian et al., 2019; Katopodi et al., 2021). The reasons for

the differential prognosis of the three clusters were also revealed

in the results of the GSVA analysis. The enrichment pathway in

cluster A was associated with anti-tumor (Kim, 2020; Wenes

et al., 2022). “PARKINSONS DISEASE” and “HUNTINGTONS

DISEASE” were significantly enriched in cluster B. Patients with

neurodegenerative diseases were considered to be at low risk of

FIGURE 6
Developing a Nomogram. (A)Nomogram.When the total point was 328, the nomogram predicted that the 1-year survival probability of patients
was more than 0.981, the 3-years survival probability was more than 0.937, and the 5-years survival probability was more than 0.898. (B)Nomogram
ROC curve. The horizontal coordinate represented the false-positive rate expressed by 1-Specificity and the vertical coordinate represented the
true-positive rate expressed by sensitivity.
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developing cancer (Leong et al., 2021; Panegyres and Chen,

2021). In contrast, the enriched pathways in cluster C were

involved in the development and metastasis of cancer (Zhao

et al., 2018; Bao et al., 2019; Pudełko et al., 2019; Wu et al., 2021).

Furthermore, the deficiencies of “BASE EXCISION REPAIR”

and “HOMOLOGOUS RECOMBINATION” in cluster C were

thought to be associated with a worse prognosis of cancer

(Wallace et al., 2012; Toh and Ngeow, 2021). Next,

2334 DEGs among three clusters were identified. We observed

that significantly enriched pathways in DEGs were associated

with tumor development and metastasis (Bourboulia and Stetler-

Stevenson, 2010; Huang et al., 2017; Izdebska et al., 2018; Li et al.,

2021; Lin et al., 2022). It confirmed that cellular senescence

played a crucial role in the prognosis of colon cancer. In order to

further validate the above speculation, 2334 DEGs among

clusters were performed consensus clustering analysis. All

FIGURE 7
(A) Sankey diagram. The construction process of the risk score signature. (B) Box plot of risk scores for the three clusters. (C) Box plot of risk
scores for the three gene clusters. (D) Box plot of risk scores for the survival status (Fustat). (E) Heatmap of correlation between risk and clinical
characteristics. pppp < 0.001. (F) Box plot of the risk score for the T stage. (G) Box plot of risk scores for the N stage. (H) Box plot of risk scores for M
stage. (I) Box plot of risk scores for pathological TNM stage. (J) A box plot of risk scores across the four immune subtypes. C1, Wound Healing;
C2, IFN-gamma Dominant; C3, Inflammatory; C4, Lymphocyte Depleted.
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colon cancer patients were divided into three gene clusters. Gene

cluster A had the best prognosis, while gene cluster C had the

worst prognosis. It suggested that cellular senescence could also

distinguish prognostic differences among gene clusters.

Therefore, we considered that patients with different

prognoses of colon cancer could be distinguished based on

cellular senescence.

Next, according to 681 prognosis-related DEGs among

clusters, a cellular senescence-related risk score signature

(FITM2, APOL6, VWF, PRRX2, CCL22, ALPL, SON, KIF7,

and ZEB1-AS1) was constructed to predict patients’

prognosis. Low-risk score group showed longer survival

and a lower percentage of deaths. The risk score could be

used independently of other clinical features (age, gender,

stage, T stage, N stage, and M stage) to predict patients’

prognosis with the highest accuracy. Moreover, compared

to other signatures, the cellular senescence-related risk

score signature had the highest predictive accuracy with a

C-index value of 0.682. Excitingly, we observed that the

cellular senescence-related risk score signature predicted

little heterogeneity in prognosis between the training set

and testing set by performing the prognostic meta-analysis

with I2 < 50%. It further confirmed the accuracy of the

signature in predicting the prognosis of colon cancer

patients. A nomogram predicting 1-year, 3-years, and 5-

years survival probability in patients with colon cancer was

constructed for the clinical work. It has the highest accuracy

compared to other clinical characteristics, with an AUC value

of 0.823. According to the comparison of risk scores in

different subgroups, we observed the following phenomena:

more advanced TNM stage was associated with higher risk

scores; cluster C had a significantly higher risk score than

cluster A and cluster B; gene cluster C had a significantly

higher risk score than gene cluster A; the clinical outcome

death group had a significantly higher risk score than the

survival group. It further confirmed that the high-risk score

group was associated with a worse prognosis, while the low-

risk score group was associated with a better prognosis. There

FIGURE 8
(A-L) visualized the risk score signature being applied to patients with different clinical subgroups, including different ages, different genders,
different T-stages, different N-stages, different M-stages, and different pathological stages. (A) Patients with age > 65. (B) Patients with age& 65. (C)
Female patients. (D)Male patients. (E) Patients with stages T1-2. (F) Patients with stage T3-4. (G) Patients with stage N0. (H) Patients with stages N1-3.
(I) Patients with stage M0. (J) Patients with stage M1. (K) Patients with stages I-II. (L) Patients with stages III-IV.
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was very high accuracy in distinguishing between high and

low-risk score groups based on the risk score signature. We

also demonstrated the suitability of the signature for

predicting prognosis in different clinical subgroups,

including different age groups (≤65 and >65), different

gender (female and male), different T stages (T-2 and T3-

4), different N stages (N0 and N1-3), different M stages

(M0 and M1), and different TNM stages (stage I-II and

stage III-IV). Since it is impossible to identify which colon

cancer patients benefit from immunotherapy in clinical work,

which often leads to misuse of immunotherapy drugs.

Therefore, we performed further analysis to explore

whether the signature could distinguish colon cancer

patients who have better immunotherapy responses for

targeted treatment. The low-risk score group had a better

immunotherapy response. While the low-risk score group had

FIGURE 9
Immunotherapy response and chemotherapy response in colon cancer. (A) Immunotherapy response of different risk score groups for CTLA4-
negative and PD1, PDL1, PDL2 negative. p = 7.3e-05. (B) Immunotherapy response of different risk score groups for CTLA4 positive and PD1, PDL1,
PDL2 negative. p = 8.7e-06. (C) Immunotherapy response of different risk score groups for CTLA4 negative and PD1, PDL1, PDL2 positive. p = 0.002.
(D) Immunotherapy response of different risk score groups to CTLA4 positivity and PD1, PDL1, PDL2 negativity. p = 0.00019. (E–P)
Chemotherapy response of different risk score groups to 12 chemotherapy drugs.
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a worse immunotherapy response. Therefore, better benefits

may be achieved when immunotherapeutic drugs (PD1/PDL-

1/PD-L2/CTLA-4 blockers) are used for colon cancer patients

in the low-risk score group.

Finally, FITM2, APOL6, VWF, PRRX2, CCL22, ALPL,

SON, KIF7, and ZEB1-AS were further investigated. In our

study, FITM2 was highly expressed in colon cancer tissues. It

was consistent with the findings of Yang et al. (Yang et al.,

2019). We demonstrated that TITM2 was a low-risk gene,

which was associated with a better prognosis in patients with

colon cancer. APOL6 showed a low expression level in colon

cancer tissues and was a low-risk gene. It was due to the ability

of APOL6 to induce apoptosis in colon cancer cells (Aryee et al.,

2013). In our article, VWF was low expressed in colon cancer

FIGURE 10
Validation of differential expression of FITM2, APOL6, VWF, PRRX2, CCL22, ALPL, SON, KIF7, and ZEB1-AS1 in normal samples and colon cancer
samples. (A–I) Box plots. ns represents no difference; pp < 0.05, ppp < 0.001, pppp < 0.001. (J) Immunohistochemical maps of ALPL, APOL6, KIF7,
PRRX2, SON, and VWF expression proteins in the HPA database.
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tissue and was a high-risk gene. It was because VWF could

promote a highly aggressive nature of colon cancer (Zanetta

et al., 2000). Our study showed that PRRX2 was a high-risk

gene. However, Chai et al. considered that PRRX2 inhibited

distant metastasis of colon cancer cells and was a protective

gene (Chai et al., 2019). This difference required further

verification in subsequent experiments. Chen et al. revealed

that high expression of CCL22 was associated with a better

prognosis in patients with colon cancer (Chen et al., 2021). It

was consistent with our findings. Luo et al. found that ALPL

inhibited the aggressiveness of ovarian cancer (Luo et al., 2019).

And Child et al. identified ALPL as a cancer suppressor gene for

prostate cancer (Tong et al., 2019). However, the opposite was

true for the role of ALPL in colon cancer. In our study, ALPL

was a high-risk gene that was lowly expressed in colon cancer

tissues. The significance of SON in colon cancer has not been

studied by anyone. We first identified SON as a high-risk gene

with low expression in colon cancer tissues. Hu et al. revealed

that downregulation of KIF7 promoted antitumor activity in

lung cancer and it was a cancer-promoting gene (Hu et al.,

2020). Surprisingly, we also found KIF7 as a high-risk gene in

colon cancer. In our article, ZEB1-AS1 was highly expressed in

colon cancer tissues and was associated with a worse prognosis.

This was associated with the ability of ZEB1-AS1 to cause the

malignant progression of colon cancer (Ni et al., 2020). We also

found that VWF had the highest mutation frequency, while

ZEB1-AS1 was not mutated. All genes showed amplification

except for PRRX2 and ALPL which showed depletion. Most of

the signature genes were upregulated in cluster C and gene

cluster C.

FIGURE 11
The landscape for mutation and expression of the 10 signature genes (FITM2, APOL6, VWF, PRRX2, CCL22, ALPL, SON, KIF7, and ZEB1-AS1). (A)
The gene mutation frequency waterfall plot of 10 signature genes. (B) CNV alteration frequency of the 10 signature genes; Red, CNV gain; Green,
CNV loss. (C) CNV changes in 10 signature genes on 23 chromosomes. Red, CNV increase; Blue, copy number loss. (D) Differential expression of
10 signature genes among three clusters. pppp < 0.001. (E)Differential expression of 10 signature genes among three gene clusters. pppp < 0.001.
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In conclusion, the cellular senescence-related risk score

signature could be used to predict prognosis and

immunotherapy response in colon cancer.
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